首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
寄主小菜蛾Plutella xylostella被内寄生蜂菜蛾盘绒茧蜂Cotesia plutellae寄生后,其取食、发育及营养代谢在各种寄生因子的作用下伴随幼蜂的发育而发生很大的变化,畸形细胞作为调节因子之一也发挥了重要的作用。本实验通过比较被寄生和未被寄生小菜蛾血淋巴蛋白浓度以及两种血淋巴对菜蛾盘绒茧蜂幼蜂进行体外培养的培养液的蛋白浓度,发现被寄生小菜蛾血淋巴比未被寄生小菜蛾血淋巴的蛋白浓度略低但差异不显著,而未被寄生小菜蛾血淋巴幼蜂培养液的蛋白浓度显著低于被寄生小菜蛾血淋巴幼蜂培养液的蛋白浓度,证明畸形细胞的蛋白质分泌功能。被寄生后期, 小菜蛾体重明显大于未被寄生的小菜蛾体重,而脂肪体重量相比正好相反;通过显微染色观察,在小菜蛾念珠状脂肪体表面粘附有畸形细胞,对脂肪体进行分解破坏而使其成颗粒状; 蛋白含量和脂滴浓度测定也表明,脂肪体的可溶性蛋白含量和脂滴浓度也迅速降低,同比低于未被寄生小菜蛾。而与此同时,幼蜂正处在快速生长阶段,中肠酯酶的活性逐步上升,幼蜂得以快速消化吸收小菜蛾体内的营养直到完成幼虫发育,整个幼蜂的脂滴浓度也达到了最大值。因此寄生后期,推测在畸形细胞的协助下,幼蜂吸收了寄主小菜蛾体内的营养为自身生长发育所用。  相似文献   

2.
过寄生、寄生时寄主龄期和寄生后寄主饥饿处理影响菜蛾盘绒茧蜂Cotesia plutellae(Kurdj.)幼蜂及畸形细胞的发育。显微解剖和观察表明,4龄小菜蛾Plutella xylostella L.幼虫被寄生后,其体内菜蛾盘绒茧蜂幼蜂发育不整齐、假寄生比例增高。过寄生后,每头被寄生的寄主血腔中畸形细胞数量明显增多,但直径变小;随着过寄生程度的加剧,幼蜂发育严重受阻。寄主营养显著影响体内幼蜂及畸形细胞的发育,被寄生的小菜蛾经饥饿处理62 h后,体内畸形细胞的数量、活性明显降低,与此同时,幼蜂的发育也受到明显抑制,寄主发育与寄生蜂和畸形细胞的发育呈正相关性。由此可见,寄主不同龄期、过寄生及寄主营养状况均对寄主体内幼蜂和畸形细胞发育产生影响。  相似文献   

3.
对菜蛾盘绒茧蜂Cotesia plutellae多分DNA病毒的特性及其对寄主小菜蛾Plutella xylostella幼虫的生理效应进行了研究。结果表明:菜蛾盘绒茧蜂雌蜂输卵管萼中含有大量的多分DNA病毒(polydnavirus, PDV);一个PDV内含多个核衣壳,最多可达16个;核衣壳长40~168 nm,直径39~40 nm;PDV仅在输卵管萼细胞内复制;雌蜂产卵时,随蜂卵将PDV注入寄主血腔,并扩散到寄主的许多组织中;PDV可能先通过脱膜再侵染寄主组织。雌蜂经Co60辐射处理后再寄生(即假寄生)小菜蛾2龄、3龄和4龄初期的幼虫,被寄生后的寄主幼虫几乎全部不能化蛹,但末龄(即4龄)幼虫期显著延长,并在寄生后期,幼虫胸部有褐色的短翅芽出现;即将化蛹的4龄末小菜蛾幼虫被假寄生后,即使每头寄主被过寄生9次,依然能正常化蛹,但不能羽化。假寄生与正常寄生后寄主的脂肪体数量和形态结构有明显的不同,推测在正常寄生的情况下蜂卵孵化时释放的畸形细胞及随后的幼蜂可能对脂肪体的结构产生了作用。  相似文献   

4.
郦卫弟  时敏  陈学新 《昆虫学报》2007,50(7):662-666
采用光学和电子显微镜观察了颈双缘姬蜂Diadromus collaris(膜翅目: 姬蜂科)寄生后小菜蛾Plutella xylostella(鳞翅目:菜蛾科)蛹脂肪体形态、超微结构和脂肪细胞的变化。结果表明: 被寄生72 h后小菜蛾蛹脂肪体结构松散,细胞游离,细胞膜破裂;细胞内营养物质开始被动地消耗;细胞器数量减少,细胞核内染色质状态发生变化。这些现象说明寄生对寄主的脂肪体结构及脂肪细胞产生了明显的影响,这有利于为幼蜂的发育提供营养。  相似文献   

5.
何瑶  白素芬  李欣  蔡东章 《昆虫学报》2009,52(11):1183-1190
我们曾发现菜蛾盘绒茧蜂Cotesia vestalis和半闭弯尾姬蜂Diadegma semiclausum寄生严重阻碍小菜蛾Plutella xylostella幼虫的精子发生。本研究着重比较2种蜂寄生对小菜蛾精巢生长和精子束形成的影响, 以探明寄生因子对昆虫生殖调控的作用途径。 采取过寄生和假寄生方法, 对2种蜂各自寄生后的小菜蛾精巢生长体积, 精子发生和形成过程中生精细胞、精子束的显微形态变化进行了比较。 结果表明: 茧蜂和姬蜂寄生均明显降低小菜蛾精子束的数量, 严重阻碍了寄主幼虫的精子发生和精子形成. 姬蜂寄生造成小菜蛾精巢畸形, 而茧蜂则造成小菜蛾精子束畸形, 且茧蜂对小菜蛾精巢生长的抑制程度明显强于姬蜂。过寄生造成寄主寄生性去势程度加剧, 茧蜂和姬蜂过寄生后的小菜蛾精巢体积分别为0.005 mm3和0.008 mm3, 仅为各自只寄生1次后精巢体积的33.1%和36.3%。假寄生后, 发现只有寄生蜂母代物质存在的前提下, 对小菜蛾精巢生长的抑制程度基本模拟了正常寄生时的状态, 说明多分DNA病毒(polydnavirus, PDV)和毒液发挥了主要作用。 由此推断分属姬蜂属PDV和茧蜂属PDV的2类PDV功能基因对小菜蛾精巢生长发育的调控机制可能存在较大差异。  相似文献   

6.
黄腹潜蝇茧蜂寄生因子的特性及其对寄主的生理效应   总被引:2,自引:1,他引:1  
初步研究了黄腹潜蝇茧蜂Opius caricivorae Fischer寄生因子的特性及其对寄主美洲斑潜蝇Liriomyza sativae Blanchard幼虫的生理效应。黄腹潜蝇茧蜂携带的主要因子是毒液。毒液器官是由一个土黄色的锥形毒囊和7个透明的椭圆形的毒腺及导管构成的;毒液的电泳图谱显示约有12条蛋白带,其中绝大多数低于100 kD,含量最高的3条蛋白带为43.5、25.9和20.1 kD;杜氏腺约有15条左右蛋白质条带,其中有5条含量很高(121.4、77.0、51.5、42.7和36.5 kD)。通过透射电镜观察,在黄腹潜蝇茧蜂毒腺分泌细胞和卵巢表皮细胞中新发现存在一种类病毒颗粒,这些球状颗粒直径大约为50 nm。雌蜂经Co60辐射处理后再寄生(即假寄生)3龄寄主幼虫,被寄生后的寄主依然能正常化蛹,但不能羽化;7 h后寄生体壁开始出现红斑;脂肪体形态结构无显著变化;绝大多数的蜂卵没有被包囊。推测在正常寄生的情况下可能是毒液抑制了寄主的包囊作用,而新发现的类病毒颗粒是否参与了这一过程目前还不清楚。  相似文献   

7.
核型多角体病毒与侧沟茧蜂对斜纹夜蛾幼虫的协同作用   总被引:5,自引:1,他引:4  
研究了斜纹夜蛾幼虫体内的斜纹夜蛾侧沟茧蜂存活率、发育历期、寄主感染病毒时间、病毒浓度之间的关系,并测定了斜纹夜蛾侧沟茧蜂的传毒效率.结果表明,病毒对寄主体内寄生蜂历期无明显影响,寄生在幼虫体内的寄生蜂能在寄主病死前完成发育,存活比例因寄主感染病毒的时间和浓度而异.斜纹夜蛾被寄生后接种病毒(SINPV),距离寄生时间越长,饲毒浓度越低,寄生蜂完成发育的比例越大,但饲毒时间是主要影响因素.从感病幼虫体内发育成的侧沟茧蜂或曾经在感病寄主上产过卵的寄生蜂,以及通过人工方式使产卵器被病毒污染的寄生蜂,均能携带一定数量的病毒.通过产卵活动,侧沟茧蜂成蜂能在寄主幼虫个体间传递病毒.当寄生蜂在感病的寄主幼虫上产卵带毒后,平均可传递病毒给2.14头幼虫;发育于感病幼虫体内的寄生蜂,平均可传递病毒给2.45头幼虫.通过用病毒液浸茧或用混有病毒的蜂蜜饲喂成蜂等方式使产卵器污染病毒的寄生蜂,传毒效率随饲毒浓度增加而提高,平均可传递病毒1.45头和0.94头幼虫  相似文献   

8.
何瑶  白素芬  李欣  晁云飞 《昆虫知识》2010,47(3):460-466
为探明寄生蜂引起寄主寄生性去势的机制,本文选取携带不同多分DNA病毒(Polydnavirus,PDV)的2种内寄生蜂与共同寄主小菜蛾Plutella xylostella(L.)为寄生体系,研究不同虫龄小菜蛾被寄生后雄性生精细胞、精子束形态和精巢发育体积变化,系统比较寄生性去势程度和分别拥有2类PDV的寄生蜂在寄主精子发生和形成过程中的作用。结果表明:携带Bracovirus PDV的菜蛾盘绒茧蜂Cotesiave stalis(Haliday)或拥有Ichvovirus PDV的半闭弯尾姬蜂Diadegma semiclausum Hellén寄生对不同虫龄小菜蛾的精子发生和形成过程均产生明显的抑制作用,表现为不能产生精子束或精子束数量减少,但抑制程度以寄生低龄寄主时最明显。2种蜂寄生均能抑制小菜蛾精巢体积的增长,但对低龄寄主的抑制程度明显强于高龄寄主,寄生性去势程度取决于寄生时寄主虫龄。相比而言,寄生不同虫龄小菜蛾时,茧蜂引起小菜蛾寄生性去势的程度均强于姬蜂。  相似文献   

9.
寄生蜂是重要且种类最为丰富的膜翅目昆虫类群之一,也是极具价值的害虫生物控制因子。寄生蜂携带有不同类型的活性因子,包括毒液、多分DNA病毒类病毒颗粒、卵巢蛋白、畸形细胞及幼虫分泌物等,用于调控寄主害虫的免疫反应、发育等重要生理过程,以确保成功寄生并确保其子代在寄主害虫体内(内寄生蜂)或体表(外寄生蜂)正常发育,最终可导致寄主害虫死亡,从而有效控制寄主害虫种群数量。目前已有诸多与寄生蜂调控寄主害虫内在机理相关的研究报道,该领域也已成为昆虫寄生学与生理学的研究热点之一。本文仅从寄生蜂寄生因子多样性、寄生蜂调控寄主害虫免疫及发育的机理等方面,对相关的最新研究进展作一概述。  相似文献   

10.
菜蛾盘绒茧蜂 Cotesia vestalis (Haliday)是小菜蛾的重要幼虫内寄生蜂,该蜂在胚胎发育过程中由浆膜产生畸形细胞,随蜂卵孵化,释放到寄主小菜蛾的血腔中.本文运用蛋白质双向电泳技术、电子显微技术和体外培养技术对菜蛾彘绒茧蜂畸形细胞的蛋白质的合成和分泌以及细胞超微形态结构的变化进行了研究.蛋白质双向电泳图谱显示,该细胞内蛋白合成种类极为丰富,尤以分子量40.98~94.64 kDa的蛋白种类最多.但在寄生后期,畸形细胞的合成能力下降.超微形态结构发生显著变化表现在胞内细胞器数量减少,出现大量空腔,细胞表而微绒毛联合、变大,内容物外倾.随着蜂幼虫的啮出,有些细胞经历分解过程.体外培养证实,成熟畸形细胞可向培养介质中释放脂溶性物质.此外,在不同饲养温度条件下,畸形细胞伴随蜂幼虫的发育,表现为随温度升高,发育加快的趋势,表明畸形细胞的生长趋势与寄生蜂幼虫发育具有同步性.  相似文献   

11.
Glyptapanteles liparidis is a gregarious, polydnavirus (PDV)-carrying braconid wasp that parasitizes larval stages of Lymantria dispar. In previous studies we showed that parasitized hosts dramatically increase juvenile hormone (JH) titers, whereas JH degradation is significantly inhibited in the hemolymph. Here we (i) quantified the effects of parasitism on JH esterase (JHE) activity in hemolymph and fat body of penultimate and final instars of L. dispar hosts and (ii) assessed the relative contribution of individual and combined wasp factors (PDV/venom, teratocytes, and wasp larvae) to the inhibition of host JHE activity. The effects of PDV/venom was investigated through the use of gamma-irradiated wasps, which lay non-viable eggs (leading to pseudoparasitization), while the effects of teratocytes and wasp larvae were examined by injection or insertion of these two components in either control or pseudoparasitized L. dispar larvae. Parasitism strongly suppressed host JHE activity in both hemolymph and fat body irrespective of whether the host was parasitized early (premolt-third instar) or late (mid-fourth instar). Down-regulation of JHE activity is primarily due to the injection of PDV/venom at the time of oviposition, with only very small additive effects of teratocytes and wasp larvae under certain experimental conditions. We compare the results with those reported earlier for L. dispar larvae parasitized by G. liparidis and discuss the possible role of JH alterations in host development disruption.  相似文献   

12.
Although the lepidopteran larva Pseudaletia separata is attacked by the gregarious ectoparasitoid Euplectrus separatae, it continues to feed and grow. Lipid concentration in the hemolymph of the parasitized host was higher than that of the nonparasitized host from 3 to 8 days after parasitization. Artificial injection of parasitoid venom also elevated lipid concentration in the host hemolymph. One day after venom injection the host's fat body contained many lipid particles, but most of the lipid particles disappeared 7 days later. Light microscopy and transmission electron microscopy showed the lipid particles leaving the fat body cells as a result of the lysis of the fat body cells. These results suggest that the venom elevated the lipid concentration in the host hemolymph by provoking the release of lipid particles from the fat body. Though most of the lipid particles were freely floating in the host hemolymph, a portion of the released lipid particles were phagocytized by hemocytes. The amount of lipid that was loaded to lipophorin in the hemolymph of the venom-injected host was measured, but it was not sufficient to explain the high lipid titer in the hemolymph of parasitized and venom-injected host larvae. The fact that parasitoid larva consumed many hemocytes as evidenced by their presence in the midgut supported the hypothesis that the parasitoid larvae fed on the host hemolymph containing the free lipid particles, the hemocytes phagocytizing the lipid particles, and the lipid-loaded lipophorin. The possibility of the venom contribution to the disruption of the intercellular matrix was examined. The venom showed high activity of matrix metalloproteinase (MMP), especially when it was mixed with the hemolymph of non-parasitized 5th instar larvae. We suggest that the MMP in the venom was activated by some components of the host hemolymph. On the other hand, the venom mixed with hemolymph could not decompose gelatin on zymography, suggesting that the venom-MMP is a different type from gelatinase. Activity of phospholipases A(2), B, C and hyaluronidase were measured with agar plates. High activities of phospholipase B and hyaluronidase were detected. These results suggest that the venom-MMP initially attacked the specific site of the intercellular-matrix of the fat body, and then the hyaluronidase and the phospholipase B cause lysis of the fat body cell, allowing lipid particles to be released into the host hemolymph.  相似文献   

13.
14.
15.
During oviposition, the parasitoid wasp Cotesia congregata injects polydnavirus, venom, and parasitoid eggs into larvae of its lepidopteran host, the tobacco hornworm, Manduca sexta. Polydnaviruses (PDVs) suppress the immune system of the host and allow the juvenile parasitoids to develop without being encapsulated by host hemocytes mobilized by the immune system. Previous work identified a gene in the Cotesia rubecula PDV (CrV1) that is responsible for depolymerization of actin in hemocytes of the host Pieris rapae during a narrow temporal window from 4 to 8h post-parasitization. Its expression appears temporally correlated with hemocyte dysfunction. After this time, the hemocytes recover, and encapsulation is then inhibited by other mechanism(s). In contrast, in parasitized tobacco hornworm larvae this type of inactivation in hemocytes of parasitized M. sexta larvae leads to irreversible cellular disruption. We have characterized the temporal pattern of expression of the CrV1-homolog from the C. congregata PDV in host fat body and hemocytes using Northern blots, and localized the protein in host hemocytes with polyclonal antibodies to CrV1 protein produced in P. rapae in response to expression of the CrV1 protein. Host hemocytes stained with FITC-labeled phalloidin, which binds to filamentous actin, were used to observe hemocyte disruption in parasitized and virus-injected hosts and a comparison was made to hemocytes of nonparasitized control larvae. At 24h post-parasitization host hemocytes were significantly altered compared to those of nonparasitized larvae. Hemocytes from newly parasitized hosts displayed blebbing, inhibition of spreading and adhesion, and overall cell disruption. A CrV1-homolog gene product was localized in host hemocytes using polyclonal CrV1 antibodies, suggesting that CrV1-like gene products of C. congregata's bracovirus are responsible for the impaired immune response of the host.  相似文献   

16.
Euplectrus sp. near plathypenae is an ectoparasitoid that can parasitize from 3rd to day 0-6th instar Pseudaletia separata. The developmental period of the parasitoid from the egg to the pupal stage is about 13 days. Parasitized hosts are developmentally arrested and never molt to the next stadium. The injection of venom fluid results in similar effects on P. separata larvae as does parasitization. The inhibitory effect of the venom on molting was dose dependent. Injection of 0.3 female equivalents of venom into day 0-5th host instar resulted in a similar developmental arrest as seen in parasitized hosts. The amount of total lipid in the hemolymph of the host increased as a function of the amount of venom injected, while the lipid content of the fat body was similar to lipid levels in the fat body of parasitized larvae. The amount of total protein in the hemolymph also increased when venom was injected, whereas the protein level of the fat body did not increase. The lipid concentration within the parasitoid larva was maintained at the same level throughout larval development, but increased before pupation. We conclude that the injected venom increased the hemolymph content of lipid and protein to support the growth and development of the ectoparasitoid larva.  相似文献   

17.
Koinobiont parasitoids utilize nutrients obtained from hosts that contine to feed and grow after parasitization. However, if the ecdysis of early host instars is prevented, parasitized larvae will fail to grow large enough to support the development of the parasitoid brood and both organisms will perish. When L5 instar larvae (the penultimate stage) of Pseudaletia separata were parasitized by Cotesia kariyai and injected with Euplectrus separatae venom (5PV), the development of these hosts was arrested before molting to the next stage and the caterpillars thus failed to gain weight. These hosts remained at approximately 300 mg until parasitoid emergence. In contrast, hosts parasitized as L5 but without the injection of venom (5P) exhibited an increase in weight after molting to the next stage and ultimately grew to approximately 700 mg. The inhibition of ecdysis reduced the amount of food resource (e.g. fat body) for the parasitoid larvae. On the other hand, when final (= L6) host instars were parasitized and injected with E. separatae venom (6PV), the maximum weight attained by these larvae was about 710 mg, although weight gain was depressed compared to hosts parasitized without the injection of E. separatae venom (6P). The adult weight of C. kariyai that emerged from 5PV hosts was less than conspecifics that emerged from 5P, 6P, and 6PV respectively, although the egg-pupal period of the parasitoid from 5PV hosts was extended. The offspring sex ratio (percentage males) of adult wasps did not vary significantly with treatment. Female parasitoids that eclosed from 5PV hosts laid almost the same number of eggs in day 0-6th host instars as those emerging from 5P, 6P, 6PV hosts. Their egg-pupal period was extended and the cocoon cluster mass and the parasitoid body mass on subsequent generations was lighter than those reared from 5P, 6P, 6PV hosts. The sex ratio of F2 C. kariyai wasps that eclosed from 5PV increased more than in wasps that eclosed from the other host treatments (5P, 6P, 6PV). Our results reveal that a reduction in host quality and offspring fitness in the first generation negatively impacted female fitness in the second generation. An early arrestment of host growth, mediated by the addition of E. separatae venom, has severe implications on parasitoid fitness by reducing host quality, especially in smaller hosts.  相似文献   

18.
To successfully complete its development, the gregarious ectoparasitoid Eulophus pennicornis must inhibit the moult of its host, Lacanobia oleracea. In the present study, we examined the possibility that moult- and metamorphosis-associated endocrine events may be disrupted in caterpillars parasitized as newly moulted last (sixth) instars. Juvenile hormone (JH) titres on days 2 and 5 of the final stadium were significantly higher (> 100 fold) in parasitized than in non-parasitized hosts, in which JH was essentially absent. Elevated JH levels were associated with reduced haemolymph JH esterase (JHE) activity (down by 99.8%) and enhanced in vitro JH biosynthesis by the corpora allata (CA) (up to 4.5 fold). Wasp adults and/or larvae, in which we measured high levels of JH III (up to 2.7 ng/g), but little or no JH I or JH II, were not seen as likely sources of JH in parasitized hosts, in which we found mostly JH I and JH II. In addition, removal of parasitoid eggs or larvae after oviposition did not prevent the rise in JH titres seen in parasitoid-laden hosts, suggesting that wasp venom may be responsible for the observed hormonal dysfunction. Host haemolymph 20-hydroxyecdysone (20-E) levels were largely unaffected by parasitism during the final stadium although they were observed to increase earlier and decrease more rapidly in parasitized insects. We compare these results with those reported earlier for L. oleracea larvae parasitized by E. pennicornis as penultimate (fifth) instars, which display significantly depressed 20-E titres relative to control larvae. We conclude that E. pennicornis employs host endocrine-disruption strategies that differ according to whether the host is parasitized as a penultimate or final-stadium larva.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号