首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Noninvasively collected genetic data can be used to analyse large‐scale connectivity patterns among populations of large predators without disturbing them, which may contribute to unravel the species’ roles in natural ecosystems and their requirements for long‐term survival. The demographic history of brown bears (Ursus arctos) in Northern Europe indicates several extinction and recolonization events, but little is known about present gene flow between populations of the east and west. We used 12 validated microsatellite markers to analyse 1580 hair and faecal samples collected during six consecutive years (2005–2010) in the Pasvik Valley at 70°N on the border of Norway, Finland and Russia. Our results showed an overall high correlation between the annual estimates of population size (Nc), density (D), effective size (Ne) and Ne/Nc ratio. Furthermore, we observed a genetic heterogeneity of ~0.8 and high Ne/Nc ratios of ~0.6, which suggests gene flow from the east. Thus, we expanded the population genetic study to include Karelia (Russia, Finland), Västerbotten (Sweden) and Troms (Norway) (477 individuals in total) and detected four distinct genetic clusters with low migration rates among the regions. More specifically, we found that differentiation was relatively low from the Pasvik Valley towards the south and east, whereas, in contrast, moderately high pairwise FST values (0.91–0.12) were detected between the east and the west. Our results indicate ongoing limits to gene flow towards the west, and the existence of barriers to migration between eastern and western brown bear populations in Northern Europe.  相似文献   

2.
Large carnivores were persecuted to near extinction during the last centuries, but have now recovered in some countries. It has been proposed earlier that the recovery of the Northern European brown bear is supported by migration from Russia. We tested this hypothesis by obtaining for the first time continuous sampling of the whole Finnish bear population, which is located centrally between the Russian and Scandinavian bear populations. The Finnish population is assumed to experience high gene flow from Russian Karelia. If so, no or a low degree of genetic differentiation between Finnish and Russian bears could be expected. We have genotyped bears extensively from all over Finland using 12 validated microsatellite markers and compared their genetic composition to bears from Russian Karelia, Sweden, and Norway. Our fine masked investigation identified two overlapping genetic clusters structured by isolation-by-distance in Finland (pairwise FST = 0.025). One cluster included Russian bears, and migration analyses showed a high number of migrants from Russia into Finland, providing evidence of eastern gene flow as an important driver during recovery. In comparison, both clusters excluded bears from Sweden and Norway, and we found no migrants from Finland in either country, indicating that eastern gene flow was probably not important for the population recovery in Scandinavia. Our analyses on different spatial scales suggest a continuous bear population in Finland and Russian Karelia, separated from Scandinavia.  相似文献   

3.
Estimating the genetic structure of a population is important for the conservation and management of wildlife. In the present study, our aim was to estimate the genetic structure of the brown bear (Ursus arctos) population in eastern Hokkaido by performing a Bayesian clustering analysis. To accomplish this goal, we used 15 microsatellites to generate genotypic data from tissue samples collected from 646 bears between 1996 and 2008. Using this genotypic data and the geographic locations where the bears were captured, GENELAND analysis detected six subpopulations. Based on the genotypic data, the STRUCTURE analysis revealed three subpopulations. As inferred from the GENELAND analysis, the core zones of the subpopulations (G-a through G-f) were located in the Shiranuka Hills (G-a), the northern area of the Shiranuka Hills (G-b), the eastern slope of the Daisetsuzan Mountains (G-c), the northern slope of the Akan Mountain Range (G-d), the Shiretoko Peninsula (G-e), and Akkeshi District (G-f). The STRUCTURE analysis indicated that G-b and G-d were influenced by gene flow from other subpopulations. National routes, towns, and farm fields were considered to have formed the distribution boundaries among the subpopulations. A high level of genetic differentiation was not observed among the six subpopulations, with the exception of G-f (F st?=?1.35–0.176, D s?=?0.246–0.349), which showed a geographically discontinuous distribution. We suggest that the loss of forest areas through future regional development and road building should be avoided to facilitate gene flow in brown bears in Hokkaido.  相似文献   

4.
《Mammalian Biology》2014,79(4):268-276
The Balkans are one of the last large refugia for brown bear (Ursus arctos) populations in Europe, and Bulgaria, in particular, contains relatively large areas of suitable brown bear habitat and a potential population of more than 600 individuals. Despite this, the majority of brown bear research remains focused on bear populations in Central and Western Europe. We provide the first assessment of genetic population structure of brown bears in Bulgaria by analysing tissue samples (n = 16) as well as samples collected with noninvasive genetic methods, including hair and faecal samples (n = 189 and n = 163, respectively). Sequence analysis of a 248 base pair fragment of the mitochondrial control region showed that two highly divergent mitochondrial European brown bear lineages form a contact zone in central Bulgaria. Furthermore, the analysis of 13 polymorphic microsatellite markers identified 136 individuals and found substantial genetic variability (He = 0.74; NA = 8.9). The combination of both genetic markers revealed the presence of weak genetic substructure in the study area with considerable degrees of genetic admixture and the likely presence of migration corridors between the two subpopulation in the Rhodope Mountains and Stara Planina as evidenced from the genetic detection of two male long-distance dispersers. A detailed assessment from densely collected samples in the Rhodope Mountains resulted in a population size estimate of 315 (95% CI = 206–334) individuals, indicating that not all available habitat is presently occupied by bears in this region. Efficient management plans should focus on preserving connectivity of suitable habitats in order to maintain gene flow between the two Bulgarian brown bear subpopulations.  相似文献   

5.
The Baekdudaegan, a mountain range that runs north to south along the Korean Peninsula, has been suggested to harbor important glacial refugia for boreal and temperate plant species. A series of allozyme-based genetic studies supports this trend. A large effective population size (Ne) is suggested as one of major factors contributing to maintaining moderate or high levels of within-population genetic variation in these plant species. To test this hypothesis, we examined the levels and patterns of allozyme diversity, tested recent bottlenecks, and estimated recent migration rates in 10 subpopulations (collected within a distance of ca. 640 m) of the boreal Lilium cernuum at Mt. Deokhang, in the central part of the Baekdudaegan. We found high levels of within-population genetic variation as well as a low between-population genetic differentiation (He = 0.206 and FST = 0.019). Based on the FST estimate and mean recent migration rate, we approximately calculated a total effective population size of 508 across 10 subpopulations. Consistent with this, we found no evidence of recent bottlenecks in the subpopulations. This study reveals that subpopulations of L. cernuum at Mt. Deokhang are effectively large (on the order of hundreds), and that high levels of gene flow occur among them, probably due to the species' high potential for seed dispersal. These demographic and life-history traits, coupled with its high levels of genetic diversity, suggests that this cold-adapted species would have found large refugial areas in these mountains (i.e., macrorefugia) during the Last Glacial Maximum.  相似文献   

6.
The present study assesses the degree of genetic structure and the presence of recent genetic bottlenecks in the wild boar population in Portugal. One hundred and ten individuals were sampled after capture during organised legal drive hunts, conducted in 58 municipalities across the continental territory, during the game seasons of 2002/2003 and 2003/2004. Individuals were genetically typed at six microsatellite loci using multiplex PCR amplification. Significant deviations from Hardy–Weinberg equilibrium were found for the total population of wild boar in Portugal. Wild boar population genetic structure was assessed using Bayesian methods, suggesting the existence of three subpopulations (North, Centre and South). Tests were conducted to detect the presence of potential migrants and hybrids between subpopulations. After exclusion of these individuals, three sets of wild boars representative of respective subpopulations were distinguished and tested for the effects of recent bottlenecks. Genetic distances between pairs of subpopulations were quantified using FST and RST estimators, revealing a variation of 0.138–0.178 and 0.107–0.198, respectively. On the basis of genetic and distribution data for Portuguese wild boar from the beginning of the 20th century, a model of strong demographic decline and contraction to isolated refuge areas at the national level, followed by a recovery and expansion towards former distribution limits is suggested. Some evidence points to present admixture among subpopulations in contact areas.  相似文献   

7.
Genome-wide SNP data provide a powerful tool to estimate pairwise relatedness among individuals and individual inbreeding coefficient. The aim of this study was to compare methods for estimating the two parameters in a Finnsheep population based on genome-wide SNPs and genealogies, separately. This study included ninety-nine Finnsheep in Finland that differed in coat colours (white, black, brown, grey, and black/white spotted) and were from a large pedigree comprising 319 119 animals. All the individuals were genotyped with the Illumina Ovine SNP50K BeadChip by the International Sheep Genomics Consortium. We identified three genetic subpopulations that corresponded approximately with the coat colours (grey, white, and black and brown) of the sheep. We detected a significant subdivision among the colour types (F ST = 5.4%, P<0.05). We applied robust algorithms for the genomic estimation of individual inbreeding (F SNP) and pairwise relatedness (Φ SNP) as implemented in the programs KING and PLINK, respectively. Estimates of the two parameters from pedigrees (F PED and Φ PED) were computed using the RelaX2 program. Values of the two parameters estimated from genomic and genealogical data were mostly consistent, in particular for the highly inbred animals (e.g. inbreeding coefficient F>0.0625) and pairs of closely related animals (e.g. the full- or half-sibs). Nevertheless, we also detected differences in the two parameters between the approaches, particularly with respect to the grey Finnsheep. This could be due to the smaller sample size and relative incompleteness of the pedigree for them.We conclude that the genome-wide genomic data will provide useful information on a per sample or pairwise-samples basis in cases of complex genealogies or in the absence of genealogical data.  相似文献   

8.
We used demographic, spatial, and microsatellite data to assess fine-scale genetic structure in Ethiopian wolves found in the Bale Mountains and evaluated the impact of historical versus recent demographic processes on genetic variation. We applied several analytical methods, assuming equilibrium and nonequilibrium conditions, to assess demography and genetic structure. Genetic variation (H E = 0.584–0.607, allelic richness = 4.2–4.3) was higher than previously reported for this species and genetic structure was influenced by geography and social structure. Statistically significant F ST values (0.06–0.08) implied differentiation among subpopulations. STRUCTURE analyses showed that neighbouring packs often have shared co-ancestry and spatial autocorrelation showed higher genetic similarity between individuals within packs and between individuals in neighbouring packs compared to random pairs of individuals. Recent effective population sizes were lower than 2n (where n is the number of packs) and lower than the number of breeding individuals with N e /N ratios near 0.20. All subpopulations have experienced bottlenecks, one occurring due to a rabies outbreak in 2003. Nevertheless, differentiation among these subpopulations is consistent with long-term migration rates and fragmentation at the end of the Pleistocene. Enhanced drift due to population bottlenecks may be countered by higher migration into disease-affected subpopulations. Contemporary factors such as social structure and population bottlenecks are clearly influencing the level and distribution of genetic variation in this population, which has implications for its conservation.  相似文献   

9.
Multiple small populations of American black bears Ursus americanus, including the recently delisted Louisiana black bear subspecies U. a. luteolus, occupy a fragmented landscape in the Lower Mississippi Alluvial Valley, USA (LMAV). Populations include bears native to the LMAV, bears translocated from Minnesota during the 1960s, and recently reintroduced and colonizing populations sourced from within the LMAV. We estimated population structure, gene flow, and genetic parameters important to conservation of small populations using genotypes at 23 microsatellite markers for 265 bears from seven populations. We inferred five genetic clusters corresponding to the following populations: White River and western Mississippi, Tensas River and Three Rivers, Upper Atchafalaya, Lower Atchafalaya, and Minnesota. Upper Atchafalaya was suggested as the product of Minnesota-sourced translocations, but those populations have since diverged, likely because of a founder effect followed by genetic drift and isolation. An admixture zone recently developed in northeastern Louisiana and western Mississippi between migrants from White River and Tensas River, resulting in a Wahlund effect. However, gene flow among most populations has been limited and considerable genetic differentiation accumulated (global FST?=?0.22), particularly among the three Louisiana black bear populations that existed when federal listing occurred. Consistent with previous bottlenecks, founder effects, and persisting isolation, all LMAV bear populations had low genetic diversity (AR?=?2.08–4.81; HE?=?0.36–0.63) or small effective population size (NE?=?3–49). Translocating bears among populations as part of a regional genetic restoration program may help improve genetic diversity and increase effective population sizes.  相似文献   

10.
《Mammalian Biology》2014,79(4):277-282
The Dinaric-Balkan grey wolf population used to be at a border between the large remaining Eastern European populations and the largely eradicated Western European populations. During the last few decades we have witnessed the Western European wolf population recovery. Substantial genetic variation has previously been reported in the Balkan wolf population, but rigorous genetic characterization has not been done for its central parts. The aims of this research were to determine genetic diversity based on mtDNA sequence variability, to infer possible population structuring, to find genetic signals of population expansions or bottlenecks and to evaluate phylogenetic position of the grey wolf population from the Central Balkans. Six haplotypes were detected, of which three have only been found in the Balkan region. These haplotypes belong to both haplogroups previously determined in Europe. Based on our mtDNA sequence analyses, the Dinaric-Balkan wolf population is vertically differentiated into “western” (Croatia/Bosnia and Herzegovina) and “eastern” (Serbia/Macedonia) subpopulations. None of the results support assumption of population expansion. Instead, significantly positive values for Tajima's D and Fu's Fs may suggest recent population bottleneck. Obtained data may be helpful in observation to which extent gene pool from the Balkans contribute to newly founded populations in Western Europe.  相似文献   

11.
The Utah prairie dog (Cynomys parvidens), listed as threatened under the United States Endangered Species Act, was the subject of an extensive eradication program throughout its range during the 20th century. Eradication campaigns, habitat destruction/fragmentation/conversion, and epizootic outbreaks (e.g., sylvatic plague) have reduced prairie dog numbers from an estimated 95,000 individuals in the 1920s to approximately 14,000 (estimated adult spring count) today. As a result of these anthropogenic actions, the species is now found in small isolated sets of subpopulations. We characterized the levels of genetic diversity and population genetic structure using 10 neutral nuclear microsatellite loci for twelve populations (native and transplanted) representative of the three management designated “recovery units,” found in three distinct biogeographic regions, sampled across the species' range. The results indicate (1) low levels of genetic diversity within colonies (He = 0.109–0.357; Ho = 0.106‐ 0.313), (2) high levels of genetic differentiation among colonies (global FST = 0.296), (3) very small genetic effective population sizes, and (4) evidence of genetic bottlenecks. The genetic data reveal additional subdivision such that colonies within recovery units do not form single genotype clusters consistent with recovery unit boundaries. Genotype cluster membership support historical gene flow among colonies in the easternmost West Desert Recovery Unit with the westernmost Pausaugunt colonies and among the eastern Pausaugunt colonies and the Awapa Recovery unit to the north. In order to maintain the long‐term viability of the species, there needs to be an increased focus on maintaining suitable habitat between groups of existing populations that can act as connective corridors. The location of future translocation sites should be located in areas that will maximize connectivity, leading to maintenance of genetic variation and evolutionary potential.  相似文献   

12.
In natural populations of Arabidobsis thaliana (L.) Heynh., occupying northern limits of the species range (Karelia), the level of genetic diversity was evaluated. In two insular and one mainland population variability at 82 RAPD loci was tested. Considerable genetic diversity revealed (P = 4.5%; H exp = 0.177) was not typical of self-pollinating plant species. It was demonstrated that genetic differentiation among the populations (G ST = 0.680) was rather high, pointing to the low level of gene flow in the isolated insular populations. It was suggested that the high level of Arabidopsis population polymorphism in Karelia could be associated with extreme growing conditions at the northern limits of the species range.  相似文献   

13.
Here we present the first attempt to use the BovineSNP50 Illumina Genotyping BeadChip for genome-wide screening of European bison Bison bonasus bonasus (EB), two subspecies of American bison: the plains bison Bison bison bison (PB), the wood bison Bison bison athabascae (WB) and seven cattle Bos taurus breeds. Our aims were to (1) reconstruct their evolutionary relationships, (2) detect any genetic signature of past bottlenecks and to quantify the consequences of bottlenecks on the genetic distances amongst bison subspecies and cattle, and (3) detect loci under positive or stabilizing selection. A Bayesian clustering procedure (STRUCTURE) detected ten genetically distinct clusters, with separation among all seven cattle breeds and European and American bison, but no separation between plain and wood bison. A linkage disequilibrium based program (LDNE) was used to estimate the effective population size (N e) for the cattle breeds; N e was generally low, relative to the census size of the breeds (cattle breeds: mean N e = 299.5, min N e = 18.1, max N e = 755.0). BOTTLENECK 1.2 detected signs of population bottlenecks in EB, PB and WB populations (sign test and standardized sign test: p = 0.0001). Evidence for loci under selection was found in cattle but not in bison. All extant wild populations of bison have shown to have survived severe bottlenecks, which has likely had large effects on genetic diversity within and differentiation among groups.  相似文献   

14.
The taxonomic status of brown bears in the Caucasus remains unclear. Several morphs or subspecies have been identified from the morphological (craniological) data, but the status of each of these subspecies has never been verified by molecular genetic methods. We analysed mitochondrial DNA sequences (control region) to reveal phylogenetic relationships and infer divergence time between brown bear subpopulations in the Caucasus. We estimated migration and gene flow from both mitochondrial DNA and microsatellite allele frequencies, and identified possible barriers to gene flow among the subpopulations. Our suggestion is that all Caucasian bears belong to the nominal subspecies of Ursus arctos. Our results revealed two genetically and geographically distinct maternal haplogroups: one from the Lesser Caucasus and the other one from the Greater Caucasus. The genetic divergence between these haplogroups dates as far back as the beginning of human colonization of the Caucasus. Our analysis of the least‐cost distances between the subpopulations suggests humans as a major barrier to gene flow. The low genetic differentiation inferred from microsatellite allele frequencies indicates that gene flow between the two populations in the Caucasus is maintained through the movements of male brown bears. The Likhi Ridge that connects the Greater and Lesser Caucasus mountains is the most likely corridor for this migration.  相似文献   

15.
In southern Kantoh, Japanese sika deer (Cervus nippon) are distributed discontinuously due to large urban areas and developed road networks. To assess the impact of habitat fragmentation on sika deer subpopulations, we examined mitochondrial D-loop sequences from 435 individuals throughout southern Kantoh. About 13 haplotypes were detected, and their distributions revealed spatial genetic structure. Significant genetic differentiation was observed among seven of eight subpopulations. We found no significant correlation between pairwise F ST and geographical distance among subpopulations. Genetic diversity indices suggested that seven of eight subpopulations had probably experienced population bottlenecks in the recent past. Therefore, and in the light of the results of a nested clade analysis of these haplotypes, we conclude that recent fluctuations in population size and the interruption of gene flow due to past and present habitat fragmentation have played major roles influencing the spatial genetic structure of the sika deer population. This is the first evidence of spatial genetic population structure in the highly fragmented sika deer population in Honshu, Japan.  相似文献   

16.
Ichang papeda (Citrus ichangensis), a wild and endemic perennial plant in Rutaceae, is characterized by the existence of wild and natural populations in southwestern and middle-west China. We analyzed a total of 231 individuals across 16 natural populations using chloroplast SSR markers, nuclear SSR markers, and single-copy nuclear genes. Standard population genetic analyses as well as Bayesian and maximum likelihood models were used to clarify the genetic diversity, population differentiation, barriers to gene flow, bottleneck events, isolation by distance, history migration, demographic history among populations, and phylogeny evolution. The chloroplast and nuclear genome analyses revealed a low level of genetic diversity in C. ichangensis. Clear signals of recent bottlenecks and strong patterns of isolation by distance were detected among different subpopulations, indicating a low extent of historical gene flow for this species and that genetic drift would occur after population differentiation. Bayesian clustering analyses revealed a clear pattern of genetic structure, with one cluster spanning the potential refugia in Wuling Mountains and Ta-pa Mountains, and other two clusters covering a more limited distribution range. The demographic history also supported the scenario that two isolated clusters originated in parallel from the genetic diversity center. Taxonomically, Ichang papeda may be a member of subgenus Citrus. Owing to the complicated topography, the mountainous regions and the Yangtze River have provided long-term stable habitats for C. ichangensis and acted as main barriers for its expansion, which might facilitate the process of speciation. Statistical population models and genetic data indicated strong genetic structure in C. ichangensis, which might result from the restricted gene flow, genetic drift, and population bottlenecks.  相似文献   

17.
In the 1930s, the Scandinavian brown bear was close to extinction due to vigorous extermination programmes in Norway and Sweden. Increased protection of the brown bear in Scandinavia has resulted in the recovery of four subpopulations, which currently contain close to 1000 individuals. Effective conservation and management of the Scandinavian brown bear requires knowledge of the current levels of genetic diversity and gene flow among the four subpopulations. Earlier studies of mitochondrial DNA (mtDNA) diversity revealed extremely low levels of genetic variation, and population structure that grouped the three northern subpopulations in one genetic clade and the southernmost subpopulation in a second highly divergent clade. In this study, we extended the analysis of genetic diversity and gene flow in the Scandinavian brown bear using data from 19 nuclear DNA microsatellite loci. Results from the nuclear loci were strikingly different than the mtDNA results. Genetic diversity levels in the four subpopulations were equivalent to diversity levels in nonbottlenecked populations from North America, and significantly higher than levels in other bottlenecked and isolated brown bear populations. Gene flow levels between subpopulations ranged from low to moderate and were correlated with geographical distance. The substantial difference in results obtained using mtDNA and nuclear DNA markers stresses the importance of collecting data from both types of genetic markers before interpreting data and making recommendations for the conservation and management of natural populations. Based on the results from the mtDNA and nuclear DNA data sets, we propose one evolutionarily significant unit and four management units for the brown bear in Scandinavia.  相似文献   

18.
Understanding patterns of genetic diversity at the landscape scale will enhance conservation and management of natural populations. Here we analyzed the genetic diversity, population connectivity, and spatial genetic structure among subpopulations and age groups of Olea europaea subsp. cuspidata, a cornerstone species of the Afromontane highlands. The study was conducted at the landscape level within a radius of approximately 4 km, as well as on a fine scale (intensive study plot) of less than 300 m radius. In total 542 samples from four natural subpopulations in northwestern Ethiopia were analyzed using ten nuclear microsatellite markers. Inbreeding was higher in smaller populations. No genetic difference was detected among cohorts of different tree sizes in the intensive studied plot. Average population differentiation was low but significant (F ST ?=?0.016). Landscape genetic analysis inferred two groups: the most distant subpopulation WE located less than 4 kms from the other three subpopulations formed a separate group. Sixty-four percent of the total migrants were shared among the three latter subpopulations, which are spatially clustered. Immigrants were non-randomly distributed inside of the intensive study plot. Significant spatial genetic structure (SGS) was found both at the landscape scale and in the intensive study plot, and adults showed stronger SGS than young trees. An indirect estimate of 220 m as mean gene dispersal distance was obtained. We conclude that even under fragmentation migration is not disrupted in wild olive trees and that large protected populations at church forests are very important to conserve genetic resources. However, the higher level of inbreeding and evidence for population bottlenecks in the small populations, as well as the persisting heavy pressure on most remaining populations, warrants quick action to maintain genetic diversity of wild olive in the Ethiopian highlands.  相似文献   

19.
The Finnish population of White-tailed Eagle (Haliaeetus albicilla) has gone through two major demographic bottlenecks during the last two centuries. Strong conservation measures have allowed the population to recover, but despite the rapid population growth during recent years the species is still classified as endangered. We studied the genetic population structure at both individual and population levels in an attempt to recognize the processes shaping it. We used 9 microsatellite loci and 473 base pair fragment of the mitochondrial DNA control region on samples collected between the years 2003 and 2007 (N = 489). We found a clear isolation by distance pattern at fine scale (i.e. individual level) which is most likely a result of species’ philopatric behaviour. Although we did not find signs of the recent bottlenecks, we did find evidence of an ancient bottleneck that has occurred most likely over 21,000 years ago, long before the genetic divergence of the two present Finnish subpopulations (one along the Baltic Sea coast line and another in Lapland and easternmost Finland). We conclude that the present population structure is mainly a consequence of the species philopatric behaviour over a long time period instead of recent population bottlenecks. Based on our results, the Finnish population seems to have ongoing immigration from neighbouring populations. Hence, even though the population has recovered mainly through local growth, our results suggest that gene flow from genetically differentiated populations have had an impact as well.  相似文献   

20.
Analyses of fine-scale and macrogeographic genetic structure in plant populations provide an initial indication of how gene flow, natural selection, and genetic drift may collectively influence the distribution of genetic variation. The objective of our study is to evaluate the spatial dispersion of alleles within and among subpopulations of a tropical shrub, Psychotria officinalis (Rubiaceae), in a lowland wet forest in Costa Rica. This insect-pollinated, self-incompatible understory plant is dispersed primarily by birds, some species of which drop the seeds immediately while others transport seeds away from the parent plant. Thus, pollination should promote gene flow while at least one type of seed dispersal agent might restrict gene flow. Sampling from five subpopulations in undisturbed wet forest at Estación Biologíca La Selva, Costa Rica, we used electrophoretically detected isozyme markers to examine the spatial scale of genetic structure. Our goals are: 1) describe genetic diversity of each of the five subpopulations of Psychotria officinalis sampled within a contiguous wet tropical forest; 2) evaluate fine-scale genetic structure of adults of P. officinalis within a single 2.25-ha mapped plot; and 3) estimate genetic structure of P. officinalis using data from five subpopulations located up to 2 km apart. Using estimates of coancestry, statistical analyses reveal significant positive genetic correlations between individuals on a scale of 5 m but no significant genetic relatedness beyond that interplant distance within the studied subpopulation. Multilocus estimates of genetic differentiation among subpopulations were low, but significant (Fst = 0.095). Significant Fst estimates were largely attributable to a single locus (Lap-2). Thus, multilocus estimates of Fst may be influenced by microgeographic selection. If true, then the observed levels of IBD may be overestimates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号