首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Euplectrus sp. near plathypenae is an ectoparasitoid that can parasitize from 3rd to day 0-6th instar Pseudaletia separata. The developmental period of the parasitoid from the egg to the pupal stage is about 13 days. Parasitized hosts are developmentally arrested and never molt to the next stadium. The injection of venom fluid results in similar effects on P. separata larvae as does parasitization. The inhibitory effect of the venom on molting was dose dependent. Injection of 0.3 female equivalents of venom into day 0-5th host instar resulted in a similar developmental arrest as seen in parasitized hosts. The amount of total lipid in the hemolymph of the host increased as a function of the amount of venom injected, while the lipid content of the fat body was similar to lipid levels in the fat body of parasitized larvae. The amount of total protein in the hemolymph also increased when venom was injected, whereas the protein level of the fat body did not increase. The lipid concentration within the parasitoid larva was maintained at the same level throughout larval development, but increased before pupation. We conclude that the injected venom increased the hemolymph content of lipid and protein to support the growth and development of the ectoparasitoid larva.  相似文献   

2.
寄主小菜蛾Plutella xylostella被内寄生蜂菜蛾盘绒茧蜂Cotesia plutellae寄生后,其取食、发育及营养代谢在各种寄生因子的作用下伴随幼蜂的发育而发生很大的变化,畸形细胞作为调节因子之一也发挥了重要的作用。本实验通过比较被寄生和未被寄生小菜蛾血淋巴蛋白浓度以及两种血淋巴对菜蛾盘绒茧蜂幼蜂进行体外培养的培养液的蛋白浓度,发现被寄生小菜蛾血淋巴比未被寄生小菜蛾血淋巴的蛋白浓度略低但差异不显著,而未被寄生小菜蛾血淋巴幼蜂培养液的蛋白浓度显著低于被寄生小菜蛾血淋巴幼蜂培养液的蛋白浓度,证明畸形细胞的蛋白质分泌功能。被寄生后期, 小菜蛾体重明显大于未被寄生的小菜蛾体重,而脂肪体重量相比正好相反;通过显微染色观察,在小菜蛾念珠状脂肪体表面粘附有畸形细胞,对脂肪体进行分解破坏而使其成颗粒状; 蛋白含量和脂滴浓度测定也表明,脂肪体的可溶性蛋白含量和脂滴浓度也迅速降低,同比低于未被寄生小菜蛾。而与此同时,幼蜂正处在快速生长阶段,中肠酯酶的活性逐步上升,幼蜂得以快速消化吸收小菜蛾体内的营养直到完成幼虫发育,整个幼蜂的脂滴浓度也达到了最大值。因此寄生后期,推测在畸形细胞的协助下,幼蜂吸收了寄主小菜蛾体内的营养为自身生长发育所用。  相似文献   

3.
Two states of parasitization in the Pseudaletia separata-Cotesia kariyai system were examined: one that was lightly parasitized and one that was heavily parasitized. We predicted that the consumption of fat body and hemolymph nutrients depends on the number of parasitoid larvae in the host. Lightly parasitized hosts (average clutch size+/-S.E.: 42.5+/-16.2, N=15) and heavily parasitized hosts (average clutch size+/-S.E.: 230.2+/-8.8, N=15) were prepared artificially. Eight days after parasitization, perivisceral fat body was depleted in the heavily parasitized host, although peripheral fat body was not yet consumed, but by day 10 most of the peripheral fat body was consumed. In lightly parasitized hosts, perivisceral fat body was not consumed by day 10. The parasitoid larvae deplete the perivisceral fat body first and then consume the peripheral fat body in the heavily parasitized host. The amount of trehalose, the major carbohydrate in the hemolymph, was related to the number of parasitoid larvae developing in the host. In a heavily parasitized host, trehalose concentrations remained low. However, in lightly parasitized hosts, the amount of trehalose increased 8 days after parasitization and then decreased by day 10. Protein and total lipid concentrations in the hemolymph of the heavily parasitized host were significantly lower than in lightly parasitized host on day 10, suggesting that the large number of parasitoid larvae depleted the fat body and hemolymph nutrients by day 10. High concentrations of total lipid on day 8 and 10 in lightly parasitized hosts and on day 8 in heavily parasitized host are likely to be attributed to the teratocytes.  相似文献   

4.
Ectoparasitoids inject venom into hemolymph during oviposition. We determined the influence of envenomation by the parasitoid, Habrobracon hebetor, on the hemocytes of its larval host, Galleria mellonella. An increase in both intracellular Са2+ content and phospholipase C activity of the host hemocytes was recorded during 2 days following envenomation by the parasitoid. The decreased hemocyte viability was detected 1, 2, and 24 h after the envenomation. Injecting of the crude venom (final protein concentration 3 μg/ml) into the G. mellonella larvae led to the reduced hemocyte adhesion. The larval envenomation caused a decrease in transmembrane potential of the hemocytes. These findings document the suppression of hemocytic immune effectors in the parasitized host larvae.  相似文献   

5.
Larvae of the gregarious ectoparasitoid, Euplectrus separatae, a species that parasitizes Pseudaletia separata, migrate from the dorsal to the ventral side of the host larva for pupation 7 days after parasitization. The parasitized host larvae die after the migration. The body mass of the parasitoid larvae increases while that of the host larva drastically decreases. Most of the tissue in the dead host larvae completely collapses. In this study, we examined the cause of host death and how the tissues collapse. Artificial removal of all parasitoid larvae before their migration on day 7 rescued the host larvae, but removal after parasitoid migration did not rescue the hosts. Tissues of the dead host larvae were completely liquefied. Injection of saliva from day 7 parasitoid larvae into host larvae killed the host larvae. High activity of a trypsin-like enzyme was detected in the saliva of day 7 parasitoids. Though phospholipase B and hyaluronidase were also detected in the saliva, commercial phospholipase B and hyaluronidase did not kill the hosts, whereas an injection of commercial trypsin was lethal. The trypsin-injected hosts showed the same tissue collapse as noted in parasitized and saliva-injected hosts. Leupeptin, a trypsin inhibitor, reduced mortality when injected into day 7 hosts (parasitoids were removal following migration). These observations suggest that the day 7 parasitoid larvae release saliva containing a trypsin-like enzyme to digest the host tissues following migration.  相似文献   

6.
在不同的寄生状态下,菜蛾盘绒茧蜂Cotesia plutellae不同的寄生因子可引起寄主小菜蛾Plutella xylostella幼虫脂肪体结构发生相应的改变。显微和亚显微形态结构显示: 假寄生后多分DNA病毒和毒液对脂肪体结构的完整性没有显著影响,但细胞内脂质体变得小而密集,线粒体和内质网丰富,并有糖原积累; 正常寄生后,脂肪体结构被破坏,多数线粒体内嵴紊乱,脂质体也变得不规则,特别是当幼蜂完成在寄主体内发育时,寄主体内几乎无完整脂肪体存在。与此同时,同批未被寄生的小菜蛾幼虫发育到4龄末期时,体内脂肪体细胞发育正常,已开始向蛹期细胞形态转化,细胞内脂质体很大,细胞器数量较多、糖原积累丰富, 而且部分细胞已成为游离态细胞。由此证明,寄生蜂携带的寄生因子,如多分DNA病毒、毒液、畸形细胞和幼蜂等,均对寄主脂肪体结构的改变产生影响,但程度明显不同。  相似文献   

7.
During oviposition, the parasitoid wasp Cotesia congregata injects polydnavirus, venom, and parasitoid eggs into larvae of its lepidopteran host, the tobacco hornworm, Manduca sexta. Polydnaviruses (PDVs) suppress the immune system of the host and allow the juvenile parasitoids to develop without being encapsulated by host hemocytes mobilized by the immune system. Previous work identified a gene in the Cotesia rubecula PDV (CrV1) that is responsible for depolymerization of actin in hemocytes of the host Pieris rapae during a narrow temporal window from 4 to 8h post-parasitization. Its expression appears temporally correlated with hemocyte dysfunction. After this time, the hemocytes recover, and encapsulation is then inhibited by other mechanism(s). In contrast, in parasitized tobacco hornworm larvae this type of inactivation in hemocytes of parasitized M. sexta larvae leads to irreversible cellular disruption. We have characterized the temporal pattern of expression of the CrV1-homolog from the C. congregata PDV in host fat body and hemocytes using Northern blots, and localized the protein in host hemocytes with polyclonal antibodies to CrV1 protein produced in P. rapae in response to expression of the CrV1 protein. Host hemocytes stained with FITC-labeled phalloidin, which binds to filamentous actin, were used to observe hemocyte disruption in parasitized and virus-injected hosts and a comparison was made to hemocytes of nonparasitized control larvae. At 24h post-parasitization host hemocytes were significantly altered compared to those of nonparasitized larvae. Hemocytes from newly parasitized hosts displayed blebbing, inhibition of spreading and adhesion, and overall cell disruption. A CrV1-homolog gene product was localized in host hemocytes using polyclonal CrV1 antibodies, suggesting that CrV1-like gene products of C. congregata's bracovirus are responsible for the impaired immune response of the host.  相似文献   

8.
It was previously demonstrated that parasitization by Cotesia kariyai caused a decrease in weight gain and food consumption in host larvae, resulting in a lower final weight for parasitized hosts. It is predicted that C. kariyai regulates the physiological condition of the host to obtain maximum food under restricted nutritional conditions. Approximate digestibility (AD) was higher following parasitization but the efficiency of conversion of digested food (ECD) of the parasitized hosts was lower. This suggests that resources available to the parasitoid larvae are enhanced in the parasitized hosts. We evaluated the physiological changes caused by injection of calyx fluid (polydnavirus) plus venom (C+V) in nonparasitized hosts. Injection of C+V into the nonparasitized hosts duplicated the effects of parasitism, namely it increased the AD and decreased the ECD. Furthermore, C+V injections elevated trehalose concentrations in nonparasitized host 7 to 10 d after injection (2nd stadium of the parasitoid larva). Protein content also increased on days 9 and 10 after C+V injection. These results suggest that the nutrients that parasitoid larvae require for their growth increase in the hemolymph of the host during the 2nd stadium of the parasitoid larva.  相似文献   

9.
Larvae of a gregarious endoparasitoid, Cotesia kariyai (Watanabe), grew rapidly during the second stadium in the host. The fat body of a Pseudaletia host parasitized by C. kariyai was completely consumed by 10 d, just before larval emergence. It seemed hard to explain the growth of the second instar parasitoids and the rapid consumption of the fat body only by ingestion of hemolymph converted from the fat body or other organs of the host. Paraffin sections of the parasitized host revealed that many teratocytes were attached to the surface of the fat body in many sites and destroyed the fat body tissue locally. Zymography of proteins released from the teratocytes revealed that the teratocytes 4 to 9 days after parasitization showed collagenase activity (as a gelatinase). Further, 1st instar parasitoids which were transplanted together with teratocytes into unparasitized hosts preconditioned with C. kariyai polydnavirus (CkPDV) plus venom, grew normally to the 2nd stadium. Abnormal growth of parasitoid larvae was observed when parasitoid larvae were transplanted without teratocytes. These results suggest that the teratocytes attach to the outer sheath of the fat body, secrete an enzyme that makes a hole in the matrix of the fat body, thus allowing the second instar parasitoid to ingest the content of the fat body.  相似文献   

10.
11.
Endoparasitoid wasps inject venom along with their eggs to adjust the physiological and nutritional environment inside their hosts to benefit the development of their offspring. In particular, wasp venoms are known to modify host lipid metabolism, lipid storage in the fat body, and release of lipids into the hemolymph, but how venoms accomplish these functions remains unclear. Here, we use an UPLC-MS-based lipidomics approach to analyze the identities and concentrations of lipids in both fat body and hemolymph of host cabbage butterfly (Pieris rapae) infected by the pupal endoparasitoid Pteromalus puparum. During infection, host fat body levels of highly unsaturated, soluble triacylglycerides (TAGs) increased while less unsaturated, less soluble forms decreased. Furthermore, in infected host hemolymph, overall levels of TAG and phospholipids (the major component of cell membranes) increased, suggesting that fat body cells are destroyed and their contents are dispersed. Altogether, these data suggest that wasp venom induces host fat body TAGs to be transformed into lower melting point (more liquid) forms and released into the host hemolymph following infection, allowing simple absorption and nutritional acquisition by wasp larvae. Finally, cholesteryl esters (CEs, a dietary lipid derived from cholesterol) increased in host hemolymph following infection with no concomitant decrease in host cholesterol, implying that the wasp may provide this necessary food resource to its offspring via its venom. This study provides novel insight into how parasitoid infection alters lipid metabolism in insect hosts, and begins to uncover the wasp venom proteins responsible for host physiological changes and offspring development.  相似文献   

12.
高效液相色谱法检测菜蛾绒茧蜂幼虫体内多杀菌素残留   总被引:3,自引:0,他引:3  
应用高效液相色谱法检测施用于寄主幼虫的多杀菌素可否传递到在其体内发育的寄生蜂幼虫。以对多杀菌素高抗的小菜蛾Plutella xylostella幼虫作为菜蛾绒茧蜂Cotesia plutellae的寄主,待绒茧蜂发育到1龄幼虫时,将浓度为50 mg/L的多杀菌素点滴到寄主幼虫背板上,随后让寄主幼虫取食经50 mg/L多杀菌素处理过的甘蓝叶片,寄主幼虫和其体内的蜂幼虫再发育3天后,将寄主幼虫解剖取出蜂幼虫,用高效液相色谱法对经多杀菌素处理的小菜蛾幼虫体液以及绒茧蜂幼虫匀浆液进行检测,结果多杀菌素的2个活性成分spinosyn A和spinosyn D均被检测到,两者的多杀菌素残留浓度分别是2.79 mg/L和0.94 mg/L。这表明,通过寄主幼虫体壁接触和取食进入其体内的多杀菌素,可通过寄生蜂幼虫体壁浸透、蜂幼虫对寄主血淋巴的取食,或这两种途经一起进入蜂幼虫的体内,对蜂幼虫产生作用。  相似文献   

13.
Glyptapanteles liparidis is a gregarious, polydnavirus (PDV)-carrying braconid wasp that parasitizes larval stages of Lymantria dispar. In previous studies we showed that parasitized hosts dramatically increase juvenile hormone (JH) titers, whereas JH degradation is significantly inhibited in the hemolymph. Here we (i) quantified the effects of parasitism on JH esterase (JHE) activity in hemolymph and fat body of penultimate and final instars of L. dispar hosts and (ii) assessed the relative contribution of individual and combined wasp factors (PDV/venom, teratocytes, and wasp larvae) to the inhibition of host JHE activity. The effects of PDV/venom was investigated through the use of gamma-irradiated wasps, which lay non-viable eggs (leading to pseudoparasitization), while the effects of teratocytes and wasp larvae were examined by injection or insertion of these two components in either control or pseudoparasitized L. dispar larvae. Parasitism strongly suppressed host JHE activity in both hemolymph and fat body irrespective of whether the host was parasitized early (premolt-third instar) or late (mid-fourth instar). Down-regulation of JHE activity is primarily due to the injection of PDV/venom at the time of oviposition, with only very small additive effects of teratocytes and wasp larvae under certain experimental conditions. We compare the results with those reported earlier for L. dispar larvae parasitized by G. liparidis and discuss the possible role of JH alterations in host development disruption.  相似文献   

14.
In parasitoid species devoid of polydnaviruses and virus‐like particles, venom appears to play a major role in suppression of host immunity. Venom from the pupal endoparasitoid Pimpla turionellae L. (Hymenoptera: Ichneumonidae) has previously been shown to contain a mixture of biologically active components, which display potent paralytic, cytotoxic, and cytolytic effects toward lepidopteran and dipteran hosts. The current study was undertaken to investigate if parasitism and/or envenomation by P. turionellae affects the frequency of apoptotic and necrotic hemocytes, hemocyte viability and mitotic indices in Galleria mellonella L. (Lepidoptera: Pyralidae) pupae and larvae. Our study indicates that parasitism and experimental envenomation of G. mellonella by P. turionellae resulted in markedly different effects on the ratio of apoptotic hemocytes circulating in hemolymph depending on the host developmental stages. The ratio of early and late apoptotic hemocytes increased in G. mellonella pupae and larvae upon parasitization and at high doses of venom when compared to untreated, null and Phosphate Buffered Saline (PBS) injected controls. In contrast, an increase in necrotic hemocytes was only observed in parasitized pupae at 24 h and no difference was observed in larvae. The lowest hemocyte viability values were observed with pupae as 69.87%, 69.80%, and 72.47% at 4, 8, and 24 h post‐parasitism. The ratio of mitotic hemocytes also decreased in pupae and larvae upon parasitization and at high doses of venom. Staining of hemocytes with annexin V‐FITC revealed green fluorescent ‘halos’ along the plasma membranes of venom treated cells within 15 min following exposure to venom. By 1 h post‐venom – treatment, the majority of hemocytes displayed binding of this probe, indicative of early stage apoptosis. These same hemocytes also displayed a loss of plasma membrane integrity at the same time points as evidenced by accumulation of propidium iodide in nuclei.  相似文献   

15.
Larval development of the parasitoid Cardiochiles nigriceps Viereck occurs in the last instar larva of its host, Heliothis virescens (F.). This allows the parasitoid to exploit the nutritional increase in the biosynthetic activity occurring in the host in preparation for metamorphosis. To understand the biochemical basis of this host parasitoid developmental synchrony, we undertook host ligation studies and analyzed host hemolymph for proteins and glycerol esters. Parasitization affected the biochemical profile of the host. The hemolymph protein concentration of parasitized last instar H. virescens larvae increased through time, whereas unparasitized (control) larvae were characterized by a decrease in the protein titer when they reached the prepupal stage. The effect of parasitism on glyceride titers of host hemolymph was not as pronounced as the effect on proteins. Ligation conducted on 5th instar hosts, which were parasitized as 4th instars, affected parasitoid development in a time-dependent way. The percentage of successfully developing C. nigriceps larvae increased with the increase of the time interval between parasitization and ligation. Ligation performed before day 2 of the 5th larval instar of H. virescens completely inhibited parasitoid development. Ligations that disrupted parasitoid developmentwere associated with a low host hernolymph protein concentration. Parasitoid development was successful when hernolymph protein titer was high, as occurred when ligations were performed after day 3 of the 5th host instar in both control and parasitized larvae. Ligations in both situations resulted in a slight increase in glyceride titers. The results suggest that host proteins and/or some factor(s) associated with them may play a role in parasitoid growth and development. © 1993 Wiley-Liss, Inc.  相似文献   

16.
M. Locke  P. Huie 《Tissue & cell》1983,15(6):885-902
The basal surface in transporting epithelia is infolded in a way that encourages the formation of standing gradients. Many insect cells have a similar infolded reticular system (RS) although they are clearly not transporting epithelia. These cells are like one another metabolically in that they sequester lipid from hemolymph lipophorins (lipid transporting proteins). Dietary lipids enter the hemolymph from the midgut RS which may be an adaptation for lipophorin loading. The plasma membrane reticular system of tissues metabolizing lipids (fat body, wax glands, oenocytes, lenticles) may be an adaptation for lipophorin reception and unloading. Cationic ferritin (pI 8.5) shows all RSs are covered by a lamina functioning as a negatively charged sieve. The basal plasma membrane leading to the RS is also negatively charged. The RS is a container with charged entrances that would be expected to affect the composition of the contents. Midgut cells release lipid particles into their RS. The particles are positively charged since in tracer studies they associate with anionic but not cationic ferritin. Lipophorins are anionic. The electrostatic binding of lipid to lipophorin would make it less anionic and more likely to leave the RS when loaded, thus carrying lipid to the hemolymph. Conversely, at the destination RS, loaded lipophorin would penetrate more easily than unloaded. A change in charge with unloading would be expected to alter the equilibrium between entering and leaving lipophorin, causing protein concentration in the RS of lipid receiving tissues as has been observed in the fat body. Reticular systems may thus be reaction vessels for interactions between carrier proteins and their load.  相似文献   

17.
18.
J. S. Hu  S. B. Vinson 《BioControl》1997,42(3):405-415
Effects of host hemolymph, fat body, and epidermal cell extracts on growth and development ofCampoletis sonorensis in vitro were studied. A simple cell culture medium preconditioned with intact fat body for several days improved growth of the parasitoid larvae while the addition of macerated fat body had a negative effect. Addition of co-cultured host epidermal cell mixture, without any preconditioning with the artificial medium, promoted growth and development ofC. sonorensis. The beneficial chemicals in the epidermal cell mixture were larger than 10 kd but were not cold or heat stable. Addition of unparasitized host larval hemolymph improved the hatching and development of the parasitoid larvae in the artificial medium but hemolymph from parasitized hosts did not. Host pupal hemolymph was also found to be beneficial to growth and development ofC. sonorensis. The effective components of pupal hemolymph were also neither cold nor heat stable and had a molecular weight range between 1 kd and 300 kd. While these host-derived growth factors increased molting and growth, they failed to stimulateC. sonorensis to develop to stages beyond the third instar.  相似文献   

19.
Abstract The larvae of most endoparasitoid wasps consume virtually all host tissues before pupation. However, in some clades, the parasitoid larvae primarily consume haemolymph and fat body and emerge through the side of the host, which remains alive and active for up to several days. The evolutionary significance of this host‐usage strategy has attracted attention in recent years. Recent empirical studies suggest that the surviving larva guards the parasitoid broods against natural enemies such as predators and hyperparasitoids. Known as the ‘usurpation hypothesis’, the surviving larvae bite, regurgitate fluids from the gut, and thrash the head capsule when disturbed. In the present study, the ‘usurpation hypothesis’ is tested in the association involving Manduca sexta, its parasitoid Cotesia congregata, and a secondary hyperparasitoid Lysibia nana. Percentage parasitoid survival is higher and hyperparasitism lower when cocoons of C. congregata are attached to the dorsum of M. sexta caterpillars. Fat body contents in several associations involving solitary and gregarious parasitoids feeding on haemolymph and fat body are also compared. The amount of fat body retained in parasitized caterpillars varies considerably from one association to another. In M. sexta and Pieris brassicae, considerable amounts of fat body remain after parasitoid emergence whereas, in Cotesia kariyai and Cotesia rufricus, virtually all of the fat body is consumed by the parsasitoid larvae. The length of post‐egression survival of parasitized caterpillars differs considerably in several tested associations. In Pseudeletia separata, most larvae die within a few hours of parasitoid emergence whereas, in M. sexta, parasitized larvae live up to 2 weeks after parasitoid emergence. Larvae in other associations parasitized by gregarious and solitary endoparasitoids live for intermediate periods. The results are discussed in relation to the adaptive significance of different feeding strategies of immature parasitoids and of the costs and benefits of retaining the parasitized caterpillar in close proximity with the parasitoid cocoons.  相似文献   

20.
Koinobiont parasitoids utilize nutrients obtained from hosts that contine to feed and grow after parasitization. However, if the ecdysis of early host instars is prevented, parasitized larvae will fail to grow large enough to support the development of the parasitoid brood and both organisms will perish. When L5 instar larvae (the penultimate stage) of Pseudaletia separata were parasitized by Cotesia kariyai and injected with Euplectrus separatae venom (5PV), the development of these hosts was arrested before molting to the next stage and the caterpillars thus failed to gain weight. These hosts remained at approximately 300 mg until parasitoid emergence. In contrast, hosts parasitized as L5 but without the injection of venom (5P) exhibited an increase in weight after molting to the next stage and ultimately grew to approximately 700 mg. The inhibition of ecdysis reduced the amount of food resource (e.g. fat body) for the parasitoid larvae. On the other hand, when final (= L6) host instars were parasitized and injected with E. separatae venom (6PV), the maximum weight attained by these larvae was about 710 mg, although weight gain was depressed compared to hosts parasitized without the injection of E. separatae venom (6P). The adult weight of C. kariyai that emerged from 5PV hosts was less than conspecifics that emerged from 5P, 6P, and 6PV respectively, although the egg-pupal period of the parasitoid from 5PV hosts was extended. The offspring sex ratio (percentage males) of adult wasps did not vary significantly with treatment. Female parasitoids that eclosed from 5PV hosts laid almost the same number of eggs in day 0-6th host instars as those emerging from 5P, 6P, 6PV hosts. Their egg-pupal period was extended and the cocoon cluster mass and the parasitoid body mass on subsequent generations was lighter than those reared from 5P, 6P, 6PV hosts. The sex ratio of F2 C. kariyai wasps that eclosed from 5PV increased more than in wasps that eclosed from the other host treatments (5P, 6P, 6PV). Our results reveal that a reduction in host quality and offspring fitness in the first generation negatively impacted female fitness in the second generation. An early arrestment of host growth, mediated by the addition of E. separatae venom, has severe implications on parasitoid fitness by reducing host quality, especially in smaller hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号