首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Introduction

Asthma is a chronic inflammatory disorder of the airways, involving oxidative stress. Upon oxidative stress, glutathione covalently binds to protein thiols to protect them against irreversible oxidation. This posttranslational modification, known as protein S-glutathionylation, can be reversed by glutaredoxin 1 (Glrx1) under physiological condition. Glrx1 is known to increase in the lung tissues of a murine model of allergic airway inflammation. However, the temporal relationship between levels of Glrx1, protein S-glutathionylation, and glutathione in the lungs with allergic airway inflammation is not clearly understood.

Methods

BALB/c mice received 3 aerosol challenges with ovalbumin (OVA) following sensitization to OVA. They were sacrificed at 6, 24, 48, or 72 h, or 8 days (5 mice per group), and the levels of Glrx1, protein S-glutathionylation, glutathione, and 25 cytokines/chemokines were evaluated in bronchoalveolar lavage fluid (BALF) and/or lung tissue.

Results

Levels of Glrx1 in BALF were significantly elevated in the OVA 6 h (final challenge) group compared to those in the control, with concurrent increases in protein S-glutathionylation levels in the lungs, as well as total glutathione (reduced and oxidized) and oxidized glutathione in BALF. Protein S-glutathionylation levels were attenuated at 24 h, with significant increases in Glrx1 levels in lung tissues at 48 and 72 h. Glrx1 in alveolar macrophages was induced after 6 h. Glrx1 levels concomitantly increased with Th2/NF-κB-related cytokines and chemokines in BALF.

Conclusions

The temporal relationships of Glrx1 with protein S-glutathionylation, glutathione, and cytokines/chemokines were observed as dynamic changes in lungs with allergic airway inflammation, suggesting that Glrx1 and protein–SSG redox status may play important roles in the development of allergic airway inflammation.  相似文献   

2.
Adiponectin is an adipose derived hormone that declines in obesity. We have previously shown that exogenous administration of adiponectin reduces allergic airways responses in mice. T-cadherin (T-cad; Cdh13) is a binding protein for the high molecular weight isoforms of adiponectin. To determine whether the beneficial effects of adiponectin on allergic airways responses require T-cad, we sensitized wildtype (WT), T-cadherin deficient (T-cad(-/-)) and adiponectin and T-cad bideficient mice to ovalbumin (OVA) and challenged the mice with aerosolized OVA or PBS. Compared to WT, T-cad(-/-) mice were protected against OVA-induced airway hyperresponsiveness, increases in BAL inflammatory cells, and induction of IL-13, IL-17, and eotaxin expression. Histological analysis of the lungs of OVA-challenged T-cad(-/-) versus WT mice indicated reduced inflammation around the airways, and reduced mucous cell hyperplasia. Combined adiponectin and T-cad deficiency reversed the effects of T-cad deficiency alone, indicating that the observed effects of T-cad deficiency require adiponectin. Compared to WT, serum adiponectin was markedly increased in T-cad(-/-) mice, likely because adiponectin that is normally sequestered by endothelial T-cad remains free in the circulation. In conclusion, T-cad does not mediate the protective effects of adiponectin. Instead, mice lacking T-cad have reduced allergic airways disease, likely because elevated serum adiponectin levels act on other adiponectin signaling pathways.  相似文献   

3.

Background

Asthma leads to structural changes in the airways, including the modification of extracellular matrix proteins such as tenascin-C. The role of tenascin-C is unclear, but it might act as an early initiator of airway wall remodelling, as its expression is increased in the mouse and human airways during allergic inflammation. In this study, we examined whether Th1 or Th2 cells are important regulators of tenascin-C in experimental allergic asthma utilizing mice with impaired Th1 (STAT4-/-) or Th2 (STAT6-/-) immunity.

Methods

Balb/c wildtype (WT), STAT4-/- and STAT6-/- mice were sensitized with intraperitoneally injected ovalbumin (OVA) followed by OVA or PBS airway challenge. Airway hyperreactivity (AHR) was measured and samples were collected. Real time PCR and immunohistochemistry were used to study cytokines and differences in the expression of tenascin-C. Tenascin-C expression was measured in human fibroblasts after treatment with TNF-α and IFN-γ in vitro.

Results

OVA-challenged WT mice showed allergic inflammation and AHR in the airways along with increased expression of TNF-α, IFN-γ, IL-4 and tenascin-C in the lungs. OVA-challenged STAT4-/- mice exhibited elevated AHR and pulmonary eosinophilia. The mRNA expression of TNF-α and IFN-γ was low, but the expression of IL-4 was significantly elevated in these mice. OVA-challenged STAT6-/- mice had neither AHR nor pulmonary eosinophilia, but had increased expression of mRNA for TNF-α, IFN-γ and IL-4. The expression of tenascin-C in the lungs of OVA-challenged STAT4-/- mice was weaker than in those of OVA-challenged WT and STAT6-/- mice suggesting that TNF-α and IFN-γ may regulate tenascin-C expression in vivo. The stimulation of human fibroblasts with TNF-α and IFN-γ induced the expression of tenascin-C confirming our in vivo findings.

Conclusions

Expression of tenascin-C is significantly attenuated in the airways of STAT4-/- mice, which may be due to the impaired secretion of TNF-α and IFN-γ in these mice.  相似文献   

4.

Background

Arginase overexpression contributes to airways hyperresponsiveness (AHR) in asthma. Arginase expression is further augmented in cigarette smoking asthmatics, suggesting that it may be upregulated by environmental pollution. Thus, we hypothesize that arginase contributes to the exacerbation of respiratory symptoms following exposure to air pollution, and that pharmacologic inhibition of arginase would abrogate the pollution-induced AHR.

Methods

To investigate the role of arginase in the air pollution-induced exacerbation of airways responsiveness, we employed two murine models of allergic airways inflammation. Mice were sensitized to ovalbumin (OVA) and challenged with nebulized PBS (OVA/PBS) or OVA (OVA/OVA) for three consecutive days (sub-acute model) or 12 weeks (chronic model), which exhibit inflammatory cell influx and remodeling/AHR, respectively. Twenty-four hours after the final challenge, mice were exposed to concentrated ambient fine particles plus ozone (CAP+O3), or HEPA-filtered air (FA), for 4 hours. After the CAP+O3 exposures, mice underwent tracheal cannulation and were treated with an aerosolized arginase inhibitor (S-boronoethyl-L-cysteine; BEC) or vehicle, immediately before determination of respiratory function and methacholine-responsiveness using the flexiVent®. Lungs were then collected for comparison of arginase activity, protein expression, and immunohistochemical localization.

Results

Compared to FA, arginase activity was significantly augmented in the lungs of CAP+O3-exposed OVA/OVA mice in both the sub-acute and chronic models. Western blotting and immunohistochemical staining revealed that the increased activity was due to arginase 1 expression in the area surrounding the airways in both models. Arginase inhibition significantly reduced the CAP+O3-induced increase in AHR in both models.

Conclusions

This study demonstrates that arginase is upregulated following environmental exposures in murine models of asthma, and contributes to the pollution-induced exacerbation of airways responsiveness. Thus arginase may be a therapeutic target to protect susceptible populations against the adverse health effects of air pollution, such as fine particles and ozone, which are two of the major contributors to smog.  相似文献   

5.

Background

The relationship between airway structural changes (remodeling) and airways hyperresponsiveness (AHR) is unclear. Asthma guidelines suggest treating persistent asthma with inhaled corticosteroids and long acting β-agonists (LABA). We examined the link between physiological function and structural changes following treatment fluticasone and salmeterol separately or in combination in a mouse model of allergic asthma.

Methods

BALB/c mice were sensitized to intraperitoneal ovalbumin (OVA) followed by six daily inhalation exposures. Treatments included 9 daily nebulized administrations of fluticasone alone (6 mg/ml), salmeterol (3 mg/ml), or the combination fluticasone and salmeterol. Lung impedance was measured following methacholine inhalation challenge. Airway inflammation, epithelial injury, mucus containing cells, and collagen content were assessed 48 hours after OVA challenge. Lungs were imaged using micro-CT.

Results and Discussion

Treatment of allergic airways disease with fluticasone alone or in combination with salmeterol reduced AHR to approximately naüve levels while salmeterol alone increased elastance by 39% compared to control. Fluticasone alone and fluticasone in combination with salmeterol both reduced inflammation to near naive levels. Mucin containing cells were also reduced with fluticasone and fluticasone in combination with salmeterol.

Conclusions

Fluticasone alone and in combination with salmeterol reduces airway inflammation and remodeling, but salmeterol alone worsens AHR: and these functional changes are consistent with the concomitant changes in mucus metaplasia.  相似文献   

6.
7.
The FcR common gamma-chain (FcRgamma) is an essential component of the receptors FcepsilonRI, FcgammaRI, and FcgammaRIII, which are expressed on many inflammatory cell types. The role of these receptors in the initiation or maintenance of allergic inflammation has not been well defined. FcRgamma-deficient (FcRgamma(-/-)) and control (wild-type (WT)) mice were sensitized and subsequently challenged with OVA. Following sensitization and challenge to OVA, FcRgamma-deficient (FcRgamma(-/-)) mice developed comparable levels of IgE and IgG1 as WT mice. However, numbers of eosinophils, levels of IL-5, IL-13, and eotaxin in bronchoalveolar lavage fluid, and mononuclear cell (MNC) proliferative responses to OVA were significantly reduced, as was airway hyperresponsiveness (AHR) to inhaled methacholine. Reconstitution of FcRgamma(-/-) mice with whole spleen MNC from WT mice before sensitization restored development of AHR and the numbers of eosinophils in bronchoalveolar lavage fluid; reconstitution after sensitization but before OVA challenge only partially restored these responses. These responses were also restored when FcRgamma(-/-) mice received T cell-depleted MNC, T and B cell-depleted MNC, or bone marrow-derived dendritic cells before sensitization from FcR(+/+) or FcgammaRIII-deficient but not FcRgamma(-/-) mice. The expression levels of FcgammaRIV on bone marrow-derived dendritic cells from FcR(+/+) mice were found to be low. These results demonstrate that expression of FcRgamma, most likely FcgammaRI, on APCs is important during the sensitization phase for the development of allergic airway inflammation and AHR.  相似文献   

8.
Antibody-antigen interactions in the airway initiate inflammation in acute asthma exacerbations. This inflammatory response is characterized by the recruitment of granulocytes into the airways. In murine models of asthma, granulocyte recruitment into the lung contributes to the development of airway hyperresponsiveness (AHR), mucus production, and airway remodeling. Leukotriene B4 is a mediator released following antigen challenge that has chemotactic activity for granulocytes, mediated through its receptor, BLT1. We investigated the role of BLT1 in granulocyte recruitment following antigen challenge. Wild-type mice and BLT1-/- mice were sensitized and challenged with ovalbumin (OVA) to induce acute allergic airway inflammation. In addition, to explore the relevance to antibody-antigen interactions, we injected OVA bound to anti-OVA IgG1 or anti-OVA IgE intratracheally into na?ve wild-type and BLT1-/- mice. Cell composition of the lungs, cytokine levels, histology, and AHR were determined. After sensitization and challenge with ovalbumin, there was significantly reduced neutrophil and eosinophil recruitment into the airways of BLT1-/- mice compared with wild-type animals after one or two daily antigen challenges, but this difference was not seen after three or four daily antigen challenges. Mucus production and AHR were not affected. Intratracheal injection of OVA bound to IgG1 or IgE induced neutrophil recruitment into the airways in wild-type mice but not in the BLT1-/- mice. We conclude that BLT1 mediates early recruitment of granulocytes into the airway in response to antigen-antibody interactions in a murine model of acute asthma.  相似文献   

9.
In this investigation, we have examined the integrated relationship between IL-13, IL-4, and IL-5 for the development of airways hyperreactivity (AHR) in a model of asthma in BALB/c mice. Sensitization and aeroallergen challenge of both wild-type (WT) and IL-13 gene-targeted (IL-13-/-) mice induced allergic disease that was characterized by pulmonary eosinophilia and AHR to beta-methacholine. Although these responses in IL-13-/- mice were heightened compared with WT, they could be reduced to the level in nonallergic mice by the concomitant neutralization of IL-4. Mice in which both IL-4 and IL-13 were depleted displayed a marked reduction in tissue eosinophils, despite the development of a blood eosinophilia. Similar neutralization of IL-4 in WT mice only partially reduced AHR with no effect on tissue eosinophilia. In addition, neutralization of IL-5 in IL-13-/- mice, but not in WT mice, inhibited AHR, suggesting that tissue eosinophilia is linked to the mechanism underlying AHR only in the absence of IL-13. Additionally, mucus hypersecretion was attenuated in IL-13-/- mice, despite the persistence of AHR. Taken together, our data suggest both a modulatory role for IL-13 during sensitization and a proinflammatory role during aeroallergen challenge. The latter process appears redundant with respect to IL-4.  相似文献   

10.

Background

Chronic asthma is often associated with neutrophilic infiltration in the airways. Neutrophils contain elastase, a potent secretagogue in the airways, nonetheless the role for neutrophil elastase as well as neutrophilic inflammation in allergen-induced airway responses is not well defined. In this study, we have investigated the impact of neutrophil elastase inhibition on the development of allergic airway inflammation and airway hyperresponsiveness (AHR) in previously sensitized and challenged mice.

Methods

BALB/c mice were sensitized and challenged (primary) with ovalbumin (OVA). Six weeks later, a single OVA aerosol (secondary challenge) was delivered and airway inflammation and airway responses were monitored 6 and 48 hrs later. An inhibitor of neutrophil elastase was administered prior to secondary challenge.

Results

Mice developed a two-phase airway inflammatory response after secondary allergen challenge, one neutrophilic at 6 hr and the other eosinophilic, at 48 hr. PAR-2 expression in the lung tissues was enhanced following secondary challenge, and that PAR-2 intracellular expression on peribronchial lymph node (PBLN) T cells was also increased following allergen challenge of sensitized mice. Inhibition of neutrophil elastase significantly attenuated AHR, goblet cell metaplasia, and inflammatory cell accumulation in the airways following secondary OVA challenge. Levels of IL-4, IL-5 and IL-13, and eotaxin in BAL fluid 6 hr after secondary allergen challenge were significantly suppressed by the treatment. At 48 hr, treatment with the neutrophil elastase inhibitor significantly reduced the levels of IL-13 and TGF-β1 in the BAL fluid. In parallel, in vitro IL-13 production was significantly inhibited in spleen cells from sensitized mice.

Conclusion

These data indicate that neutrophil elastase plays an important role in the development of allergic airway inflammation and hyperresponsiveness, and would suggest that the neutrophil elastase inhibitor reduced AHR to inhaled methacholine indicating the potential for its use as a modulator of the immune/inflammatory response in both the neutrophil- and eosinophil-dominant phases of the response to secondary allergen challenge.  相似文献   

11.
Airway hyperreactivity (AHR), eosinophilic inflammation with a Th2-type cytokine profile, and specific Th2-mediated IgE production characterize allergic asthma. In this paper, we show that OVA-immunized Jalpha18(-/-) mice, which are exclusively deficient in the invariant Valpha14(+) (iValpha14), CD1d-restricted NKT cells, exhibit impaired AHR and airway eosinophilia, decreased IL-4 and IL-5 production in bronchoalveolar lavage fluid, and reduced OVA-specific IgE compared with wild-type (WT) littermates. Adoptive transfer of WT iValpha14 NKT cells fully reconstitutes the capacity of Jalpha18(-/-) mice to develop allergic asthma. Also, specific tetramer staining shows that OVA-immunized WT mice have activated (CD69(+)) iValpha14 NKT cells. Importantly, anti-CD1d mAb treatment blocked the ability of iValpha14 T cells to amplify eosinophil recruitment to airways, and both Th2 cytokine and IgE production following OVA challenge. In conclusion, these findings clearly demonstrate that iValpha14 NKT cells are required to participate in allergen-induced Th2 airway inflammation through a CD1d-dependent mechanism.  相似文献   

12.

Background

CD8+ T cells participate in airway hyperresponsiveness (AHR) and allergic pulmonary inflammation that are characteristics of asthma. CXCL10 by binding to CXCR3 expressed preferentially on activated CD8+ T cells, attracts T cells homing to the lung. We studied the contribution and limitation of CXCR3 to AHR and airway inflammation induced by ovalbumin (OVA) using CXCR3 knockout (KO) mice.

Methods

Mice were sensitized and challenged with OVA. Lung histopathological changes, AHR, cellular composition and levels of inflammatory mediators in bronchoalveolar lavage (BAL) fluid, and lungs at mRNA and protein levels, were compared between CXCR3 KO mice and wild type (WT) mice.

Results

Compared with the WT controls, CXCR3 KO mice showed less OVA-induced infiltration of inflammatory cells around airways and vessels, and less mucus production. CXCR3 KO mice failed to develop significant AHR. They also demonstrated significantly fewer CD8+ T and CD4+ T cells in BAL fluid, lower levels of TNFα and IL-4 in lung tissue measured by real-time RT-PCR and in BAL fluid by ELISA, with significant elevation of IFNγ mRNA and protein expression levels.

Conclusions

We conclude that CXCR3 is crucial for AHR and airway inflammation by promoting recruitment of more CD8+ T cells, as well as CD4+ T cells, and initiating release of proinflammatory mediators following OVA sensitization and challenge. CXCR3 may represent a novel therapeutic target for asthma.  相似文献   

13.
We have studied murine models of asthma using FcepsilonRIalpha-chain-deficient (FcepsilonRIalpha(-/-)) mice to investigate the role of IgE-dependent mast cell activation in these models. When mice were either 1) immunized once with OVA in alum i.p. and then challenged with OVA intranasally, or 2) repeatedly immunized with OVA in the absence of adjuvant and subsequently challenged with nebulized OVA, FcepsilonRalpha(-/-) mice had significantly fewer eosinophils and lower IL-4 levels in their bronchoalveolar lavage fluid compared with wild-type mice. When mice were given anti-IL-5 antibody before OVA challenge in protocol 1, eosinophilic infiltration into the airways was significantly suppressed in both genotypes, but only FcepsilonRIalpha(-/-) mice showed significantly reduced airway hyperresponsiveness (AHR). In addition, when mice immunized and challenged with OVA also received a late OVA provocation at a higher concentration and were then exposed to methacholine, only wild-type mice developed a substantial increase in AHR. Since FcepsilonRI is expressed mainly on mast cells in mouse airways, we conclude that IgE-dependent activation of this cell type plays an important role in the development of allergic airway inflammation and AHR in mice. The models used may be of value for testing inhibitors of IgE or mast cells for development of therapeutic agents for human asthma.  相似文献   

14.
Monocyte chemoattractant proteins-1 and -5 have been implicated as important mediators of allergic pulmonary inflammation in murine models of asthma. The only identified receptor for these two chemokines to date is the CCR2. To study the role of CCR2 in a murine model of Ag-induced asthma, we compared the pathologic and physiological responses of CCR2(-/-) mice with those of wild-type (WT) littermates following immunization and challenge with OVA. OVA-immunized/OVA-challenged (OVA/OVA) WT and CCR2(-/-) mice developed significant increases in total cells recovered by bronchoalveolar lavage (BAL) compared with their respective OVA-immunized/PBS-challenged (OVA/PBS) control groups. There were no significant differences in BAL cell counts and differentials (i.e., macrophages, PMNs, lymphocytes, and eosinophils) between OVA/OVA WT and CCR2(-/-) mice. Serologic evaluation revealed no significant difference in total IgE and OVA-specific IgE between OVA/OVA WT mice and CCR2(-/-) mice. Lung mRNA expression and BAL cytokine protein levels of IL-4, IL-5, and IFN-gamma were also similar in WT and CCR2(-/-) mice. Finally, OVA/OVA CCR2(-/-) mice developed increased airway hyper-responsiveness to a degree similar to that in WT mice. We conclude that following repeated airway challenges with Ag in sensitized mice, the development of Th2 responses (elevated IgE, pulmonary eosinophilia, and lung cytokine levels of IL-4 and IL5) and the development of airway hyper-responsiveness are not diminished by a deficiency in CCR2.  相似文献   

15.
Ovalbumin (OVA) is the most frequently used allergen in animal models of asthma. Lipopolysaccharide (LPS) contaminating commercial OVA may modulate the evoked airway inflammatory response to OVA. However, the effect of LPS in OVA on airway remodeling, especially airway smooth muscle (ASM) has not been evaluated. We hypothesized that LPS in commercial OVA may enhance allergen-induced airway inflammation and remodeling. Brown Norway rats were sensitized with OVA on day 0. PBS, OVA, or endotoxin-free OVA (Ef-OVA) was instilled intratracheally on days 14, 19, 24. Bronchoalveolar lavage (BAL) fluid, lung, and intrathoracic lymph node tissues were collected 48 h after the last challenge. Immunohistochemistry for α-smooth muscle actin, Periodic-Acid-Schiff staining, and real-time qPCR were performed. Airway hyperresponsiveness (AHR) was also measured. BAL fluid macrophages, eosinophils, neutrophils, and lymphocytes were increased in OVA-challenged animals, and macrophages and neutrophils were significantly lower in Ef-OVA-challenged animals. The ASM area in larger airways was significantly increased in both OVA and Ef-OVA compared with PBS-challenged animals. The mRNA expression of IFN-γ and IL-13 in lung tissues and IL-4 in lymph nodes was significantly increased by both OVA and Ef-OVA compared with PBS and were not significantly different between OVA and Ef-OVA. Monocyte chemoattractant protein (MCP)-1 in BAL fluid and AHR were significantly increased in OVA but not in Ef-OVA. LPS contamination in OVA contributes to the influx of macrophages and MCP-1 increase in the airways and to AHR after OVA challenges but does not affect OVA-induced Th1 and Th2 cytokine expression, goblet cell hyperplasia, and ASM remodeling.  相似文献   

16.
The potent spasmogenic properties of IL-13 have identified this molecule as a potential regulator of airways hyperreactivity (AHR) in asthma. Although IL-13 is thought to primarily signal through the IL-13Ralpha1-IL-4Ralpha complex, the cellular and molecular components employed by this cytokine to induce AHR in the allergic lung have not been identified. By transferring OVA-specific CD4(+) T cells that were wild type (IL-13(+/+) T cells) or deficient in IL-13 (IL-13(-/-) T cells) to nonsensitized mice that were then challenged with OVA aerosol, we show that T cell-derived IL-13 plays a key role in regulating AHR, mucus hypersecretion, eotaxin production, and eosinophilia in the allergic lung. Moreover, IL-13(+/+) T cells induce these features (except mucus production) of allergic disease independently of the IL-4Ralpha chain. By contrast, IL-13(+/+) T cells did not induce disease in STAT6-deficient mice. This shows that IL-13 employs a novel component of the IL-13 receptor signaling system that involves STAT6, independently of the IL-4Ralpha chain, to modulate pathogenesis. We show that this novel pathway for IL-13 signaling is dependent on T cell activation in the lung and is critically linked to downstream effector pathways regulated by eotaxin and STAT6.  相似文献   

17.
A subset of patients with stable asthma has prominent neutrophilic and reduced eosinophilic inflammation, which is associated with attenuated airways hyper-responsiveness (AHR). Haemophilus influenzae has been isolated from the airways of neutrophilic asthmatics; however, the nature of the association between infection and the development of neutrophilic asthma is not understood. Our aim was to investigate the effects of H. influenzae respiratory infection on the development of hallmark features of asthma in a mouse model of allergic airways disease (AAD). BALB/c mice were intraperitoneally sensitized to ovalbumin (OVA) and intranasally challenged with OVA 12-15 days later to induce AAD. Mice were infected with non-typeable H. influenzae during or 10 days after sensitization, and the effects of infection on the development of key features of AAD were assessed on day 16. T-helper 17 cells were enumerated by fluorescent-activated cell sorting and depleted with anti-IL-17 neutralizing antibody. We show that infection in AAD significantly reduced eosinophilic inflammation, OVA-induced IL-5, IL-13 and IFN-γ responses and AHR; however, infection increased airway neutrophil influx in response to OVA challenge. Augmented neutrophilic inflammation correlated with increased IL-17 responses and IL-17 expressing macrophages and neutrophils (early, innate) and T lymphocytes (late, adaptive) in the lung. Significantly, depletion of IL-17 completely abrogated infection-induced neutrophilic inflammation during AAD. In conclusion, H. influenzae infection synergizes with AAD to induce Th17 immune responses that drive the development of neutrophilic and suppress eosinophilic inflammation during AAD. This results in a phenotype that is similar to neutrophilic asthma. Infection-induced neutrophilic inflammation in AAD is mediated by IL-17 responses.  相似文献   

18.
Immunization of BALB/c mice with alum-adsorbed OVA, followed by three bronchoprovocations with aerosolized OVA, resulted in the development of airway hyperresponsiveness (AHR) and allergic inflammation in the lung accompanied by severe infiltration of eosinophils into airways. In this murine asthma model, administration of monoclonal anti-IL-5 Ab before each Ag challenge markedly inhibited airway eosinophilia, but the treatment did not affect the development of AHR. Immunization and aerosol challenges with OVA following the same protocol failed to induce AHR in the mast cell-deficient W/Wv mice, but induced AHR in their congenic littermates, i.e., WBB6F1 (+/+) mice. No significant difference was found between the W/Wv mice and +/+ mice with respect to the IgE and IgG1 anti-OVA Ab responses and to the airway eosinophilia after Ag provocations. It was also found that reconstitution of W/Wv mice with bone marrow-derived mast cells cultured from normal littermates restored the capacity of developing Ag-induced AHR, indicating that lack of mast cells was responsible for the failure of W/Wv mice to develop Ag-induced AHR under the experimental conditions. However, the OVA-immunized W/Wv mice developed AHR by increasing the frequency and Ag dose of bronchoprovocations. The results suggested that AHR could be developed by two distinct cellular mechanisms. One would go through mast cell activation and the other is IgE/mast cell independent but an eosinophil/IL-5-dependent mechanism.  相似文献   

19.
Oxidative stress is a hallmark of asthma, and increased levels of oxidants are considered markers of the inflammatory process. Most studies to date addressing the role of oxidants in the etiology of asthma were based on the therapeutic administration of low m.w. antioxidants or antioxidant mimetic compounds. To directly address the function of endogenous hydrogen peroxide in the pathophysiology of allergic airway disease, we comparatively evaluated mice systemically overexpressing catalase, a major antioxidant enzyme that detoxifies hydrogen peroxide, and C57BL/6 strain matched controls in the OVA model of allergic airways disease. Catalase transgenic mice had 8-fold increases in catalase activity in lung tissue, and had lowered DCF oxidation in tracheal epithelial cells, compared with C57BL/6 controls. Despite these differences, both strains showed similar increases in OVA-specific IgE, IgG1, and IgG2a levels, comparable airway and tissue inflammation, and identical increases in procollagen 1 mRNA expression, following sensitization and challenge with OVA. Unexpectedly, mRNA expression of MUC5AC and CLCA3 genes were enhanced in catalase transgenic mice, compared with C57BL/6 mice subjected to Ag. Furthermore, when compared with control mice, catalase overexpression increased airway hyperresponsiveness to methacholine both in naive mice as well as in response to Ag. In contrast to the prevailing notion that hydrogen peroxide is positively associated with the etiology of allergic airways disease, the current findings suggest that endogenous hydrogen peroxide serves a role in suppressing both mucus production and airway hyperresponsiveness.  相似文献   

20.
TNF is a major therapeutic target in a range of chronic inflammatory disorders, including asthma. TNFR-associated factor (TRAF)1 is an intracellular adaptor molecule important for signaling by TNFR. In this study, we investigated the role of TRAF1 in an adoptive transfer model of allergic lung inflammation. Mice deficient in TRAF1 (TRAF1(-/-)) and wild-type (WT) control animals were adoptively transferred with WT OVA-immune CD4(+) T cells, exposed to an aerosol of LPS-free OVA, and analyzed for the development of allergic lung inflammation. In contrast to WT mice, TRAF1(-/-) recipients failed to display goblet cell hyperplasia, eosinophilic inflammation, and airway hyperresponsiveness in this model of asthma. Neither T cell recruitment nor expression of the proinflammatory cytokines IL-4, IL-5, IL-13, or TNF occurred in the lungs of TRAF1(-/-) mice. Although purified myeloid TRAF1(-/-) dendritic cells (DCs) exhibited normal Ag-presenting function and transmigratory capacity in vitro and were able to induce OVA-specific immune responses in the lung draining lymph nodes (LNs) following adoptive transfer in vivo, CD11c(+)CD11b(+) DCs from airways of TRAF1(-/-) recipients were not activated, and purified draining LN cells did not proliferate in vitro. Moreover, transfer of WT or TRAF1(-/-) DCs failed to restore T cell recruitment and DC activation in the airways of TRAF1(-/-) mice, suggesting that the expression of TRAF1 in resident lung cells is required for the development of asthma. Finally, we demonstrate that T cell-transfused TRAF1(-/-) recipient mice demonstrated impaired up-regulation of ICAM-1 expression on lung cells in response to OVA exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号