首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The protective effects of chloroform extracts of Terminalia catappa L. leaves (TCCE) on carbon tetrachloride (CCl4)-induced liver damage and the possible mechanisms involved in the protection were investigated in mice. We found that increases in the activity of serum aspartate aminotransferase and alanine aminotransferase and the level of liver lipid peroxidation (2.0-fold, 5.7-fold and 2.8-fold) induced by CCl4 were significantly inhibited by oral pretreatment with 20, 50 or 100 mg/kg of TCCE. Morphological observation further confirmed the hepatoprotective effects of TCCE. In addition, the disruption of mitochondrial membrane potential (14.8%), intramitochondrial Ca2+ overload (2.1-fold) and suppression of mitochondrial Ca2+-ATPase activity (42.0%) in the liver of CCl4-insulted mice were effectively prevented by pretreatment with TCCE. It can be concluded that TCCE have protective activities against liver mitochondrial damage induced by CCl4, which suggests a new mechanism of the hepatoprotective effects of TCCE.  相似文献   

2.
The protective effects of an extract of young radish (Raphanus sativus L) cultivated with sulfur (sulfur-radish extract) and of sulforaphane, an isothiocyanate, on carbon tetrachloride (CCl(4))-induced liver injury were observed in mice. CCl(4) produced a marked increase in the serum level of alanine aminotransferase (ALT), primed lipid peroxidation, and resulted in intense necrosis due to oxidative stress. Oral administration of the sulfur-radish extract and of sulforaphane after CCl(4)-induced liver injury both decreased the serum level of ALT, reduced the necrotic zones, inhibited lipid peroxidation, and induced phase 2 enzymes without affecting cytochrome P450-2E1 (CYP2E1). These results suggest that the administration of the sulfur-radish extract and of sulforaphane may partially prevent CCl(4)-induced hepatotoxicity, possibly by indirectly acting as an antioxidant by improving the detoxification system.  相似文献   

3.
The aim of this study was to investigate the protective effect of luteolin on liver Ca, Mg, Zn, Cu, Fe, and Mn content in mice with carbon tetrachloride (CCl4)-induced hepatotoxicity. Additionally, liver metallothionein (MT) expression was studied. Luteolin was administered intraperitoneally (i.p.) as a single 5- or 50-mg/kg dose or once daily for two consecutive days, respectively. Two hours after the last injection, the mice were treated with CCl4 (20 mg/kg, i.p.). CCl4 injection reduced hepatic level of all metals except Ca, with an intense cytoplasmic staining pattern in hepatocytes located in periportal areas, indicating induction of MTs. Pretreatment with 50 mg/kg of luteolin for 2 days remarkably elevated metal content to control values (Mg and Cu) or even above them (Zn and Fe). Luteolin pretreatment increased pericentral MTs immunopositivity and histological architecture improvement in a time- and dose-dependent manner, being the most prominent in mice pretreated with 50 mg/kg for 2 days. The liver in this group showed pronounced MT expression in almost all hepatocytes throughout the liver parenchyma. In conclusion, these results suggest the protective effect of luteolin on CCl4-induced hepatotoxicity and an enhancement of hepatocyte proliferative capabilities.  相似文献   

4.
The present study was undertaken to evaluate the effect of aminoguanidine (AG) on carbon tetrachloride (CCl4)-induced hepatotoxicity. Treatment of mice with CCl4 (20 microl/kg, i.p.) resulted in damage to centrilobular regions of the liver, increase in serum aminotransferase and rise in lipid peroxides level 24 hours after CCl4 administration. Pretreatment of mice with AG (50 mg/kg, i.p.) 30 minutes before CCl4 was found to protect mice from the CCl4-induced hepatic toxicity. This protection was evident from the significant reduction in serum aminotransferase, inhibition of lipid peroxidation and prevention of CCl4-induced hepatic necrosis revealed by histopathology. Aminoguanidine, a relatively specific inhibitor of inducible nitric oxide synthase, did not inhibit the in vitro lipid peroxidation. Taken together, these data suggest a potential role of nitric oxide as an important mediator of CCl4-induced hepatotoxicity.  相似文献   

5.
We studied effects of L-theanine, a unique amino acid in tea, on carbon tetrachloride (CCl(4))-induced liver injury in mice. The mice were pre-treated orally with L-theanine (50, 100 or 200 mg/kg) once daily for seven days before CCl(4) (10 ml/kg of 0.2% CCl(4) solution in olive oil) injection. L-theanine dose-dependently suppressed the increase of serum activity of ALT and AST and bilirubin level as well as liver histopathological changes induced by CCl(4) in mice. L-theanine significantly prevented CCl(4)-induced production of lipid peroxidation and decrease of hepatic GSH content and antioxidant enzymes activities. Our further studies demonstrated that L-theanine inhibited metabolic activation of CCl(4) through down-regulating cytochrome P450 2E1 (CYP2E1). As a consequence, L-theanine inhibited oxidative stress-mediated inflammatory response which included the increase of TNF-α and IL-1β in sera, and expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in livers. CCl(4)-induced activation of apoptotic related proteins including caspase-3 and PARP in mouse livers was also prevented by L-theanine treatment. In summary, L-theanine protects mice against CCl(4)-induced acute liver injury through inhibiting metabolic activation of CCl(4) and preventing CCl(4)-induced reduction of anti-oxidant capacity in mouse livers to relieve inflammatory response and hepatocyte apoptosis.  相似文献   

6.
A series of tocopherol compounds were examined for their capacity to protect against carbon tetrachloride (CCl4)-induced hepatotoxicity in rats. Of the tocopherol compounds tested in our study, only the tris salt of d-alpha-tocopheryl hemisuccinate (TS-tris) protected against CCl4-induced hepatotoxicity. The administration of d-alpha-tocopherol (alpha-T) and the nonhydrolyzable tocopherol ether, d-alpha-tocopheryloxybutyrate tris salt (TSE-tris), failed to protect against CCl4-induced hepatotoxicity. TS-tris was the only tocopherol which significantly decreased CYP2E1 activity after 18 h. This decrease in CYP2E1 activity is likely to limit the activation of CCl4 and protect against CCl4-induced hepatotoxicity. Our results also suggest that TS-tris protection against CCl4-induced hepatotoxicity correlates with the enhanced capacity of TS-tris to deliver alpha-T and increase the antioxidant status of hepatocytes. TSE-tris did not increase cellular alpha-T levels, while administration of TS-tris produced large increases in alpha-T levels in liver homogenates as well as in liver nuclei, microsomes, mitochondria and plasma membranes. This enhanced ability to deliver tocopherol equivalents to parenchymal liver cells may be related in part to the ability of TS-tris to form liposomes in aqueous solutions. TS-tris administration protected against CCl4-induced microsomal lipid peroxide formation and inactivation of the microsomal enzyme glucose-6-phosphatase (G6Pase). Supplementation of animals with alpha-T protected against microsomal lipid peroxide formation but not against the inactivation of G6Pase. Based on our findings, we propose that high cellular levels of alpha-T protect against CCl4-induced hepatotoxicity by scavenging CCl4 radicals as well as protecting against lipid peroxidation. Our results do not support the importance of microsomal lipid peroxidation as an early event in acute CCl4-induced hepatic necrosis.  相似文献   

7.
Thymoquinone (TQ) is the major active component of the volatile oil of Nigella sativa seeds. The effects of TQ on carbon tetrachloride (CCl4)-induced hepatotoxicity was investigated in male Swiss albino mice. Carbon tetrachloride (20 microliters/Kg, i.p.) injected into mice, induced damage to liver cells and was followed by the increase in serum alanine aminotransferase (ALT) activity after 24 h. Oral administration of TQ in a single dose (100 mg/Kg) resulted in significant (p < 0.001) protection against the hepatotoxic effects of CCl4. TQ was tested as a substrate for mice hepatic DT-diaphorase in the presence of NADH. TQ appears to undergo reduction to dihydrothymoquinone (DHTQ). Reduction rates as a function of protein (liver homogenate) and substrate (TQ) concentrations are reported. An apparent K(m) of 0.1 mM and an apparent Vmax of 74 mumol/min/g liver were measured. TQ and DHTQ inhibited the in vitro non-enzymatic lipid peroxidation in liver homogenate (induced by Fe(3+)-ascorbate) in a dose dependent manner. In this in vitro model DHTQ was more potent in comparison with TQ and butylated hydroxytoluene (BHT). The IC50 for DHTQ, TQ and BHT were found to be 0.34, 0.87 and 0.58 microM respectively. The data suggest that the in vivo protective action of TQ against CCl4-induced hepatotoxicity may be mediated through the combined antioxidant properties of TQ and its metabolite DHTQ.  相似文献   

8.
The antioxidant and hepatoprotective actions of Terminalia catappa L. collected from Okinawa Island were evaluated in vitro and in vivo using leaves extract and isolated antioxidants. A water extract of the leaves of T. catappa showed a strong radical scavenging action for 1,1-diphenyl-2-picrylhydrazyl and superoxide (O(2)(.-)) anion. Chebulagic acid and corilagin were isolated as the active components from T. catappa. Both antioxidants showed a strong scavenging action for O(2)(.-) and peroxyl radicals and also inhibited reactive oxygen species production from leukocytes stimulated by phorbol-12-myristate acetate. Galactosamine (GalN, 600 mg/kg, s.c.,) and lipopolysaccharide (LPS, 0.5 microg/kg, i.p.)-induced hepatotoxicity of rats as seen by an elevation of serum alanine aminotransferase, aspartate aminotransferase and glutathione S-transferase (GST) activities was significantly reduced when the herb extract or corilagin was given intraperitoneally to rats prior to GalN/LPS treatment. Increase of free radical formation and lipid peroxidation in mitochondria caused by GalN/LPS treatment were also decreased by pretreatment with the herb/corilagin. In addition, apoptotic events such as DNA fragmentation and the increase in caspase-3 activity in the liver observed with GalN/LPS treatment were prevented by the pretreatment with the herb/corilagin. These results show that the extract of T. catappa and its antioxidant, corilagin are protective against GalN/LPS-induced liver injury through suppression of oxidative stress and apoptosis.  相似文献   

9.
L-arginine may aid in the liver detoxification and may benefit in the treatment of liver disorders such as liver injury. The present study was to investigate the possible protective and curative effects of L-arginine on carbon tetrachloride (CCl(4)) induced hepatotoxicity. Mice received a single dose of CCl(4). L-arginine treatment was given for 6 days prior or post to CCl(4) injection. CCl(4)-intoxication caused marked liver cell necrosis with inflammatory and apoptotic lesions. L-arginine treatment reduced hepatic necrosis and inflammation. CCl(4)-intoxication also enhanced hepatic lipid peroxidation, decreased hepatic GSH level and inhibited the activities of antioxidant enzymes. Pre-treatment and post-treatment with L-arginine decreased lipid peroxidation and restored the antioxidant status to near normal levels. These results suggest that L-arginine administration has hepatoprotective and hepatocurative effects against CCl(4) induced hepatotoxicity in mice.  相似文献   

10.
The exact functional role of nitric oxide (NO) in liver injury is currently a source of controversy. NO is enzymatically synthesized by nitric oxide synthase (NOS). In this study, we assessed the role of inducible NOS (iNOS) in carbon tetrachloride (CCl4)-induced acute liver injury using inhibitors of iNOS, and an NO donor. Adult ICR mice were injected with CCl4 with or without the iNOS inhibitors (5-methylisothiourea hemisulfate [SMT] and l-N6-(1-iminoethyl)-lysine [L-NIL]) and an NO donor (Sodium Nitroprusside [SNP]). Blood and liver tissues were collected for analysis. Immunohistochemistry (IHC), serum alanine aminotransferase (ALT), serum total 8-isoprostane analysis, RT-PCR, Western Blotting (WB) and EMSA were done. Our results showed increased levels of ALT, necrosis, total 8-isoprostane and nitrotyrosine after CCl4 administration. iNOS inhibitors and SNP abrogated these effects but the effect was more pronounced with SMT and L-NIL. RT-PCR, WB and IHC in CCl4-treated mice demonstrated upregulation of TNF-alpha, iNOS, and COX-2. The administration of iNOS inhibitors with CCl4 diminished the expression of these proinflammatory mediators. NF-kappaB was also upregulated in CCl4-treated mice and was reversed in mice pretreated with iNOS inhibitors. SNP pretreated mice also showed a lower expression of COX-2 when compared with CCl4 treated mice but TNF-alpha, iNOS and NF-kappaB activity were unaffected. We propose that a high level of nitric oxide is associated with CCl4-induced acute liver injury and the liver injury can be ameliorated by decreasing the NO level with iNOS inhibitors and an NO donor with the former more effective in reducing CCl4-induced liver injury.  相似文献   

11.
We investigated hepatoprotective activity and antioxidant effect of the 2,5-dihydroxy-4,3'-di(beta-D-glucopyranosyloxy)-trans-stilbene that purified from Morus bombycis Koidzumi roots against CCl4-induced liver damage in rats. The 2,5-dihydroxy-4,3'-di(beta-D-glucopyranosyloxy)-trans-stilbene displayed dose-dependent superoxide radical scavenging activity (IC50 = 430.2 microg/ml), as assayed by the electron spin resonance (ESR) spin-trapping technique. The increase in aspartate aminotransferase (AST) activities in serum associated with carbon tetrachloride (CCl4)-induced liver injury was inhibited by 2,5-dihydroxy-4,3'-di(beta-D-glucopyranosyloxy)-trans-stilbene and at a dose of 400 - 600 mg/kg samples had hepatoprotective activity comparable to the standard agent, silymarin. The biochemical assays were confirmed by histological observations showing that the 2,5-dihydroxy-4,3'-di(beta-d-glucopyranosyloxy)-trans-stilbene decreased cell ballooning in response to CCl4 treatment. These results demonstrate that the 2,5-dihydroxy-4,3'-di(beta-D-glucopyranosyloxy)-trans-stilbene is a potent antioxidant with a liver protective action against CCl4-induced hepatotoxicity.  相似文献   

12.
Mansour MA 《Life sciences》2000,66(26):2583-2591
The effects of thymoquinone (TQ) and desferrioxamine (DFO) against carbon tetrachloride (CCl4)-induced hepatotoxicity were investigated. A single dose of CCl4 (20 microl/kg, i.p.) induced hepatotoxicity, manifested biochemically by significant elevation of activities of serum enzymes, such as alanine transaminase (ALT, EC: 2.6.1.2) , aspartate transaminase (AST, EC: 2.6.1.1) and lactate dehydrogenase (LDH, EC: 1.1.1.27). Hepatotoxicity was further evidenced by significant decrease of total sulfhydryl (-SH) content, and catalase (EC: 1.11.1.6) activity in hepatic tissues and significant increase in hepatic lipid peroxidation measured as malondialdhyde (MDA). Pretreatment of mice with DFO (200 mg/kg i.p.) 1 h before CCl4 injection or administration of TQ (16 mg/kg/day, p.o.) in drinking water, starting 5 days before CCl4 injection and continuing during the experimental period, ameliorated the hepatotoxicity induced by CCl4, as evidenced by a significant reduction in the elevated levels of serum enzymes as well as a significant decrease in the hepatic MDA content and a significant increase in the total sulfhydryl content 24 h after CCl4 administration. In a separate in vitro assay, TQ and DFO inhibited the non-enzymatic lipid peroxidation of normal mice liver homogenate induced by Fe3+/ascorbate in a dose-dependent manner. These results indicate that TQ and DFO are efficient cytoprotective agents against CCl4-induced hepotoxicity, possibly through inhibition of the production of oxygen free radicals that cause lipid peroxidation.  相似文献   

13.
Previous studies have demonstrated that mice disrupted with the cyclooxygenase-2 gene showed much more severe liver damage compared with wild-type mice after liver injury, and prostaglandins (PGs) such as PGE(1/2) and PGI(2) have decreased hepatic injury, but the mechanisms by which prostaglandins exhibit protective action on the liver have yet to be addressed. In the present study, we investigated the mechanism of the protective action of PGI(2) using the synthetic IP receptor agonist ONO-1301. In primary cultures of hepatocytes and nonparenchymal liver cells, ONO-1301 did not show protective action directly on hepatocytes, whereas it stimulated expression of hepatocyte growth factor (HGF) in nonparenchymal liver cells. In mice, peroral administration of ONO-1301 increased hepatic gene expression and protein levels of HGF. Injections of CCl4 induced acute liver injury in mice, but the onset of acute liver injury was strongly suppressed by administration of ONO-1301. The increases in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) by CCl4 were suppressed by 10 mg/kg ONO-1301 to 39.4 and 33.6%, respectively. When neutralizing antibody against HGF was administered with ONO-1301 and CCl4, the decreases by ONO-1301 in serum ALT and AST, apoptotic liver cells, and expansion of necrotic areas in liver tissue were strongly reversed by neutralization of endogenous HGF. These results indicate that ONO-1301 increases expression of HGF and that hepatoprotective action of ONO-1301 in CCl4-induced liver injury may be attributable to its activity to induce expression of HGF, at least in part. The potential for involvement of HGF-Met-mediated signaling in the hepatotrophic action of endogenous prostaglandins generated by injury-dependent cyclooxygenase-2 induction is considerable.  相似文献   

14.
Extreme copper deficiency has been shown to enhance CCl4-induced injury in rats. CCl4 hepatotoxicity was studied in rats with copper deficiency moderated by limiting deficiency periods to 5 or 6 weeks, using minimally adequate dietary zinc and including a marginal copper diet. Also, housing some rats in groups of six, rather than individually, was found to moderate the effects of low copper intake. Weanling male rats were fed copper at either 6, 2, or 0.2 mg/kg diet (adequate, marginal, deficient). Copper-zinc superoxide dismutase activity levels for singly and group-housed marginal rats were 80% and 93%, respectively, of adequate values. Values for deficient rats were 35% (singles) and 47% (group). In singly housed rats, a CCl4 dose of 400 microliters/kg intraperitoneally increased serum sorbitol dehydrogenase activities, indicators of cell membrane hepatotoxicity, in inverse proportion to dietary copper. A lower dose (100 microliters/kg) also produced smaller sorbitol dehydrogenase increases in adequate rats compared with deficients, but produced lowest increases in the marginals. The latter pattern also occurred in group-housed rats given the higher CCl4 dose, but the difference for adequate and marginal rats was not significant. The higher CCl4 dose, in singly housed rats, decreased liver glucose-6-phosphatase activities independently of copper intake. These activities are inversely proportional to microsomal lipid damage. In conclusion, moderate copper deficiency enhanced CCl4 hepatotoxicity, but the effect depended on injury criteria, CCl4 dose, and actual copper status as assessed by copper-zinc superoxide dismutase activities.  相似文献   

15.

Aims

We investigated the protective effect of berberine (BBR) on chronic liver fibrosis in mice and the potential mechanism underlying the activation of AMP-activated protein kinase (AMPK) pathway.

Main methods

CCl4-induced chronic liver fibrosis model in mice was established and activated rat hepatic stellate cell was treated with BBR. Cell viability was evaluated by SRB assay and protein expressions were detected by Western blot.

Key findings

Our results showed that BBR ameliorated the liver fibrosis in mice with CCl4-induced liver injury and inhibited the proliferation of hepatic stellate cell in dose- and time-dependent manner. BBR decreased the enzyme release of ALT, AST, and ALP in serum, elevated SOD and reduced MDA content of liver tissue in CCl4-induced liver fibrosis model. BBR delayed the formation of regenerative nodules and reduced necrotic areas compared to CCl4 group. Moreover, BBR treatment activated AMPK, decreased the protein expression of Nox4, TGF-β1 and the phosphorylated Akt. The expression of smooth muscle actin (α-SMA), the marker of activated hepatic stellate cell, was also reduced by BBR treatment.

Significance

Our studies firstly demonstrated that BBR exerted hepatoprotective effects possibly via activation of AMPK, blocking Nox4 and Akt expression. Our findings may benefit the development of new strategies in the prevention of chronic liver disease.  相似文献   

16.
Treatment of non-induced or phenobarbital-induced, glutathione-depleted mice with 400 mg/kg paracetamol led to a marked ethane exhalation as an index of in vivo lipid peroxidation (LPO) and to a significant elevation of liver-specific serum enzyme activities. Similar effects were seen with rats treated with 0.5 ml/kg CCl4. Pretreatment with the iron-chelating agent desferrioxamine (DFO) clearly suppressed lipid peroxidation in all cases, but inhibited only the CCl4-induced hepatotoxicity. Treatment of mice with desferrioxamine alone showed no hepatotoxicity at all, nor did it influence liver GSH-levels. In addition, DFO had no effect on hepatic microsomal enzyme activities responsible for the bioactivation of both paracetamol and CCl4. These findings are consistent with the theories which indicate that lipid peroxidation requires the presence of Fe2+-ions, regardless of the initiating agent, and that LPO is involved in CCl4-toxicity, but most probably not in paracetamol-induced liver damage. Furthermore, Fe2+-ions might play a role as mediators of CCl4-hepatotoxicity.  相似文献   

17.
Solanum nigrum L. (SN) is an herbal plant that has been used as hepatoprotective and anti-inflammation agent in Chinese medicine. In this study, the protective effects of water extract of SN (SNE) against liver damage were evaluated in carbon tetrachloride (CCl4)-induced chronic hepatotoxicity in rats. Sprague-Dawley (SD) rats were orally fed with SNE (0.2, 0.5, and 1.0 g kg(-1) bw) along with administration of CCl4 (20% CCl4/corn oil; 0.5 mL kg(-1) bw) for 6 weeks. The results showed that the treatment of SNE significantly lowered the CCl4-induced serum levels of hepatic enzyme markers (GOT, GPT, ALP, and total bilirubin), superoxide and hydroxyl radical. The hepatic content of GSH, and activities and expressions of SOD, GST Al, and GST Mu that were reduced by CCl4 were brought back to control levels by the supplement of SNE. Liver histopathology showed that SNE reduced the incidence of liver lesions including hepatic cells cloudy swelling, lymphocytes infiltration, hepatic necrosis, and fibrous connective tissue proliferation induced by CCl4 in rats. Therefore, the results of this study suggest that SNE could protect liver against the CCl4-induced oxidative damage in rats, and this hepatoprotective effect might be contributed to its modulation on detoxification enzymes and its antioxidant and free radical scavenger effects.  相似文献   

18.
Carbon tetrachloride (CCl(4)) is routinely used as a model compound for eliciting centrilobular hepatotoxicity. It can be bioactivated to the trichloromethyl radical, which causes extensive lipid peroxidation and ultimately cell death by necrosis. Overactivation of poly(ADP-ribose) polymerase-1 (PARP-1) can rapidly reduce the levels of β-nicotinamide adenine dinucleotide and adenosine triphosphate and ultimately promote necrosis. The aim of this study was to determine whether inhibition of PARP-1 could decrease CCl(4)-induced hepatotoxicity, as measured by degree of poly(ADP-ribosyl)ation, serum levels of lactate dehydrogenase (LDH), lipid peroxidation, and oxidative DNA damage. For this purpose, male ICR mice were administered intraperitoneally a hepatotoxic dose of CCl(4) with or without 6(5H)-phenanthridinone, a potent inhibitor of PARP-1. Animals treated with CCl(4) exhibited extensive poly(ADP-ribosyl)ation in centrilobular hepatocytes, elevated serum levels of LDH, and increased lipid peroxidation. In contrast, animals treated concomitantly with CCl(4) and 6(5H)-phenanthridinone showed significantly lower levels of poly(ADP-ribosyl)ation, serum LDH, and lipid peroxidation. No changes were observed in the levels of oxidative DNA damage regardless of treatment. These results demonstrated that the hepatotoxicity of CCl(4) is dependent on the overactivation of PARP-1 and that inhibition of this enzyme attenuates the hepatotoxicity of CCl(4).  相似文献   

19.
Previous studies have indicated that female animals are more resistant to carbon tetrachloride (CCl(4))-induced liver fibrosis than male animals, and that estradiol (E(2)) treatment can inhibit CCl(4)-induced animal hepatic fibrosis. The underlying mechanism governing these phenomena, however, has not been fully elucidated. Here we reported the role of estrogen-induced miRNA-29 (miR-29) expression in CCl(4)-induced mouse liver injury. Hepatic miR-29 levels were differentially regulated in female and male mice during CCl(4) treatment. Specifically, the levels of miR-29a and miR-29b expression were significantly decreased in the livers of male, but not female, mice following 4 weeks of CCl(4) treatment. The down-regulation of miR-29a and miR-29b in male mouse livers correlated with the early development of liver fibrosis, as indicated by increased expressions of fibrotic markers in male mice relative to female mice. In addition, E(2) was maintained at a higher level in female mice than in male mice. In contrast to TGF-β1 that decreased miR-29a/b expression in murine hepatoma IAR20 cells and normal hepatocytes, E(2) enhanced the expression of miR-29a/b through suppression of the nuclear factor-κB (NF-κB) signal pathway, which negatively regulates miR-29 expression. Furthermore, both E(2) treatment and intravenous injection of the recombinant adenovirus expressing miR-29a/b markedly increased the miR-29a/b level and attenuated the expression of fibrotic markers in mouse livers during CCl(4) treatment, supporting the protective role of E(2)-induced miR-29 in CCl(4)-induced hepatic injury. In conclusion, our results collectively demonstrate that estrogen can inhibit CCl(4)-induced hepatic injury through the induction of hepatic miR-29.  相似文献   

20.
This study elucidated the effects of cornuside on carbon tetrachloride (CCl?)-induced hepatotoxicity. Rats were treated intraperitoneally with 0.5 mL/kg of CCl?. Sixteen h after CCl? treatment, the levels of serum aminotransferases, tumor necrosis factor-α (TNF-α), and lipid peroxidation were significantly elevated, whereas the hepatic antioxidative enzyme activities were decreased. These changes were attenuated by cornuside. Histological studies also indicated that cornuside inhibited CCl?-induced liver damage. Furthermore, the contents of hepatic nitrite, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) were elevated after CCl? treatment, while cytochrome P450 2E1 (CYP2E1) expression was suppressed. Cornuside treatment inhibited the formation of liver nitrite, and reduced the overexpression of iNOS and COX-2 proteins, but restored the liver CYP2E1 content as compared with the CCl?-treated rats. Our data indicate that cornuside protects the liver from CCl?-induced acute hepatotoxicity, perhaps due to its ability to restore the CYP2E1 function and suppress inflammatory responses, in combination with its capacity to reduce oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号