首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Tempo and mode of hummingbird evolution   总被引:3,自引:0,他引:3  
Lack of adequate historical data has hindered understanding of the evolutionary tempo and mode of many ecologically well-characterized avian radiations. DNA hybridization distances among 28 hummingbirds (Trochilidae) were used to establish a timescale for this family's radiation into more than 330 species. Under a variety of analytical assumptions, genetic distances calibrated with a fossil divergence date corrected for incompleteness in the geologic record indicated that all extant hummingbird lineages began to diverge in the Early Miocene, approximately 40 Myr (million years) after the Paleocene date estimated for the divergence of hummingbirds and swifts. The long period prior to the radiation of living forms provides ample time for divergent evolution to produce the large morphological gap that has tended to obscure the sister-relationship of hummingbirds and swifts. The Miocene radiation of extant hummingbird lineages itself began with the divergence of the hermit and nonhermit subfamilies approximately 17 Ma (million years ago), followed by the rapid divergence of two Andean and one principally Central and North American clade at approximately 12 Ma. Younger subsidiary lineages, including ones found mainly in the Andes or in North America, date to the later Miocene-earlier Pliocene, approximately 6 Ma. The DNA hybridization-based chronology thus indicates a protracted, rather than stricdy rapid, radiation. Evidence from a broader spectrum of organisms supports the general pattern that higher taxonomic structure within many extant continental families evolved in the Miocene, suggesting that a common environmental pacemaker initiated radiation in unrelated groups. Compared to those in the Pleistocene, radiations tracing to the Miocene may have depended less on rapid climate cycling than on creation of new habitats by major geologic and climatic upheavals. For extant hummingbirds, a principal cause for their Miocene diversification probably was the ability of the ecologically generalized subfamily of nonhermits to radiate in montane areas created by the Andean and other orogenies. Similar interactions between new habitats and their exploitation by ecological generalists may explain, at least in part, the contemporaneous radiation of Passeriformes, the most diverse avian order.  相似文献   

2.
The patterns of genetic diversity and morphological variation are of central importance in understanding the evolutionary process that drive diversification. We use molecular, morphological, and ecological data to explore the influence of geography and ecology in promoting speciation in the widespread Andean hummingbird genus Adelomyia. Six monophyletic clades were recovered which show distributional limits at well-defined geographic barriers. Percentage sequence divergence ranged between 5.8% and 8.2% between phylogroups separated by large (>4000 km) and small (<50 km) distances respectively, suggesting that geographic isolation may be influential at very different scales. We show that morphological traits in independent phylogroups are more related to environmental heterogeneity than to geographic barriers. We provide a molecular reconstruction of relationships within Adelomyia and recommend its use in future comparative studies of historical biogeography and diversification in the Andes.  相似文献   

3.
acta ethologica - The Brazilian ruby, Heliodoxa rubricauda, is a forest species of hummingbird endemic to the Atlantic Forest. It belongs to an Andean clade of birds with robust and strong legs and...  相似文献   

4.
Pohl N  Carvallo G  Botto-Mahan C  Medel R 《Oecologia》2006,149(4):648-655
Flower herbivory and pollination have been described as interactive processes that influence each other in their effects on plant reproductive success. Few studies, however, have so far examined their joint effects in natural populations. In this paper we evaluate the influence of flower damage and pollination by the hummingbird Oreotrochilus leucopleurus on the fecundity of the Andean monkey flower Mimulus luteus. We performed a 2×2 factorial experiment, with artificial clipping of lower petals and selective exclusion of the hummingbird as main factors. In spite of the relatively low proportion (27.5%) of the variance in seed production accounted for by the full factorial model, artificial damage and hummingbird exclusion, as well as their interaction, were highly significant, indicating nonadditive effects of factors on plant fecundity. In the presence of hummingbirds, undamaged flowers had a seed production that was 1.7-fold higher than for damaged flowers, suggesting that the effect of flower damage on female reproductive success occurs probably as a consequence of hummingbird discrimination against damaged corollas. This result indicates that the impact of flower herbivory on plant fecundity was contingent on the presence or absence of hummingbirds, suggesting that pollinators may indirectly select for undamaged and probably resistant flower phenotypes. A second interaction effect revealed that undamaged flowers produced 78.5% more seeds in the absence of rather than in the presence of O. leucopleurus, raising the question of the ecological mechanism involved. We suggest that the strong territorial behavior exhibited by the bee Centris nigerrima may confine the foraging activities of the remaining bee species to safe sites within exclosures. Overall, our results provide evidence that hummingbird pollination and flower herbivory have interdependent effects on M. luteus fecundity, which indicates that it will be difficult to predict their ecological and evolutionary consequences unless interactions are analyzed in an integrated form.  相似文献   

5.
We assessed the evolutionary histories of two hummingbirds, Augastes scutatus and Augastes lumachella, endemic to the highlands of the Espinhaço Range in Brazil. These hummingbirds are considered relictual taxa with phylogenetic affinities to members of the genus Schistes from the Andean region. We reconstructed phylogenetic relationships of Augastes through the use of mitochondrial DNA and nuclear sequences within the Polytminae hummingbird clade, and found that the inferred phylogenetic reconstructions placed A. scutatus as the sister species of A. lumachella and Augastes as sister to Schistes geoffroyi from the northern Andes, as previously suggested by similarities found in plumage and morphology. Our results are consistent with an initial divergence of Augastes and Schistes lineages in the Late Miocene, associated with geological and climatic changes across the South American landscape. A Late Pliocene vicariant event between A. scutatus and A. lumachella may be associated with climatically distinct environmental conditions influencing the local differentiation and adaptation of ancestral Augastes populations. Our findings represent additional important evidence of vicariant events between east and west in southern South America, and between north and south within the Espinhaço Range of Brazil.  相似文献   

6.
We estimate phylogenetic relationships and the biogeographic and pollination history of Costus subgenus Costus (Costaceae) using sequence data from the internal and external transcribed spacer (ITS and ETS) regions of 18S-26S nuclear ribosomal DNA. The African members of the subgenus form a series of lineages basal to a monophyletic neotropical species radiation. The neotropical species have large, showy flowers visited by either euglossine bees or hummingbirds. The hummingbird pollination syndrome is supported as a derived character state from the bee pollination syndrome, and we estimate that it has evolved independently seven or more times in the neotropics. A molecular clock approach suggests that diversification of the neotropical clade has been recent and rapid and that it coincides with dramatic climatic and geologic changes, Andean orogeny, and the closing of the Panama isthmus that occurred in the Pliocene and Pleistocene epochs. We propose a scenario for the diversification of Costus, in which rapid floral adaptation in geographic isolation and range shifts in response to environmental changes contribute to reproductive isolation among close relatives. We suggest that these processes may be common in other recently diversified plant lineages centered in Central America or the Northern Andean phytogeographic region.  相似文献   

7.
Origin of hummingbird faunas   总被引:6,自引:0,他引:6  
Ecological studies of hummingbird communities have emphasized the importance of local conditions and contemporary interactions in the development of these varied faunas. A time-calibrated, DNA hybridization-based phylogeny of the principal hummingbird lineages was used to examine historical aspects of hummingbird faunas in the species-rich tropical lowlands and Andes, and the relatively depauperate West Indies and temperate regions of Central and North America. Parsimony reconstructions of ancestral distributions indicate that these faunas are polyphyletic in origin, comprising several to many independent lineages. Based on the timing of geologic and cladogenic events, hummingbird faunas appear to have arisen more often by colonization than by large-scale vicariance, with multiple dispersals across water gaps, elevational gradients, and latitude. The extent to which particular lineages colonized different regions depended, however, on lineage ecology as well as on the habitat and age of the fauna. In general, the oldest extant trochilofauna, which today occupies the tropical lowlands, was the principal source of colonizing taxa. However, all regions except possibly the West Indies contributed taxa now found elsewhere, including in the tropical lowlands. The Andean fauna comprises several lineages with lowland origin (hermits, Mangoes, Brilliants, Coquettes, Emeralds) as well as at least one that arose in temperate regions outside South America (Bees). At least two lineages that colonized the West Indies gave rise to endemic genera (Mangoes to Eulampis, and Emeralds to Orthorhyncus). Even groups that diversified in the highlands (Brilliants and Bees) gave rise to taxa that subsequently reinvaded the tropical lowlands. As the result of these varied histories, hummingbird communities cannot be arranged easily with respect to organizational complexity and coevolution with nectar sources. Although the physically insular faunas in the Andes and West Indies differ markedly in diversity, both were more strongly affected by colonization than the other faunas. A high potential for coevolution between hummingbirds and plants probably facilitated the successful establishment and radiation of the several Andean-associated lineages. However, coexistence between the two most diverse Andean clades may have been favoured initially through different habitat preferences by their extra-Andean ancestors. In the tropical lowlands, by comparison, the basic separation between the forest-dwelling hermits and canopy and edge-dwelling nonhermits appears to have evolved in situ. The low species and morphologic diversity of hummingbirds breeding north of Mexico reflects the predominance there of a single relatively recent lineage. The regional coexistence of numerous unrelated lineages implies that patterns of ancestry, colonization, and extinction contribute to the make-up of contemporary species-rich hummingbird faunas and serves to qualify the view that hummingbird communities are coadapted assemblages that resist change.  相似文献   

8.
Many ecosystems have been modified by humans, creating novel habitats that include human-provided resources. Gardens adjacent to native habitats may affect plant–pollinator interactions by altering the determinants of interactions and species specialization. Here, we characterized a network comprising plants and hummingbirds interacting in a birdwatching garden with human-provided resources (nectar feeders and exotic plants) and adjacent Andean cloud forest in Colombia. Specifically, we investigated the proportion of hummingbirds visiting feeders and native/exotic plants to evaluate the connection between the habitats and the ecological determinants of the interaction network. Hummingbirds relied heavily on artificial nectar feeders in the garden, leaving the natural cloud forest for resources. Morphological matching was the single most important predictor of the observed pairwise interactions, for both hummingbirds and plants. At the species level, longer flowering phenology and a higher amount of sugar in nectar led to a higher degree for plants (i.e. the number of visiting hummingbird species). In contrast, a longer floral corolla was associated with lower specialization. Abundance was the best predictor of the number of partners for hummingbirds. The garden created for birdwatching attracted most, but not all, hummingbird species beyond their natural cloud forest habitat. Interestingly, the most frequently visited plants in the garden were native, especially the endemic and endangered tree Zygia lehmannii (Fabaceae). Our results show that some ecological mechanisms determining interactions in natural communities still hold in intensively modified habitats. Furthermore, a compromise between conservation and hummingbirds’ attraction to birding lodges/gardens is possible, for instance by favouring native and endemic plant species that are highly attractive for pollinators.  相似文献   

9.
The family Cyprinidae is one of the largest families of fishes in the world and a well-known component of the East Asian freshwater fish fauna. However, the phylogenetic relationships among cyprinids are still poorly understood despite much effort paid on the cyprinid molecular phylogenetics. Original nucleotide sequence data of the nuclear recombination activating gene 2 were collected from 109 cyprinid species and four non-cyprinid cypriniform outgroup taxa and used to infer the cyprinid phylogenetic relationships and to estimate node divergence times. Phylogenetic reconstructions using maximum parsimony, maximum likelihood, and Bayesian analysis retrieved the same clades, only branching order within these clades varied slightly between trees. Although the morphological diversity is remarkable, the endemic cyprinid taxa in East Asia emerged as a monophyletic clade referred to as Xenocypridini. The monophyly for the subfamilies including Cyprininae and Leuciscinae, as well as the tribes including Labeonini, Gobionini, Acheilognathini, and Leuciscini, was also well resolved with high nodal support. Analysis of the RAG2 gene supported the following cyprinid molecular phylogeny: the Danioninae is the most basal subfamily within the family Cyprinidae and the Cyprininae is the sister group of the Leuciscinae. The divergence times were estimated for the nodes corresponding to the principal clades within the Cyprinidae. The family Cyprinidae appears to have originated in the mid-Eocene in Asia, with the cladogenic event of the key basal group Danioninae occurring in the early Oligocene (about 31-30 MYA), and the origins of the two subfamilies, Cyprininae and Leuciscinae, occurring in the mid-Oligocene (around 26 MYA).  相似文献   

10.
BACKGROUND AND AIMS: The genus Bupleurum has long been recognized as a natural group, but its infrageneric classification is controversial and has not yet been studied in the light of sequence data. METHODS: Phylogenetic relationships among 32 species (35 taxa) of the genus Bupleurum were investigated by comparative sequencing of the ITS region of the 18-26S nuclear ribosomal DNA repeat. Exemplar taxa from all currently accepted sections and subsections of the genus were included, along with outgroups from four other early branching Apioideae genera (Anginon, Heteromorpha, Physospermum and Pleurospermum). RESULTS: Phylogenies generated by maximum parsimony, maximum likelihood, and neighbour-joining methods show similar topologies, demonstrating monophyly of Bupleurum and the division of the genus into two major clades. This division is also supported by analysis of the 5.8S coding sequence alone. The first branching clade is formed by all the species of the genus with pinnate-reticulate veined leaves and B. rigidum with a unique type of leaf venation. The other major clade includes the remaining species studied, all of which have more or less parallel-veined leaves. CONCLUSIONS: These phylogenetic results do not agree with any previous classifications of the genus. Molecular data also suggest that the endemic Macaronesian species B. salicifolium is a neoendemic, as the sequence divergence between the populations in Madeira and Canary Islands, and closer mainland relatives in north-west Africa is small. All endemic north-west African taxa are included in a single unresolved but well-supported clade, and the low nucleotide variation of ITS suggests a recent radiation within this group. The only southern hemisphere species, B. mundii (southern Africa), is shown to be a neoendemic, apparently closely related to B. falcatum, a Eurasian species.  相似文献   

11.
Luis Navarro 《Biotropica》1999,31(4):618-625
The floral syndrome of Macleania bullataYeo (Ericaceae) reflects its adaptation to hummingbird pollination. Its flowers, however, are subject to high levels of nectar robbing. I examined the floral visitor assemblage of M. bullata in a tropical montane wet forest in southwestern Colombia, focusing on the behavior of the visitors. I also tested for the presence of nocturnal pollination and the effects of nectar removal on new nectar production. The principal floral visitors were the nectar robbing hummingbirds Ocreatus underwoodii (19.1% of visits) and Chlorostilbon mellisugus (18.9%). Only two species of long–billed hummingbirds visited the flowers of M. bullata as “legitimate” pollinators: Coeligena torquata (14.7% of visits) and Doryfera ludoviciae (14.3%). The remaining visits constituted nectar robbing by bees, butterflies, and other species of hummingbirds. Nocturnal pollination took place, although fruit set levels were 2.4 times higher when only diurnal pollination was allowed as opposed to exclusively nocturnal pollination. Nectar robbers removed floral nectar without pollinating the flower. Treatments of experimental nectar removal were carried out to examine if flowers synthesize more nectar after nectar removal. Nectar removal increased the total volume of nectar produced by each flower without affecting sugar concentration. Thus, nectar robbing can impose a high cost to the plants by forcing them to replace lost nectar.  相似文献   

12.
Although specialized interactions, including those involving plants and their pollinators, are often invoked to explain high species diversity, they are rarely explored at macroevolutionary scales. We investigate the dynamic evolution of hummingbird and bat pollination syndromes in the centropogonid clade (Lobelioideae: Campanulaceae), an Andean‐centered group of ∼550 angiosperm species. We demonstrate that flowers hypothesized to be adapted to different pollinators based on flower color fall into distinct regions of morphospace, and this is validated by morphology of species with known pollinators. This supports the existence of pollination syndromes in the centropogonids, an idea corroborated by ecological studies. We further demonstrate that hummingbird pollination is ancestral, and that bat pollination has evolved 13 times independently, with ∼11 reversals. This convergence is associated with correlated evolution of floral traits within selective regimes corresponding to pollination syndrome. Collectively, our results suggest that floral morphological diversity is extremely labile, likely resulting from selection imposed by pollinators. Finally, even though this clade's rapid diversification is partially attributed to their association with vertebrate pollinators, we detect no difference in diversification rates between hummingbird‐ and bat‐pollinated lineages. Our study demonstrates the utility of pollination syndromes as a proxy for ecological relationships in macroevolutionary studies of certain species‐rich clades.  相似文献   

13.
We used mtDNA sequence data to confirm that the controversial 100-year-old holotype of the Bogotá sunangel (Heliangelus zusii) represents a valid species. We demonstrate that H. zusii is genetically well differentiated from taxa previously hypothesized to have given rise to the specimen via hybridization. Phylogenetic analyses place H. zusii as sister to a clade of mid- to high-elevation Andean species currently placed in the genera Taphrolesbia and Aglaiocercus. Heliangelus zusii, presumed extinct, has never been observed in nature by biologists. We infer that the species occupied a restricted distribution between the upper tropical and temperate zones of the northern Andes and that it was most probably driven to extinction by deforestation that accompanied human population growth during the nineteenth and early twentieth centuries. We demonstrate the feasibility of obtaining DNA from nearly microscopic tissue samples from old hummingbird specimens and suggest that these methods could be used to resolve the taxonomy of dozens of avian taxa known only from type specimens.  相似文献   

14.
Aim We evaluated the hypothesis that, given niche conservatism, relatedness of co‐occurring hummingbird species of a given clade will increase at greater distances from the elevation where it originated. We also used prior knowledge of flight biomechanics and feeding specialization of hummingbird species (family Trochilidae) to evaluate which environmental variables were important predictors of changes in phylogenetic structure for each hummingbird clade. Location Ecuador. Methods We compiled species lists for 189 local hummingbird assemblages across major environmental gradients in Ecuador from a variety of published and non‐published sources. For the entire family and each of the major hummingbird clades (hermits, emeralds, mangoes, coquettes and brilliants) we quantified the phylogenetic structure of each assemblage using the net relatedness index (NRI). This index calculates the standardized mean of all possible pairwise phylogenetic distances between co‐occurring species. We related NRI for each clade to elevation, precipitation and vegetation‐related variables using generalized additive models. Results Our findings support the prediction of an increase in the co‐occurrence of close relatives away from the elevation of origin at the family level and for assemblages of mangoes and brilliants. The opposite pattern was found for assemblages of coquettes and emeralds. For the hermits, variation in phylogenetic structure was not explained by elevation. Clades with high levels of feeding specialization (hermits and brilliants) always included a vegetation‐related variable as an important predictor of change in phylogenetic structure. Main conclusions We found no overall support for the conservatism and zone of origin hypotheses. Knowledge of each clade’s natural history proved useful for predicting which environmental variables correlated with phylogenetic structure of local assemblages. Clades with the same elevation of origin appear to have radiated along the elevational gradient in association with different environmental factors.  相似文献   

15.
We analysed the geographical origins and divergence times of the West Indian hummingbirds, using a large clock‐dated phylogeny that included 14 of the 15 West Indian species and statistical biogeographical reconstruction. We also compiled a list of 101 West Indian plant species with hummingbird‐adapted flowers (90 of them endemic) and dated the most species‐rich genera or tribes, with together 41 hummingbird‐dependent species, namely Cestrum (seven spp.), Charianthus (six spp.), Gesnerieae (75 species, c. 14 of them hummingbird‐pollinated), Passiflora (ten species, one return to bat‐pollination) and Poitea (five spp.), to relate their ages to those of the bird species. Results imply that hummingbirds colonized the West Indies at least five times, from 6.6 Mya onwards, coming from South and Central America, and that there are five pairs of sister species that originated within the region. The oldest of the dated plant groups diversified 9.1, 8.5, and 5.4 Mya, simultaneous with or slightly before the extant West Indian bird radiations. The time frame of the coevolved bird/flower mutualisms obtained here resembles that recently inferred for North America, namely 5–9 Mya. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 848–859.  相似文献   

16.
Vorticella includes more than 100 currently recognized species and represents one of the most taxonomically challenging genera of ciliates. Molecular phylogenetic analysis of Vorticella has been performed so far with only sequences coding for small subunit ribosomal RNA (SSU rRNA); only a few of its species have been investigated using other genetic markers owing to a lack of similar sequences for comparison. Consequently, phylogenetic relationships within the genus remain unclear, and molecular discrimination between morphospecies is often difficult because most regions of the SSU rRNA gene are too highly conserved to be helpful. In this paper, we move molecular systematics for this group of ciliates to the infrageneric level by sequencing additional molecular markers—fast-evolving internal transcribed spacer (ITS) regions—in a broad sample of 66 individual samples of 28 morphospecies of Vorticella collected from Asia, North America and Europe. Our phylogenies all featured two strongly supported, highly divergent, paraphyletic clades (I, II) comprising the morphologically defined genus Vorticella. Three major lineages made up clade I, with a relatively well-resolved branching order in each one. The marked divergence of clade II from clade I confirms that the former should be recognized as a separate taxonomic unit as indicated by SSU rRNA phylogenies. We made the first attempt to elucidate relationships between species in clade II using both morphological and multi-gene approaches, and our data supported a close relationship between some morphospecies of Vorticella and Opisthonecta, indicating that relationships between species in the clade are far more complex than would be expected from their morphology. Different patterns of helix III of ITS2 secondary structure were clearly specific to clades and subclades of Vorticella and, therefore, may prove useful for resolving phylogenetic relationships in other groups of ciliates.  相似文献   

17.
Flower form is one of many floral features thought to be shaped by pollinator‐mediated selection. Although the drivers of variation in flower shape have often been examined in microevolutionary studies, relatively few have tested the relationship between shape evolution and shifts in pollination system across clades. In the present study, we use morphometric approaches to quantify shape variation across the Andean clade Iochrominae and estimate the relationship between changes in shape and shifts in pollination system using phylogenetic comparative methods. We infer multiple shifts from an ancestral state of narrow, tubular flowers toward open, bowl‐shaped, or campanulate flowers as well as one reversal to the tubular form. These transitions in flower shape are significantly correlated with changes in pollination system. Specifically, tubular forms tend to be hummingbird‐pollinated and the open forms tend to be insect‐pollinated, a pattern consistent with experimental work as well as classical floral syndromes. Nonetheless, our study provides one of the few empirical demonstrations of the relationship between flower shape and pollination system at a macroevolutionary scale.  相似文献   

18.
It has often been suggested that the genome sizes of birds are constrained relative to other tetrapods owing to the high metabolic demands of powered flight and the link between nuclear DNA content and red blood cell size. This hypothesis predicts that hummingbirds, which engage in energy-intensive hovering flight, will display especially constrained genomes even relative to other birds. We report genome size measurements for 37 species of hummingbirds that confirm this prediction. Our results suggest that genome size was reduced before the divergence of extant hummingbird lineages, and that only minimal additional reduction occurred during hummingbird diversification. Unlike in some other avian taxa, the small amount of variation observed within hummingbirds is not explained by variation in respiratory and flight-related parameters. Unexpectedly, genome size appears to have increased in four unrelated hummingbird species whose distributions are centred on humid forests of the upper-tropical elevational zone on the eastern slope of the Andes. This suggests that the secondary expansion of the genome may have been mediated by biogeographical and demographic effects.  相似文献   

19.
New specimens of the early Oligocene (32 million years ago) stem group hummingbird Eurotrochilus inexpectatus Mayr, 2004, are described from the type locality Frauenweiler in Southern Germany. One of these is the second slab of the holotype, whose existence has been hitherto unknown. The new fossils add significantly to our knowledge of the morphology of E. inexpectatus and allow more detailed comparisons with other stem and crown group Trochilidae. A new apomorphy of the clade (Eurotrochilus + crown group Trochilidae) is described. With species successively more closely related to the crown group, the temporal sequence of stem group hummingbirds in Europe indicates an Old World origin of Pan-Trochilidae. E. inexpectatus is the earliest long-beaked stem group hummingbird with hovering capabilities, and absence of modern-type hummingbirds before the early Oligocene may provide a maximum age for the origin of hummingbird-pollinated plants and the colonization of the New World by modern-type stem group hummingbirds.  相似文献   

20.
Cao Y  Fujiwara M  Nikaido M  Okada N  Hasegawa M 《Gene》2000,259(1-2):149-158
Extensive phylogenetic analyses of the updated sequence data of mammalian mitochondrial genomes were carried out using the maximum likelihood method in order to resolve deep branchings in eutherian evolution. The divergence times in the mammalian tree were estimated by a relaxed molecular clock of the mitochondrial proteins calibrated with multiple references. A Chiroptera/Eulipotyphla (i.e. bat/mole) clade and a close relationship of this clade to Fereuungulata (Carnivora+Perissodactyla+Cetartiodactyla) were reconfirmed with high statistical significance. However, a support for a monophyly of Fereuungulata relative to the Chiroptera/Eulipotyphla clade was fragile, and we suggest that the three branchings among Carnivora, Perissodactyla, Cetartiodactyla and Chiroptera/Eulipotyphla occurred successively in a short time period, estimated to be approximately 77Myr BP. The Chiroptera/Eulipotyphla divergence was estimated to roughly coincide with the Cretaceous-Tertiary boundary (65Myr BP). The monophyly of Rodentia, the Lagomorpha/Rodentia clade (traditionally called Glires), and the Afrotheria/Xenarthra clade were preferred over alternative relationships, but the supports of these clades were not strong enough to exclude other possibilities. Although several super-order taxa of eutherians were strongly supported by the analyses of the mitochondrial genome data, the branching order in the deepest part of the eutherian tree remained ambiguous from the data presently available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号