首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Chronic obstructive pulmonary disease (COPD) is an inflammatory disease, characterized by a progressive decline in lung function. Airway smooth muscle (ASM) mass may be increased in COPD, contributing to airflow limitation and proinflammatory cytokine production. Cigarette smoke (CS), the major risk factor of COPD, causes ASM cell proliferation, as well as interleukin-8 (IL-8)-induced neutrophilia. In various cell types, transforming growth factor-β-activated kinase 1 (TAK1) plays a crucial role in MAP kinase and NF-κB activation, as well as IL-8 release induced by IL-1β, TNF-α, and lipopolysaccharide. The role of TAK1 in CS-induced IL-8 release is not known. The aim of this study was to investigate the role of TAK1 in CS-induced NF-κB and MAP kinase signaling and IL-8 release by human ASM cells. Stimulation of these cells with CS extract (CSE) increased IL-8 release and ERK-1/2 phosphorylation, as well as Iκ-Bα degradation and p65 NF-κB subunit phosphorylation. CSE-induced ERK-1/2 phosphorylation and Iκ-Bα degradation were both inhibited by pretreatment with the specific TAK1 inhibitor LL-Z-1640-2 (5Z-7-oxozeaenol; 100 nM). Similarly, expression of dominant-negative TAK1 inhibited CSE-induced ERK-1/2 phosphorylation. In addition, inhibitors of TAK1 and the NF-κB (SC-514; 50 μM) and ERK-1/2 (U-0126; 3 μM) signaling inhibited the CSE-induced IL-8 release by ASM cells. These data indicate that TAK1 plays a major role in CSE-induced ERK-1/2 and NF-κB signaling and in IL-8 release by human ASM cells. Furthermore, they identify TAK1 as a novel target for the inhibition of CS-induced inflammatory responses involved in the development and progression of COPD.  相似文献   

2.
3.
In asthma, airway smooth muscle (ASM) chemokine secretion can induce mast cell recruitment into the airways. The functions of the mast cell chemoattractant CXCL10, and other chemokines, are regulated by binding to heparan sulphates such as syndecan-4. This study is the first demonstration that airway smooth muscle cells (ASMC) from people with and without asthma express and shed syndecan-4 under basal conditions. Syndecan-4 shedding was enhanced by stimulation for 24 h with the Th1 cytokines interleukin-1β (IL-1β) or tumor necrosis factor-α (TNF-α), but not interferon-γ (IFNγ), nor the Th2 cytokines IL-4 and IL-13. ASMC stimulation with IL-1β, TNF-α, and IFNγ (cytomix) induced the highest level of syndecan-4 shedding. Nonasthmatic and asthmatic ASM cell-associated syndecan-4 protein expression was also increased by TNF-α or cytomix at 4-8 h, with the highest levels detected in cytomix-stimulated asthmatic cells. Cell-associated syndecan-4 levels were decreased by 24 h, whereas shedding remained elevated at 24 h, consistent with newly synthesized syndecan-4 being shed. Inhibition of ASMC matrix metalloproteinase-2 did not prevent syndecan-4 shedding, whereas inhibition of ERK MAPK activation reduced shedding from cytomix-stimulated ASMC. Although ERK inhibition had no effect on syndecan-4 mRNA levels stimulated by cytomix, it did cause an increase in cell-associated syndecan-4 levels, consistent with the shedding being inhibited. In conclusion, ASMC produce and shed syndecan-4 and although this is increased by the Th1 cytokines, the MAPK ERK only regulates shedding. ASMC syndecan-4 production during Th1 inflammatory conditions may regulate chemokine activity and mast cell recruitment to the ASM in asthma.  相似文献   

4.
Asthma is a chronic inflammatory disease in which airway epithelial cells are the first line of defense against exposure of the airway to infectious agents. Src homology protein (SHP)-1, a protein tyrosine phosphatase, is a negative regulator of signaling pathways that are critical to the development of asthma and host defense. We hypothesize that SHP-1 function is defective in asthma, contributing to the increased inflammatory response induced by Mycoplasma pneumoniae, a pathogen known to exacerbate asthma. M. pneumoniae significantly activated SHP-1 in airway epithelial cells collected from nonasthmatic subjects by bronchoscopy with airway brushing but not in cells from asthmatic subjects. In asthmatic airway epithelial cells, M. pneumoniae induced significant PI3K/Akt phosphorylation, NF-κB activation, and IL-8 production compared with nonasthmatic cells, which were reversed by SHP-1 overexpression. Conversely, SHP-1 knockdown significantly increased IL-8 production and PI3K/Akt and NF-κB activation in the setting of M. pneumoniae infection in nonasthmatic cells, but it did not exacerbate these three parameters already activated in asthmatic cells. Thus, SHP-1 plays a critical role in abrogating M. pneumoniae-induced IL-8 production in nonasthmatic airway epithelial cells through inhibition of PI3K/Akt and NF-κB activity, but it is defective in asthma, resulting in an enhanced inflammatory response to infection.  相似文献   

5.
目的探讨内毒素(LPS)刺激大鼠肠黏膜微血管内皮细胞(RIMMVECs)后,乳酸(LA)调控NF-κB信号通路中磷酸化IκBα和NF-κB p65蛋白表达情况,肿瘤坏死因子α(TNF-α)和白细胞介素6(IL-6)mRNA表达情况,阐明乳酸发挥作用的最佳时间及其调控NF-κB信号通路的部位。方法提取RIMMVECs总蛋白和总RNA,用Western blotting检测NF-κB p65、IκBα及p-IκBα蛋白表达水平,用real-time PCR对TNF-α和IL-6 mRNA进行定量检测。结果乳酸能降低LPS诱导RIMMVECs分泌的TNF-α和IL-6 mRNA表达水平,并分别于24 h和3 h下调效果最明显;乳酸能抑制IκBα磷酸化及NF-κB转录活性,并于4~8 h达到最佳效果;乳酸发挥作用部位是抑制信号通路中IκBα磷酸化。结论乳酸通过抑制IκBα磷酸化而阻断NF-κB的激活,抑制下游炎性因子表达,进而发挥出很好的预防炎症效果。  相似文献   

6.
为了探讨幽门螺杆菌对胃癌SGC-7901细胞炎症因子释放的影响,本研究将幽门螺杆菌感染SGC-7901细胞后,采用细胞计数盒(CCK-8)检测SGC-7901细胞活力,酶联免疫吸附实验(ELISA)检测炎症因子TNF-α、IL-1β以及IL-8的水平,Real-time PCR检测细胞TNF-α、IL-1β以及IL-8 m RNA的表达,蛋白免疫印迹法(Western blotting)检测NF-κB信号通路相关蛋白NF-κB p65蛋白表达以及IκBα磷酸化水平。研究结果表明,幽门螺杆菌感染后,SGC-7901细胞活力显著增加;幽门螺杆菌感染明显上调SGC-7901细胞TNF-α、IL-1β以及IL-8 mRNA的表达;本研究还进一步发现幽门螺杆菌感染显著增加SGC-7901细胞TNF-α、IL-1β以及IL-8的水平;此外,幽门螺杆菌处理的SGC-7901细胞,其NF-κB p65的蛋白表达以及IκBα磷酸化水平均显著上调。本研究的结论初步表明,幽门螺杆菌感染促进胃癌SGC-7901细胞炎症因子的释放,其机制可能涉及激活NF-κB信号通路。  相似文献   

7.
8.
Plasmacytoid dendritic cells (pDCs) respond to viral infection by production of alpha interferon (IFN-α), proinflammatory cytokines, and cell differentiation. The elimination of hepatitis C virus (HCV) in more than 50% of chronically infected patients by treatment with IFN-α suggests that pDCs can play an important role in the control of HCV infection. pDCs exposed to HCV-infected hepatoma cells, in contrast to cell-free HCV virions, produce large amounts of IFN-α. To further investigate the molecular mechanism of HCV sensing, we studied whether exposure of pDCs to HCV-infected hepatoma cells activates, in parallel to interferon regulatory factor 7 (IRF7)-mediated production of IFN-α, nuclear factor kappa B (NF-κB)-dependent pDC responses, such as expression of the differentiation markers CD40, CCR7, CD86, and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and secretion of the proinflammatory cytokines TNF-α and interleukin 6 (IL-6). We demonstrate that exposure of pDCs to HCV-infected hepatoma cells surprisingly did not induce phosphorylation of NF-κB or cell surface expression of CD40, CCR7, CD86, or TRAIL or secretion of TNF-α and IL-6. In contrast, CpG-A and CpG-B induced production of TNF-α and IL-6 in pDCs exposed to the HCV-infected hepatoma cells, showing that cell-associated virus did not actively inhibit Toll-like receptor (TLR)-mediated NF-κB phosphorylation. Our results suggest that cell-associated HCV signals in pDCs via an endocytosis-dependent mechanism and IRF7 but not via the NF-κB pathway. In spite of IFN-α induction, cell-associated HCV does not induce a full functional response of pDCs. These findings contribute to the understanding of evasion of immune responses by HCV.  相似文献   

9.
In vitro and in vivo effects of some inhibitors of the activity of signal cascades NF-κB and SAPK/JNK, and the TLR4 receptor on the immune cells activity were studied. To evaluate in vitro effects, the macrophage-like RAW 264.7 cells were cultured with each of the inhibitors, namely IKK inhibitor XII, SP600125, CLI-095, and OxPAPK (the first two are the inhibitors of NF-κB, SAPK/JNK cascades, and the last two compounds are the inhibitors of the TLR4 receptor activity). On the whole, all of the used inhibitors did not induce pro-inflammatory response in RAW 264.7 cells. On the contrary, the inhibitor of SAPK/JNK cascade, and, especially, the inhibitor of NF-κB cascade significantly decreased production of the TNF-α, IL-1, IL-6, IFN-γ, and IL-10 in RAW 264.7 cells. In these cells, the inhibitors substantially decreased “back-ground stress response” of macrophages, differently reducing a production of heat shock proteins, HSP72 and HSP90-α, and diminishing phosphorylation of signal proteins from NF-κB and SAPK/JNK cascades. Results of in vitro experiments suggest that the inhibitor of NF-κB activity was the most effective. It was this inhibitor that was intraperitonealy injected in Balb/C male mice in the in vivo experiments in order to study its effect on the activity of immune cells. Results showed that IKK Inhibitor XII applied in vivo did not induce pro-inflammatory response in mice, but decreased the activity of NF-κB cascade, and lowered HSP90-α expression in mouse splenic lymphocytes. So, among the studied compounds, IKK Inhibitor XII seems to be a very effective inhibitor that may be used to decrease cytokine and stress response in various pathologies.  相似文献   

10.
11.
12.
Recent studies have shown that some flavonoids are modulators of proinflammatory cytokine production. In this study, velutin, a unique flavone isolated from the pulp of açaí fruit (Euterpe oleracea Mart.), was examined for its effects in reducing lipopolysaccharide-induced proinflammatory cytokine tumor necrosis factor (TNF)-α and interleukin (IL)-6 production in RAW 264.7 peripheral macrophages and mice peritoneal macrophages. Three other structurally similar and well-studied flavones, luteolin, apigenin and chrysoeriol, were included as controls and for comparative purposes. Velutin exhibited the greatest potency among all flavones in reducing TNF-α and IL-6 production. Velutin also showed the strongest inhibitory effect in nuclear factor (NF)-κB activation (as assessed by secreted alkaline phosphatase reporter assay) and exhibited the greatest effects in blocking the degradation of inhibitor of NF-κB as well as in inhibiting mitogen-activated protein kinase p38 and JNK phosphorylation; all of these are important signaling pathways involved in production of TNF-α and IL-6. The present study led to the discovery of a strong anti-inflammatory flavone, velutin. This compound effectively inhibited the expression of proinflammatory cytokines TNF-α and IL-6 in low micromole levels by inhibiting NF-κB activation and p38 and JNK phosphorylation.  相似文献   

13.
Tumor necrosis factor α (TNF-α) receptor-associated factor 2 (TRAF2) regulates activation of the c-Jun N-terminal kinase (JNK)/c-Jun and the inhibitor of κB kinase (IKK)/nuclear factor κB (NF-κB) signaling cascades in response to TNF-α stimulation. Gene knockout studies have revealed that TRAF2 inhibits TNF-α-induced cell death but promotes oxidative stress-induced apoptosis. Here we report that TNF-α and oxidative stress both induce TRAF2 phosphorylation at serines 11 and 55 and that this dual phosphorylation promotes the prolonged phase of IKK activation while inhibiting the prolonged phase of JNK activation. Prolonged IKK activation trigged by TNF-α plays an essential role in efficient expression of a subset of NF-κB target genes but has no substantial role in TNF-α-induced cell death. On the other hand, TRAF2 phosphorylation in response to oxidative stress significantly promotes cell survival by inducing prolonged IKK activation and by inhibiting the prolonged phase of JNK activation. Notably, stable expression of phospho-null mutant TRAF2 in cancer cells leads to an increase in the basal and inducible JNK activation and B-cell lymphoma 2 (Bcl-2) phosphorylation. In addition, exposure of cells expressing phospho-null mutant TRAF2 to sublethal oxidative stress results in a rapid degradation of Bcl-2 and cellular inhibitor of apoptosis 1 as well as significantly increased cell death. These results suggest that TRAF2 phosphorylation is essential for cell survival under conditions of oxidative stress.  相似文献   

14.
15.
Human airway smooth muscle (HASM) cells are a rich source of inflammatory mediators that may propagate the airway inflammatory responses. Recent studies from our laboratory and others demonstrate that HASM cells express the proallergic cytokine thymic stromal lymphopoietin (TSLP) in vitro and in vivo. Compelling evidence from in vitro studies and animal models suggest that the TSLP is a critical factor sufficient and necessary to induce or maintain the allergic airway inflammation. Despite of an immense interest in pathophysiology of TSLP in allergic inflammation, the triggers and mechanisms of TSLP expression remain inadequately understood. In this study, we found that TNF-α upregulates the TSLP mRNA and induces high levels of TSLP protein release in primary human ASM cells. Interestingly, TNF-α induced the TSLP promoter activity (P < 0.05; n = 4) in HASM that was mediated by upstream NF-κB and activator protein-1 (AP-1) binding sites. Mutation in NF-κB and AP-1 binding sites completely abrogated the effect of TNF-α-mediated TSLP promoter activity and so did the expression of a dominant-negative mutant construct of IκB kinase. Furthermore, the peptide inhibitors of IκB kinase or NF-κB inhibited the TNF-α-induced TSLP protein release (P < 0.05; n = 3) in HASM. Collectively, our data suggest a novel important biological role for NF-κB pathway in TNF-α-induced TSLP expression in HASM and recommend this as a prime target for anti-inflammatory drugs.  相似文献   

16.
Lentinan (LNT), a β-glucan from the fruiting bodies of Lentinus edodes, is well known to have immunomodulatory activity. NO and TNF-α are associated with many inflammatory diseases. In this study, we investigated the effects of LNT extracted by sonication (LNT-S) on the NO and TNF-α production in LPS-stimulated murine RAW 264.7 macrophages. The results suggested that treatment with LNT-S not only resulted in the striking inhibition of TNF-α and NO production in LPS-activated macrophage RAW 264.7 cells, but also the protein expression of inducible NOS (iNOS) and the gene expression of iNOS mRNA and TNF-α mRNA. It is surprising that LNT-S enhanced LPS-induced NF-κB p65 nuclear translocation and NF-κB luciferase activity, but severely inhibited the phosphorylation of JNK1/2 and ERK1/2. The neutralizing antibodies of anti-Dectin-1 and anti-TLR2 hardly affected the inhibition of NO production. All of these results suggested that the suppression of LPS-induced NO and TNF-α production was at least partially attributable to the inhibition of JNK1/2 and ERK1/2 activation. This work discovered a promising molecule to control the diseases associated with overproduction of NO and TNF-α.  相似文献   

17.
18.
The current study investigated the immunomodulatory potential of ethyl acetate soluble supernatant of Lactobacillus casei (LC-EAS) in vitro. The effect of LC-EAS on nitric oxide release was analyzed in RAW 264.7 cells, wherein, an inhibition in nitric oxide production through suppression of inducible nitric oxide synthase mRNA expression was observed. Evaluation of LC-EAS on LPS-induced peripheral blood mononuclear cells showed a down-regulation in TNF-α and IL-6 genes and an upregulation of IL-10. An inhibition in the protein expression of NF-κB, ERK1/2 and STAT3 phosphorylation confirms the immunomodulatory potential of LC-EAS. The effect of LC-EAS on in vitro intestinal epithelial cells was investigated using HT-29 human colon adenocarcinoma cancer cells. LC-EAS exhibited an inhibition of NF-κB and ERK1/2 phosphorylation, whereas STAT3 phosphorylation was unregulated. To evaluate the downstream target of STAT3 upregulation, expression of the intestinal trefoil factor TFF3 which is a NF-κB regulator and STAT3 downstream target was studied. LC-EAS was observed to elevate TFF3 mRNA expression. Overall the study shows that the anti-inflammatory potential of LC-EAS is through inhibition of NF-κB in different cell types.  相似文献   

19.
Toll-like receptors (TLRs) are important in a variety of inflammatory diseases including acute cardiac disorders. TLR4 innate signaling regulates the synthesis of anti-inflammatory cytokine, interleukin-10 (IL-10) upon TLR4 agonists’ re-stimulation. Anti-apoptotic action of IL-10 in cardiac dysfunction is generally accepted but its protective mechanism through TLR4 is not yet understood. We studied the effect of IL-10 in the activation of TLR4 downstream signals leading to cardiomyocytes survival. IL-10 caused a significant increase in the expression of CD14, MyD88 and TLR4. TLR4 activation led to the translocation of the interferon regulatory factor 3 (IRF3) into the nucleus. Phosphorylation of IRF3 enhanced mRNA synthesis for IL-1β but not TNF-α and was elevated even after removal of IL-10 stimulation. Furthermore, degradation of inhibitory kappa B (IκB) kinase (Ikk) suggested that IκBβ was the main activating kinase for IRF3-regulated NF-κB activation and phosphorylation of p65. Phosphorylated NF-κB p65 was translocated into the nucleus. Concomitantly, an increase in Bcl-xL activity inhibited Bax and the proteolytic activity of caspase 3 as well as a decrease in PARP cleavage. An inhibition of MyD88, modulated the above listed responses to IL-10 as there was a decrease in TLR4 and IRF3 and an increase in TNF-α mRNA. This was associated with a decrease in NF-κB p65, Bcl-xL mRNA and protein levels as well as there was an activation of Bax and PARP cleavage independent of caspase 3 activation. These data in cardiomyocytes suggest that IL-10 induced anti-apoptotic signaling involves upregulation of TLR4 through MyD88 activation.  相似文献   

20.
Transendothelial trafficking model mimics in vivo differentiation of monocytes into dendritic cells (DC). The serum from patients with systemic lupus erythematosus promotes the differentiation of monocytes into mature DC. We have shown that selective inhibition of NF-κB by adenoviral gene transfer of a novel mutated IκBα (AdIκBαM) in DC contributes to T cell tolerance. Here we demonstrated for the first time that asthmatic serum facilitated human monocyte-derived DC (MDDC) maturation associated with increased NF-κB activation in this model. Furthermore, selective blockade of NF-κB by AdIκBαM in MDDC led to increased apoptosis, and decreased levels of CD80, CD83, CD86, and IL-12 p70 but not IL-10 in asthmatic serum-stimulated MDDC, accompanied by reduced proliferation of T cells. These results suggest that AdIκBαM-transferred MDDC are at a more immature stage which is beneficial to augment the immune tolerance in asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号