首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
3.
Sequence and characterization of 6 Lea proteins and their genes from cotton   总被引:33,自引:0,他引:33  
Lea genes code for mRNAs and proteins that are late embryogenesis abundant in higher plant seed embryos. They appear to be ubiquitous in higher plants and may be induced to high levels of expression in other tissues and at other times of ontogeny by ABA and/or desiccation. Presented here are the genomic and cDNA sequences for 6 of these genes from cotton seed embryos and the derived amino acid sequences of the corresponding proteins.The Lea genes contain the standard sequence features of eucaryotic genes (TATA box and poly (A) addition sequences) and have 1 or more introns. Sequences differences between cDNA and genomic DNA confirm the existence of small multigene families for several Lea genes. The amino acid composition and sequence for the Lea proteins are unusual. Five are extremely hydrophilic, four contain no cys or trp and 4 have sequence domains that suggest amphiphilic helical structures. Hypothetical functions in desiccation survival, based on amino acid sequence, are discussed.  相似文献   

4.
5.
6.
7.
8.
We have characterized a new tomato cDNA, TAS14, inducible by salt stress and abscisic acid (ABA). Its nucleotide sequence predicts an open reading frame coding for a highly hydrophilic and glycine-rich (23.8%) protein of 130 amino acids. Southern blot analysis of tomato DNA suggests that there is one TAS14 structural gene per haploid genome. TAS14 mRNA accumulates in tomato seedlings upon treatment with NaCl, ABA or mannitol. It is also induced in roots, stems and leaves of hydroponically grown tomato plants treated with NaCl or ABA. TAS14 mRNA is not induced by other stress conditions such as cold and wounding. The sequence of the predicted TAS14 protein shows four structural domains similar to the rice RAB21, cotton LEA D11 and barley and maize dehydrin genes.  相似文献   

9.
10.
Common amino acid sequence domains among the LEA proteins of higher plants   总被引:41,自引:0,他引:41  
LEA proteins are late embryogenesis abundant in the seeds of many higher plants and are probably universal in occurrence in plant seeds. LEA mRNAs and proteins can be induced to appear at other stages in the plant's life by desiccation stress and/or treatment with the plant hormone abscisic acid (ABA). A role in protecting plant structures during water loss is likely for these proteins, with ABA functioning in the stress transduction process. Presented here are conserved tracts of amino acid sequence among LEA proteins from several species that may represent domains functionally important in desiccation protection. Curiously, an 11 amino acid sequence motif is found tandemly repeated in a group of LEA proteins of vastly different sizes. Analysis of this motif suggests that it exists as an amphiphilic helix which may serve as the basis for higher order structure.  相似文献   

11.
12.
The highly conserved Group 1 late embryogenesis abundant (Lea) genes are present in the genome of most plants as a gene family. Family members are conserved along the entire coding region, especially within the extremely hydrophilic internal 20 amino acid motif, which may be repeated. Cloning of Lea Group 1 genes from barley resulted in the characterization of four family members named B19.1, B19.1b, B19.3 and B19.4 after the presence of this motif 1, 1, 3 and 4 times in each gene, respectively. We present here the results of comparative and evolutionary analyses of the barley Group 1 Lea gene family (B19). The most important findings resulting from this work are (1) the tandem clustering of B19.3 and B19.4, (2) the spatial conservation of putative regulatory elements between the four B19 gene promoters, (3) the determination of the relative age of the gene family members and (4) the chimeric nature of B19.3 and B19.4, reflecting a cross-over or gene-conversion event in their common ancestor. We also show evidence for the presence of one or two additional expressed B19 genes in the barley genome. Based on our results, we present a model for the evolution of the family in barley, including the 20 amino acid motif. Comparisons of the relatedness between the barley family and all other known Group 1 Lea genes using maximum parsimony (PAUP) analysis provide evidence for the time of divergence between the barley genes containing the internal motif as a single copy and as a repeat. The PAUP analyses also provide evidence for independent duplications of Group 1 genes containing the internal motif as a repeat in both monocots and dicots.  相似文献   

13.
A rich source of valuable genes are wild species. Solanum chacoense Bitter with its extreme resistance to viruses, insects and drought, is a good example.In the present study, a stress gene, designated DS2, has been isolated from S. chacoense. We have shown that the expression of the gene is organ-specific being detected in leaf, stem and stolon, but not in root, tuber or flower. Treatment of detached leaves with abscisic acid (ABA), salicylic acid or methyl jasmonate resulted in only very moderate accumulation of DS2 mRNA. Thus, DS2 represents a very rare type of the water-stress-inducible genes whose signalling pathway is not primarily related to ABA.Based on DNA sequence analysis, DS2 encodes a putative protein starting with 20 amino acids homologous to the ABA- and water-stress-inducible, ripening-related (ASR) proteins of tomato continued by an insert of 155 amino acids structurally similar to certain LEAs (late embryogenesis-abundant proteins) and ending in 88 amino acids homologous again to the ASR sequences and to an unpublished partial cDNA fragment isolated from the root of rice. The N-terminal region of the DS2 protein is hydrophilic with ten 13-mer amino acid motifs and random coil structure. In contrast, the C-terminus predicts an -helix and possesses a bipartite nuclear targeting sequence motif. These data suggest that the function of the DS2 may be the protection of the nuclear DNA from desiccation.  相似文献   

14.
15.
16.
17.
The drought‐induced 19 protein family consists of several atypical Cys2/His2‐type zinc finger proteins in plants and plays an important role in abiotic stress. In this study, we found that overexpressing OsDi19‐4 in rice altered the expression of a series of abscisic acid (ABA)‐responsive genes, resulting in strong ABA‐hypersensitive phenotypes including ABA‐induced seed germination inhibition, early seedling growth inhibition and stomatal closure. On the contrary, OsDi19‐4 knockdown lines were less sensitive to ABA. Additionally, OsCDPK14 was identified to interact with OsDi19‐4 and be responsible for the phosphorylation of OsDi19‐4, and the phosphorylation of OsDi19‐4 was further enhanced after the treatment of ABA. Apart from these, OsDi19‐4 was shown to directly bind to the promoters of OsASPG1 and OsNAC18 genes, two ABA‐responsive genes, and regulate their expression. Transient expression assays confirmed the direct regulation role of OsDi19‐4, and the regulation was further enhanced by the increased phosphorylation of OsDi19‐4 after the treatment of ABA. Taken together, these data demonstrate that OsDi19‐4 acts downstream of OsCDPK14 to positively regulate ABA response by modulating the expression of ABA‐responsive genes in rice.  相似文献   

18.
In many woody plants a short photoperiod triggers the onset of cold acclimation, but the nature of this process has remained obscure. We aimed to establish which physiological and genetic factors have a role in short-day-induced acclimation by comparing two types of birch, Betula pubescens Ehrh. and B. pubescens f. hibernifolia Ulv., the latter being unable to increase its abscisic acid (ABA) levels. In the wild type, short-day or natural autumn conditions in the field appeared to elevate the ABA levels before acclimation, which was accompanied by tissue desiccation, osmotic adjustments and accumulation of Group 2 LEA proteins [responsive to ABA (RAB) 16-like; 24, 30 and 33 kDa] and Group 4 LEA proteins [late embryogenesis abundant (LEA) 14-like; 19 kDa]. Under similar conditions the ABA-deficient birch showed reduced water loss, defective osmoregulation, absence of inducible Group 2 LEA proteins, and delayed or reduced tolerance to freezing. In contrast, both birch genotypes showed similar seasonal production patterns of Group 4 LEA proteins. Our results demonstrate that onset of cold acclimation in birch is based on multiple mechanisms, including molecular pathways that are typical of stress responses. ABA may be important for the accurate timing of cold acclimation in trees that are sensitive to photoperiod.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号