首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
3.
4.
Etoposide (VP-16) a topoisomerase II inhibitor induces apoptosis of tumor cells. The present study was designed to elucidate the mechanisms of etoposide-induced apoptosis in C6 glioma cells. Etoposide induced increased formation of ceramide from sphingomyelin and release of mitochondrial cytochrome c followed by activation of caspase-9 and caspase-3, but not caspase-1. In addition, exposure of cells to etoposide resulted in decreased expression of Bcl-2 with reciprocal increase in Bax protein. z-VAD.FMK, a broad spectrum caspase inhibitor, failed to suppress the etoposide-induced ceramide formation and change of the Bax/Bcl-2 ratio, although it did inhibit etoposide-induced death of C6 cells. Reduced glutathione or N-acetylcysteine, which could reduce ceramide formation by inhibiting sphingomyelinase activity, prevented C6 cells from etoposide-induced apoptosis through blockage of caspase-3 activation and change of the Bax/Bcl-2 ratio. In contrast, the increase in ceramide level by an inhibitor of ceramide glucosyltransferase-1, D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol caused elevation of the Bax/Bcl-2 ratio and potentiation of caspase-3 activation, thereby resulting in enhancement of etoposide-induced apoptosis. Furthermore, cell-permeable exogenous ceramides (C2- and C6-ceramide) induced downregulation of Bcl-2, leading to an increase in the Bax/Bcl-2 ratio and subsequent activation of caspases-9 and -3. Taken together, these results suggest that ceramide may function as a mediator of etoposide-induced apoptosis of C6 glioma cells, which induces increase in the Bax/Bcl-2 ratio followed by release of cytochrome c leading to caspases-9 and -3 activation.  相似文献   

5.
Here, we show that JNK1 and JNK3 have different roles in TNF-α- or etoposide-induced apoptosis in HeLa cells. Dominant negative JNK1 inhibited TNF-α- or etoposide-induced apoptosis, while dominant negative JNK3 promoted TNF-α- or etoposide-induced apoptosis. During TNF-α-induced apoptosis, JNK1 was activated in a biphasic manner, exhibiting both transient and sustained activity, whereas JNK3 was activated early and in a transient manner. The role of JNK3 activation was an anti-apoptotic effect, while the role of JNK1 activation was a pro-apoptotic effect. These results suggest that the anti-apoptotic mechanism of JNK3 in TNF-α-induced apoptosis originates before the apoptotic machinery is triggered.  相似文献   

6.
The over-expressions of brain-derived neurotrophic factor (BDNF) and its tyrosine kinase receptor TrkB have been reported to induce chemo-resistance in neuroblastoma (NB) cells. In this study, we investigated the roles of P53 and BCL2 family members in the protection of BDNF/TrkB from etoposide-induced NB cell death. TB3 and TB8, two tetracycline (TET)-regulated TrkB-expressing NB cell lines, were utilized. The expressions of P53 and BCL2 family members were detected by Western blot or RT-PCR. Transfection of siRNAs was used to knockdown P53 or PUMA. Activated lentiviral was used to over-express PUMA. Cell survival was performed by MTS assay, and the percentage of cell confluence was measured by IncuCyte ZOOM. Our results showed that etoposide treatment induced significant and time-dependent increase of P53, which could be blocked by pre-treatment with BDNF, and knockdown P53 by transfecting siRNA attenuated etoposide-induced TrkB-expressing NB cell death. PUMA was the most significantly changed BCL2 family member after treatment with etoposide, and pre-treatment with BDNF blocked the increased expression of PUMA. Transfection with siRNA inhibited etoposide-induced increased expression of PUMA, and attenuated etoposide-induced NB cell death. We also found that over-expression of PUMA by infection of activated lentiviral induced TrkB-expressing NB cell death in the absence of etoposide, and treatment of BDNF protected NB cells from PUMA-induced cell death. Our results suggested that P53 and PUMA may be potential targets that mediated the protection of BDNF/TrkB from etoposide-induced NB cell death.  相似文献   

7.
8.
Tissue homeostasis requires balancing cell proliferation and programmed cell death. IGF1 significantly suppressed etoposide-induced apoptosis, measured by caspase 3 activation and quantitation of cellular subG(1) DNA content, in rat parotid salivary acinar cells (C5). Transduction of C5 cells with an adenovirus expressing a constitutively activated mutant of Akt-suppressed etoposide-induced apoptosis, whereas a kinase-inactive mutant of Akt suppressed the protective effect of IGF1. IGF1 also suppressed apoptosis induced by taxol and brefeldin A. EGF was unable to suppress apoptosis induced by etoposide, but was able to synergize with IGF1 to further suppress caspase 3 activation and DNA cleavage after etoposide treatment. The catalytic activity of Akt was significantly higher following stimulation with both growth factors compared to stimulation with IGF1 or EGF alone. These results suggest that a threshold of activated Akt is required for suppression of apoptosis and the cooperative action of growth factors in regulating salivary gland homeostasis.  相似文献   

9.
Previous studies demonstrated that proteasome inhibition sensitizes TRAIL resistant prostate cancer cells to TRAIL-mediated apoptosis via stabilization of the active p18 subunit of caspase-8. The present study investigated the impact of proteasome inhibition on caspase-8 stability, ubiquitination, trafficking, and activation in cancer cells. Using caspase-8 deficient neuroblastoma (NB7) cells for reconstituting non-cleavable mutant forms of caspase-8, we demonstrated that the non-cleavable forms of caspase-8 are capable of inducing apoptosis comparably to wild-type caspase-8, in response to proteasome inhibitor and GST-TRAIL. Moreover in the LNCaP human prostate cancer cells, caspase-8 polyubiquitination occurs after TRAIL stimulation and caspase-8 processing. Subcellular fractionation analysis revealed caspase-8 activity in both cytosol and plasma membrane fractions in both NB7 reconstituted caspase-8 cell lines, as well the LNCaP prostate cancer cells. The present results suggest that caspase-8 stabilization through proteasome inhibition leads to reactivation of the extrinsic pathway of apoptosis and identify E3 ligase mediating caspase-8 polyubiquitination, as a novel molecular target. Inhibition of this E3 ligase in combination with TRAIL towards restoring apoptosis signaling activation may have potential therapeutic significance in resistant tumors.  相似文献   

10.
Chemotherapeutic genotoxins induce apoptosis in epithelial-cell-derived cancer cells. The death receptor ligand TRAIL also induces apoptosis in epithelial-cell-derived cancer cells but generally fails to induce apoptosis in nontransformed cells. We show here that the treatment of four different epithelial cell lines with the topoisomerase II inhibitor etoposide in combination with TRAIL (tumor necrosis factor [TNF]-related apoptosis-inducing ligand) induces a synergistic apoptotic response. The mechanism of the synergistic effect results from the etoposide-mediated increase in the expression of the death receptors 4 (DR4) and 5 (DR5). Inhibition of NF-kappaB activation by expression of kinase-inactive MEK kinase 1(MEKK1) or dominant-negative IkappaB (DeltaIkappaB) blocked the increase in DR4 and DR5 expression following etoposide treatment. Addition of a soluble decoy DR4 fusion protein (DR4:Fc) to cell cultures reduced the amount of etoposide-induced apoptosis in a dose-dependent manner. The addition of a soluble TNF decoy receptor (TNFR:Fc) was without effect, demonstrating the specificity of DR4 binding ligands in the etoposide-induced apoptosis response. Thus, genotoxin treatment in combination with TRAIL is an effective inducer of epithelial-cell-derived tumor cell apoptosis relative to either treatment alone.  相似文献   

11.
12.
The promyelocytic leukemia (PML) protein is the main structural component of subnuclear domains termed PML nuclear bodies (PML NBs), which are implicated in tumor suppression by regulating apoptosis, cell senescence, and DNA repair. Previously, we demonstrated that ATM kinase can regulate changes in PML NB number in response to DNA double-strand breaks (DSBs). PML NBs make extensive contacts with chromatin and ATM mediates DNA damage-dependent changes in chromatin structure in part by the phosphorylation of the KRAB-associated protein 1 (KAP1) at S824. We now demonstrate that in the absence of DNA damage, reduced KAP1 expression results in a constitutive increase in PML NB number in both human U2-OS cells and normal human diploid fibroblasts. This increase in PML NB number correlated with decreased nuclear lamina-associated heterochromatin and a 30% reduction in chromatin density as observed by electron microscopy, which is reminiscent of DNA damaged chromatin. These changes in chromatin ultrastructure also correlated with increased histone H4 acetylation, and treatment with the HDAC inhibitor TSA failed to further increase PML NB number. Although PML NB number could be restored by complementation with wild-type KAP1, both the loss of KAP1 or complementation with phospho-mutants of KAP1 inhibited the early increase in PML NB number and reduced the fold induction of PML NBs by 25-30% in response to etoposide-induced DNA DSBs. Together these data implicate KAP1-dependent changes in chromatin structure as one possible mechanism by which ATM may regulate PML NB number in response to DNA damage.  相似文献   

13.
We have examined the ability of etoposide to induce apoptosis in two recently established rat salivary acinar cell lines. Etoposide induced apoptosis in the parotid C5 cell line as evidenced by the appearance of cytoplasmic blebbing and nuclear condensation, DNA fragmentation and cleavage of PARP. Etoposide also induced activation of c-jun N-terminal kinase (JNK) in parotid C5 cells by 4 h after treatment, with maximal activation at 8 - 10 h. Coincident with activation of JNK, the amount of activated ERK1 and ERK2 decreased in etoposide-treated parotid C5 cells. In contrast to the parotid C5 cells, the vast majority of submandibular C6 cells appeared to be resistant to etoposide-induced apoptosis. Likewise, activation of JNKs was not observed in etoposide-treated submandibular C6 cells, and the amount of activated ERK1 and ERK2 decreased only slightly. Etoposide treatment of either cell line had no effect upon the activation of p38. Treatment of the parotid C5 cells with Z-VAD-FMK, a caspase inhibitor, inhibited etoposide-induced activation of JNK and DNA fragmentation. These data suggest that etoposide may induce apoptosis in parotid C5 cells by activating JNKs and suppressing the activation of ERKs, thus creating an imbalance in these two signaling pathways.  相似文献   

14.
HSP27 inhibits cytochrome c-dependent activation of procaspase-9.   总被引:25,自引:0,他引:25  
We have previously shown that the small heat shock protein HSP27 inhibited apoptotic pathways triggered by a variety of stimuli in mammalian cells. The present study demonstrates that HSP27 overexpression decreases U937 human leukemic cell sensitivity to etoposide-induced cytotoxicity by preventing apoptosis. As observed for Bcl-2, HSP27 overexpression delays poly(ADP-ribose)polymerase cleavage and procaspase-3 activation. In contrast with Bcl-2, HSP27 overexpression does not prevent etoposide-induced cytochrome c release from the mitochondria. In a cell-free system, addition of cytochrome c and dATP to cytosolic extracts from untreated cells induces the proteolytic activation of procaspase-3 in both control and bcl-2-transfected U937 cells but fails to activate procaspase-3 in HSP27-overexpressing cells. Immunodepletion of HSP27 from cytosolic extracts increases cytochrome c/dATP-mediated activation of procaspase-3. Overexpression of HSP27 also prevents procaspase-9 activation. In the cell-free system, immunodepletion of HSP27 increases LEDH-AFC peptide cleavage activity triggered by cytochrome c/dATP treatment. We conclude that HSP27 inhibits etoposide-induced apoptosis by preventing cytochrome c and dATP-triggered activity of caspase-9, downstream of cytochrome c release.  相似文献   

15.
16.
The proteasome inhibitors are a new class of antitumor agents. These inhibitors cause the accumulation of many proteins in the cell with the induction of apoptosis including TRAIL death receptors DR4 and DR5, but the role of the TRAIL apoptotic pathway in proteasome inhibitor cytotoxicity is unknown. Herein, we have demonstrated that the induction of apoptosis by the proteasome inhibitors, MG-132 and PS-341 (bortezomib, Velcade), in primary CLL cells and the Burkitt lymphoma cell line, BJAB, is associated with up-regulation of TRAIL and its death receptors, DR4 and DR5. In addition, FLICE-like inhibitory protein (c-FLIP) protein is decreased. MG-132 treatment increases binding of DR5 to the adaptor protein FADD, and causes caspase-8 activation and cleavage of pro-apoptotic BID. Moreover, DR4:Fc or blockage of DR4 and DR5 expression using RNA interference, which prevents TRAIL apoptotic signaling, blocks proteasome inhibitor induced apoptosis. MG-132 also increases apoptosis and DR5 expression in normal B-cells. However, when the proteasome inhibitors are combined with TRAIL or TRAIL receptor activating antibodies the amount of apoptosis is increased in CLL cells but not in normal B cells. Thus, activation of the TRAIL apoptotic pathway contributes to proteasome inhibitor induced apoptosis in CLL cells.  相似文献   

17.
Neurodegenerative diseases like Parkinson's disease, Alzheimer's disease, Huntington's disease and others are due to accumulation of abnormal proteins which fold improperly and impair neuronal function. Accumulation of these proteins could be achieved by several mechanisms including mutation, overproduction or impairment of its degradation. Inhibition of the normal protein degradation is produced by blockade of the ubiquitin proteasome system. We have shown that epoxomicin, a proteasome inhibitor, increases the levels of proteins involved in neurodegenerative disorders such as α-synuclein and hyper phosphorylated tau in NB69 human neuroblastoma cells and that such increase correlates with an enhanced rate of cell death. We then investigated whether the stimulation of autophagy, an alternative mechanism for elimination of abnormal proteins, by treatment with trehalose, counteracts the effects of proteasomal blockade. Trehalose, a disaccharide present in many non-mammalian species, known to enhance autophagy, protects cells against various environmental stresses. Treatment with trehalose produced a dose and time-dependent increase in the number of autophagosomes and markers of autophagy in NB69 cells. Trehalose did not change the number of total neither the number of dividing cells in the culture but it completely prevented the necrosis of NB69 induced by epoxomicin. In addition, the treatment with trehalose reverted the accumulation, induced by epoxomicin, of polyubiquitinated proteins, total and phosphorylated tau, p-GSK-3, and α-synuclein, as well as the α-synuclein intracellular aggregates. The effects of trehalose were not mediated through activation of free radical scavenging compounds, like GSH, or mitochondrial proteins, like DJ1, but trehalose reduced the activation of ERK and chaperone HSP-70 induced by epoxomicin. Inhibition of ERK phosphorylation prevented the epoxomicin-induced cell death. Inhibition of autophagy reverted the neuroprotective effects of trehalose in epoxomicin-induced cell death. These results suggest that trehalose is a powerful modifier of abnormal protein accumulation in neurodegenerative diseases.  相似文献   

18.
Head and neck squamous cell carcinoma (HNSCC) is often resistant to conventional chemotherapy and thus requires novel treatment regimens. Here, we investigated the effects of the proteasome inhibitor MG132 in combination with tumor necrosis factor-related apoptosis inducing ligand (TRAIL) or agonistic TRAIL receptor 1 (DR4)-specific monoclonal antibody, AY4, on sensitization of TRAIL- and AY4-resistant human HNSCC cell lines. Combination treatment of HNSCC cells synergistically induced apoptotic cell death accompanied by caspase-8, caspase-9, and caspase-3 activation and Bid cleavage into truncated Bid (tBid). Generation and accumulation of tBid through the cooperative action of MG132 with TRAIL or AY4 and Bik accumulation through MG132-mediated proteasome inhibition are critical to the synergistic apoptosis. In HNSCC cells, Bak was constrained by Mcl-1 and Bcl-X(L), but not by Bcl-2. Conversely, Bax did not interact with Mcl-1, Bcl-X(L), or Bcl-2. Importantly, tBid plays a major role in Bax activation, and Bik indirectly activates Bak by displacing it from Mcl-1 and Bcl-X(L), pointing to the synergistic mechanism of the combination treatment. In addition, knockdown of both Mcl-1 and Bcl-X(L) significantly sensitized HNSCC cells to TRAIL and AY4 as a single agent, suggesting that Bak constraint by Mcl-1 and Bcl-X(L) is an important resistance mechanism of TRAIL receptor-mediated apoptotic cell death. Our results provide a novel molecular mechanism for the potent synergy between MG132 proteasome inhibitor and TRAIL receptor agonists in HNSCC cells, suggesting that the combination of these agents may offer a new therapeutic strategy for HNSCC treatment.  相似文献   

19.
To explore a new agent for inhibiting leukemic cells, we investigated the effects of rare earth compounds (lanthanum chloride and cerium chloride) on the growth and apoptosis of HL-60 and NB4 cells. The growth of HL-60 and NB4 cells was tested by 3-(4,5-dimethylthiazole-2-yl)-2,5-biphenyl tetrazolium bromide (MTT) colorimetric assay. The apoptosis was measured by light microscopy, flow cytometry, and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick-end labeling (TUNEL) method. The effect of LaCl(3) on normal bone marrow hematopoietic progenitor cells was evaluated by colony-forming unit-granulocyte-macrophage (CFU-GM) assay. Under our experimental conditions, MTT assay showed that 48-h treatment with 1, 2, and 3 mM LaCl(3) or 48- and 72-h treatments with 1 mM LaCl(3) could significantly inhibit the growth of HL-60 cells. Treatment with 2 and 4 mM CeCl(3) for 72 h could significantly inhibit the growth of NB4 cells. Apoptosis could be detected on treatment with 2 mM LaCl(3) for 24 h in HL-60 cells by light microscopic morphology examination, flow cytometric analysis, and TUNEL method. Apoptosis could be also detected on treatment with 2 mM CeCl(3) for 72 h in NB4 cells. Treatment with 1 mM LaCl(3) could arrest the transitions from G0/G1 to S phase. The granulocyte-macrophage colony formation of normal bone marrow cells was not significantly inhibited at lower concentrations of LaCl(3) (0.5 to 2 mM). Our results indicate that at certain concentrations, the rare earth compounds may inhibit the growth of leukemic cells, induce them to apoptosis, and have no significant inhibitory effects on normal bone marrow hematopoietic progenitor cells (CFU-GM). The mechanism needs to be further investigated.  相似文献   

20.
Lysophosphatidic acid (LPA) protects epithelial and fibroblast cell lines from apoptosis. In B-cells, LPA acts as a growth factor promoting cell proliferation. Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of CD19+/CD5+ B-lymphocytes primarily through a block in apoptosis. The mechanisms underlying this defect are not fully understood. We investigated whether LPA could be a survival factor in CLL cells. Herein, we demonstrate that LPA protects B-cell lines BJAB and I-83 and primary CLL cells but not normal B-cells from fludarabine- and etoposide-induced apoptosis. Furthermore, LPA prevented spontaneous apoptosis in primary CLL cells. The LPA1 expression was found to be increased in primary CLL cells compared with normal B-cells correlating with LPA prevention of apoptosis. Treatment of primary CLL cells with the LPA receptor antagonist, diacylglycerol pyrophosphate, reverses the protective effect of LPA against apoptosis, and down-regulation of the LPA1 by siRNA blocked LPA-mediated protection against spontaneous apoptosis in primary CLL cells. The protective effect of LPA was inhibited by blocking activation of the phosphatidylinositol 3-kinase/AKT signaling pathway. These results indicate that LPA is a survival factor in B-cell lines and primary CLL cells but not normal B-cells. Thus, drugs targeting the LPA receptors might be an effective therapy against B-cell-derived malignancies such as CLL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号