首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
Responsiveness to abscisic acid (ABA) during vegetative growth plays an important role in regulating adaptive responses to various environmental conditions, including activation of a number of ABA-responsive genes. However, the relationship between gene expression and responsiveness to ABA at the seedling stage has not been well studied in wheat. In the present study, quantitative trait locus (QTL) analysis for ABA responsiveness at the seedling stage was performed using recombinant inbred lines derived from a cross between common wheat cultivars showing different ABA responsiveness. Five QTLs were found to be significant, located on chromosomes 1B, 2A, 3A, 6D and 7B. The QTL with the greatest effect was located on chromosome 6D and explained 11.12% of the variance in ABA responsiveness. The other QTLs each accounted for approximately 5–8% of the phenotypic variation. Expression analyses of three ABA-responsive Cor/Lea genes, Wdhn13, Wrab15 and Wrab17, showed that allelic differences in QTLs on chromosomes 2A, 6D and 7B influenced expression of these genes in seedlings treated with ABA. The 3A QTL appeared to be involved in the regulatory system of Wdhn13 and Wrab15, but not Wrab17. The effects of the 2A and 6D QTLs on gene expression were relatively large. The combination of alleles at the QTLs resulted in an additive or synergistic effect on Cor/Lea expression. These results indicate that the QTLs influencing ABA responsiveness are associated with ABA-regulated gene expression and suggest that the QTL on chromosome 6D with the largest effect acts as a key regulator of ABA responses including seedling growth arrest and gene expression during the vegetative stage.  相似文献   

8.
9.
10.
11.
12.
Functional analysis of TaDi19A, a salt-responsive gene in wheat   总被引:2,自引:0,他引:2  
A salinity stress upregulated expressed sequence tag (EST) was selected from a suppression subtractive hybridization cDNA library, constructed from the salinity-tolerant wheat cultivar Shanrong No. 3. Sequence analysis showed that the corresponding gene (named TaDi19A ) belonged to the Di19 family. TaDi19A was constitutively expressed in both the root and leaf of wheat seedlings grown under non-stressed conditions, but was substantially up-regulated by the imposition of stress (salinity, osmotic stress and cold), or the supply of stress-related hormones [abscisic acid (ABA) and ethylene]. The heterologous over-expression of TaDi19A in Arabidopsis thaliana increased the plants' sensitivity to salinity stress, ABA and mannitol during the germination stage. Root elongation in these transgenic lines showed a reduced tolerance to salinity stress and a reduced sensitivity to ethophon. The expression of the ABA signal pathway genes ABI1 , RAB18 , ERD15 and ABF3 , and SOS2 (SOS pathway) was altered in the transgenic lines. TaDi19A plays a role in the plant's response to abiotic stress, and some possible mechanisms of its action are proposed.  相似文献   

13.
14.
We have characterized a new tomato cDNA, TAS14, inducible by salt stress and abscisic acid (ABA). Its nucleotide sequence predicts an open reading frame coding for a highly hydrophilic and glycine-rich (23.8%) protein of 130 amino acids. Southern blot analysis of tomato DNA suggests that there is one TAS14 structural gene per haploid genome. TAS14 mRNA accumulates in tomato seedlings upon treatment with NaCl, ABA or mannitol. It is also induced in roots, stems and leaves of hydroponically grown tomato plants treated with NaCl or ABA. TAS14 mRNA is not induced by other stress conditions such as cold and wounding. The sequence of the predicted TAS14 protein shows four structural domains similar to the rice RAB21, cotton LEA D11 and barley and maize dehydrin genes.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号