首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rapid and sensitive determination of riboflavin (RF) is important for the treatment of seborrheic and glossitis dermatitis, sunlight sensitivity, mucosal, and skin disorders. In this work, an electrochemical sensor was developed by electrodes modification using poly (chitosan) to sensitive detection of RF in commercial multivitamin. Electrodeposition of chitosan on the surface of glass carbon electrode was performed using cyclic voltammetry technique in the range of ?1 to +1 V. The modified electrode surface morphology was characterized using a high‐resolution field emission scanning electron microscope. The modified electrode was used as an effective electrical interface for the detection of RF using cyclic, differential pulse, and square wave voltammetry techniques. Finally, the sensor was applied to determine RF in commercial multivitamins. In optimum conditions, the linear range for the standard sample of RF and commercial multivitamins 94 to 333μM and 24.6 to 176μM were obtained, respectively. Low limit of quantification (LLOQ) were obtained as 24.6μM.  相似文献   

2.
In the present work, a novel biocompatible scaffold was fabricated for the DNA aptamer immobilization. For the first time, amino‐functionalized dendritic fibrous nanosilica (KCC‐1‐nPr‐NH2) and gold nanoparticle supported by chitosan (AuNPs‐CS) were synthesized and electrodeposited successfully on the surface of the glassy carbon electrode by chronoamperometry technique. Unique oligonucleotide of aflatoxin M1 (5′‐ATC CGT CAC ACC TGC TCT GAC GCT GGG GTC GAC CCG GAG AAA TGC ATT CCC CTG TGG TGT TGG CTC CCG TAT) labeled by toluidine blue was immobilization on the prepared interface. Hence, a novel aptamer‐based bioassay was formed for highly sensitive quantitation of AFM1 using cyclic voltammetry and differential plus voltammetry. The structure and morphology of GQDs‐CS/KCC‐1‐nPr‐NH2 were investigated by Fourier‐transform infrared spectroscopy, X‐ray diffraction, atomic force, scanning electron microscopy, and energy‐dispersive X‐ray spectroscopy. The achieved low limit of quantification of apta‐assay for detection of AFM1 was 10fM. Also, calibration curve was linear from 0.1μM to 10fM in real samples. The proposed apta‐assay has acceptable long‐term stability. Designed aptasensor has a lot of remarkable advantages including excellent selectivity, sensitivity, and stability that could be used as facile bio‐device for the determination of AFM1 in milk samples.  相似文献   

3.
Impedance spectroscopy approaches combined with the immunosensor technology have been used for the determination of trace amounts of ciprofloxacin antibiotic belonging to the fluoroquinolone family. The sensor electrode was based on the immobilization of anti-ciprofloxacin antibodies by chemical binding onto a poly(pyrrole-NHS) film electrogenerated on a solid gold substrate. The electrode surface was modified by electropolymerization of pyrrole-NHS, antibody grafting and ciprofloxacin immunoreaction. The sensitive steps of surface modification, cyclic voltammetry (CV) and atomic force microscopy (AFM) imaging have been used for electrode surface characterization. The immunoreaction of ciprofloxacin on the grafted anti-ciprofloxacin antibody directly triggers a signal via impedance spectroscopy measurements which allows the detection of extremely low concentration of 10 pg/ml ciprofloxacin.  相似文献   

4.
The electrochemical behavior of insulin at glassy carbon (GC) electrode modified with nickel oxide nanoparticles and guanine was investigated. Cyclic voltammetry technique has been used for electrodeposition of nickel oxide nanoparticles (NiOx) and immobilization of guanine on the surface GC electrode. In comparison to glassy carbon electrode modified with nickel oxide nanoparticles and bare GC electrode modified with adsorbed guanine, the guanine/nickel oxide nanoparticles/modified GC electrode exhibited excellent catalytic activity for the oxidation of insulin in physiological pH solutions at reduced overpotential. The modified electrode was applied for insulin detection using cyclic voltammetry or hydrodynamic amperometry techniques. It was found that the calibration curve was linear up to 4muM with a detection limit of 22pM and sensitivity of 100.9pA/pM under the optimized condition for hydrodynamic amperometry using a rotating disk modified electrode. In comparison to other electrochemical insulin sensors, this sensor shows many advantages such as simple preparation method without using any special electron transfer mediator or specific reagent, high sensitivity, excellent catalytic activity at physiological pH values, short response time, long-term stability and remarkable antifouling property toward insulin and its oxidation product. Additionally, it is promising for the monitoring of insulin in chromatographic effluents.  相似文献   

5.
The study was designed to investigate whether exhaled breath condensate, obtained by cooling exhaled air in spontaneous breathing, could be a suitable matrix for toluene quantitative analyses. Nine healthy subjects were exposed for a short period (20 min) to a known concentration of toluene. Exhaled breath condensate samples were collected before and at the end of the exposure, while the environmental concentration of toluene was continuously monitored. Toluene was analysed by head-space gas-chromatography mass spectrometry, and assay repeatability was also estimated in vitro. Baseline and post-exposure measurement of hippuric acid, the urinary toluene metabolite, was performed to assess current toluene exposure. Before the exposure toluene concentrations in the exhaled breath condensate were lower than the detectable limit in all subjects, while after the exposure toluene was detectable with a median value 0.35 µg l-1 (range 0.15-0.55 µg l-1) in all the exhaled breath condensate samples. As compared with the standard calibration in distilled water, the curves obtained by exhaled breath condensate were linear and comparable with the range examined in vivo for toluene. A significant correlation was found between the environmental toluene levels and toluene in the exhaled breath condensate at the end of exposure. Furthermore, a significant relationship between increased exhaled breath condensate toluene levels and urinary hippuric acid after the exposure was found. In conclusion, exhaled breath condensate is a promising matrix for toluene assessment, although its application in humans requires further investigations.  相似文献   

6.
Abstract

The study was designed to investigate whether exhaled breath condensate, obtained by cooling exhaled air in spontaneous breathing, could be a suitable matrix for toluene quantitative analyses. Nine healthy subjects were exposed for a short period (20 min) to a known concentration of toluene. Exhaled breath condensate samples were collected before and at the end of the exposure, while the environmental concentration of toluene was continuously monitored. Toluene was analysed by head-space gas-chromatography mass spectrometry, and assay repeatability was also estimated in vitro. Baseline and post-exposure measurement of hippuric acid, the urinary toluene metabolite, was performed to assess current toluene exposure. Before the exposure toluene concentrations in the exhaled breath condensate were lower than the detectable limit in all subjects, while after the exposure toluene was detectable with a median value 0.35 µg l?1 (range 0.15–0.55 µg l?1) in all the exhaled breath condensate samples. As compared with the standard calibration in distilled water, the curves obtained by exhaled breath condensate were linear and comparable with the range examined in vivo for toluene. A significant correlation was found between the environmental toluene levels and toluene in the exhaled breath condensate at the end of exposure. Furthermore, a significant relationship between increased exhaled breath condensate toluene levels and urinary hippuric acid after the exposure was found. In conclusion, exhaled breath condensate is a promising matrix for toluene assessment, although its application in humans requires further investigations.  相似文献   

7.
A new amperometric biosensor for the detection of sugars was prepared. A glassy carbon electrode was modified with Prussian blue (PB) nanoparticles protected by chitosan (CS) and poly(diallyldimethylammonium chloride) (PDDA), and then gold nanoparticles were assembled onto the electrode followed by the assembly of 4-mercaptophenylboronic acid (MPBA) onto the surface of gold nanoparticles through a sulfur–Au bond to fabricate a self-assembled biosensor. The PB nanoparticles protected by CS and PDDA were characterized using transmission electron microscopy and UV–vis absorption spectroscopy. The characterization of the self-assembled electrode was investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The pK a values of the MPBA monolayer before and after combining with sugars were determined. The fabricated electrode exhibited excellent performances for determining d(+)-glucose, d(+)-mannose, and d(−)-fructose on the basis of the change in i p of the Fe(CN)63−/4− ion in the presence of sugars.  相似文献   

8.

Background

The effects of changes in cooling temperature on biomarker levels in exhaled breath condensate have been little investigated. The aim of the study was to test the effect of condensation temperature on the parameters of exhaled breath condensate and the levels of selected biomarkers.

Methods

Exhaled breath condensate was collected from 24 healthy subjects at temperatures of -10, -5, 0 and +5 C degrees. Selected parameters (condensed volume and conductivity) and biomarkers (hydrogen peroxide, malondialdehyde) were measured.

Results

There was a progressive increase in hydrogen peroxide and malondialdehyde concentrations, and condensate conductivity as the cooling temperature increased; total condensate volume increased as the cooling temperature decreased.

Conclusion

The cooling temperature of exhaled breath condensate collection influenced selected biomarkers and potential normalizing factors (particularly conductivity) in different ways ex vivo. The temperature of exhaled breath condensate collection should be controlled and reported.  相似文献   

9.
Cyclic voltammetry at potential range − 1.1 to 0.5 V from aqueous buffer solution (pH 7) containing CoCl2 produced a well defined cobalt oxide (CoOx) nanoparticles deposited on the surface of glassy carbon electrode. The morphology of the modified surface and cobalt oxide formation was examined with SEM and cyclic voltammetry techniques. Hemoglobin (Hb) was successfully immobilized in cobalt-oxide nanoparticles modified glassy carbon electrode. Immobilization of hemoglobin onto cobalt oxide nanoparticles have been investigated by cyclic voltammetry and UV–visible spectroscopy. The entrapped protein can take direct electron transfer in cobalt-oxide film. A pair of well defined, quasi-reversible cyclic voltammetric peaks at about − 0.08 V vs. SCE (pH 7), characteristic of heme redox couple (Fe(III)/Fe(II)) of hemoglobin, and the response showed surface controlled electrode process. The dependence of formal potential (E0′) on the solution pH (56 mV pH− 1) indicated that the direct electron transfer reaction of hemoglobin was a one-electron transfer coupled with a one proton transfer reaction process. The average surface coverage of Hb immobilized on the cobalt oxide nanoparticles was about 5.2536 × 10− 11 mol cm− 2, indicating high loading ability of nanoparticles for hemoglobin entrapment. The heterogeneous electron transfer rate constant (ks) was 1.43 s− 1, indicating great of facilitation of the electron transfer between Hb and electrodeposited cobalt oxide nanoparticles. Modified electrode exhibits a remarkable electrocatalytic activity for the reduction of hydrogen peroxide and oxygen. The Michaels–Menten constant Km of 0.38 mM, indicating that the Hb immobilized onto cobalt oxide film retained its peroxidases activity. The biosensor exhibited a fast amperometric response < 5 s, a linear response over a wide concentration range 5 μM to 700 μM and a low detection limit 0.5 μM. According to the direct electron transfer property and enhanced activity of Hb in cobalt oxide film, a third generation reagentless biosensor without using any electron transfer mediator or specific reagent can be constructed for determination of hydrogen peroxide in anaerobic solutions.  相似文献   

10.
Here, we describe the fabrication of an electrochemical immunoglobulin E (IgE) aptasensor using enzyme-linked aptamer in the sandwich assay method and thionine as redox probe. In this protocol, 5′-amine-terminated IgE aptamer and thionine were covalently attached on glassy carbon electrode modified with carbon nanotubes/ionic liquid/chitosan nanocomposite. Furthermore, another IgE aptamer was modified with biotin and enzyme horseradish peroxidase (HRP), which attached to the aptamer via biotin–streptavidin interaction. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry were performed at each stage of the chemical modification process to confirm the resulting surface changes. The presence of IgE induces the formation of a double aptamer sandwich structure on the electrode, and the electrocatalytic reduction current of thionine in the presence of hydrogen peroxide was measured as the sensor response. Under optimized conditions and using differential pulse voltammetry as the measuring technique, the proposed aptasensor showed a low detection limit (6 pM) and high sensitivity (1.88 μA nM−1). This aptasensor also exhibited good stability and high selectivity for IgE detection without an interfering effect of some other proteins such as bovine serum albumin (BSA) and lysozyme. The application of the aptasensor for IgE detection in human serum sample was also investigated. The proposed protocol is quite promising as an alternative sandwich approach for various protein assays.  相似文献   

11.
In this work, we present an electrochemical DNA sensor based on silver nanoparticles/poly(trans-3-(3-pyridyl) acrylic acid) (PPAA)/multiwalled carbon nanotubes with carboxyl groups (MWCNTs-COOH) modified glassy carbon electrode (GCE). The polymer film was electropolymerized onto MWCNTs-COOH modified electrode by cyclic voltammetry (CV), and then silver nanoparticles were electrodeposited on the surface of PPAA/MWCNTs-COOH composite film. Thiol group end single-stranded DNA (HS-ssDNA) probe was easily covalently linked onto the surface of silver nanoparticles through a 5′ thiol linker. The DNA hybridization events were monitored based on the signal of the intercalated adriamycin by differential pulse voltammetry (DPV). Based on the response of adriamycin, only the complementary oligonucleotides gave an obvious current signal compared with the three-base mismatched and noncomplementary oligonucleotides. Under the optimal conditions, the increase of reduction peak current of adriamycin was linear with the logarithm of the concentration of the complementary oligonucleotides from 9.0 × 10−12 to 9.0 × 10−9 M with a detection limit of 3.2 × 10−12 M. In addition, this DNA sensor exhibited an excellent reproducibility and stability during DNA hybridization assay.  相似文献   

12.
A novel sensitive and selective imprinted electrochemical sensor for the determination of oleanic acid was constructed on a carbon electrode by stepwise modification of functional multi-walled carbon nanotubes, cobalt hexacyanoferrate nanoparticles and a thin imprinted sol-gel film. The fabrication of a homogeneous porous poly (sodium 4-styrenesulfonate-co-acrylic acid)-grafted multi-walled carbon nanotubes/SiO(2)-chitosan nanocomposite film was conducted by controllable electrodeposition technology. The surface morphologies of the modified electrodes were characterized by scanning electron microscope. The performance of the imprinted sensor was investigated by cyclic voltammetry, square wave voltammetry and electrochemical impedance spectroscopy in detail. The imprinted sensor displayed high sensitivity and selectivity towards oleanic acid. A linear relationship between the sensor response signal and the logarithm of oleanic acid concentrations ranging from 1.0×10(-8) to 1.0×10(-3) mol L(-1) was obtained with a detection limit of 2.0×10(-9) mol L(-1). It was applied to the determination of oleanic acid in real capsule samples successfully.  相似文献   

13.
Molecularly imprinted polymer‐modified glassy carbon electrode (GCE)‐based electrochemical sensor is prepared using the electropolymerization of aniline in the presence of melamine (MA) as a template. In this work, the advantages of molecularly imprinted conducting polymers (MICPs) and electroanalytical methods were combined to obtain an electronic device with better performances. The sensor performance was evaluated by cyclic voltammetry (CV) and square wave voltammetry (SWV) with the linear range of 0.6‐16 × 10?9M, quantification limit of 14.9 × 10?10M, and detection limit of 4.47 × 10?10M (S/N = 3). The selectivity of the sensor was tested in the presence of acetoguanamine (AGA), diaminomethylatrazine (DMT), casein, histidine, and glycine interfering molecules taken at the triple concentration with MA that demonstrated too small current response compared with that of the analyte indicating high specificity of the sensor towards the template. The sensor was successfully applied to determine MA in infant formula samples with significant recovery greater than 96% and relative standard deviation (RSD) less than 4.8%. Moreover, the good repeatability, recyclability, and stability make this sensor device promising for the real‐time monitoring of MA in different food stuffs.  相似文献   

14.
Here, the possibility of proteomic and metabolomic analysis of the composition of exhaled breath condensate of neonates with respiratory support. The developed method allows non-invasive collecting sufficient amount of the material for identification of disease-specific biomarkers. Samples were collected by using a condensing device that was incorporated into the ventilation system. The collected condensate was analyzed by liquid chromatography coupled with high resolution mass spectrometry and tandem mass spectrometry. The isolated substances were identified with a use of databases for proteins and metabolites. As a result, a number of compounds that compose the exhaled breath condensate was determined and can be considered as possible biomarkers of newborn diseases or stage of development.  相似文献   

15.
A surface modification procedure for the creation of self-assembled monolayers (SAMs) that can be used as a scaffold for double-stranded DNA (dsDNA) incorporation onto the gold surfaces is described. The SAMs of an azidohexane thiol derivative were prepared on the Au electrode and then used for the immobilization of dsDNA. The electrochemical characteristics of dsDNA onto the SAM-modified gold electrode were investigated by cyclic voltammetry and electrochemical impedance spectroscopy, and the surface concentration of dsDNA onto the SAMs surface was estimated. The interaction of dsDNA with the anticancer drug, taxol (paclitaxel), was also studied on the surface of DNA/SAM/Au electrode. The observed decrease in the guanine oxidation peak current was used to monitor the interaction of taxol with DNA. The resulting Langmuir isotherm for taxol binding to DNA at the modified electrode was used to evaluate the binding constant of taxol-DNA. The results obtained supported the groove binding interaction of taxol with DNA. The modified electrode was used as a sensitive sensor for quantification of taxol in human serum sample.  相似文献   

16.
The transient nature of poly(ADP-ribosyl)ation, a posttranslational modification of nuclear proteins, is achieved by the enzyme poly(ADP-ribose) glycohydrolase (PARG) which hydrolyzes the poly(ADP-ribose) polymer into free ADP-ribose residues. To investigate the molecular size and localization of PARG, we developed a specific polyclonal antibody directed against the bovine PARG carboxy-terminal region. We found that PARG purified from bovine thymus was recognized as a 59-kDa protein, while Western blot analysis of total cell extracts revealed the presence of a unique 110-kDa protein. This 110-kDa PARG was mostly found in postnuclear extracts, whereas it was barely detectable in the nuclear fractions of COS7 cells. Further analysis by immunofluorescence revealed a cytoplasmic perinuclear distribution of PARG in COS7 cells overexpressing the bovine PARG cDNA. These results provide direct evidence that PARG is primarily a cytoplasmic enzyme and suggest that a very low amount of intranuclear PARG is required for poly(ADP-ribose) turnover.  相似文献   

17.
Prosperity of information on the reactions of redox-active sites in proteins can be attained by voltammetric studies in which the protein sample is located on a suitable surface. This work reports the presentation of myoglobin/nickel oxide nanoparticles/glassy carbon (Mb/NiO NPs/GC) electrode, ready by electrochemical deposition of the NiO NPs on glassy carbon electrode and myoglobin immobilization on their surfaces by the potential cycling method. Images of electrodeposited NiO NPs on the surface of glassy carbon electrode were obtained by scanning electron microscopy (SEM) and atomic force microscopy (AFM). A pair of well-defined redox peaks for Mb(Fe(III)-Fe(II)) was obtained at the prepared electrode by direct electron transfer between the protein and nanoparticles. Electrochemical parameters of immobilized myoglobin such as formal potential (E(0')), charge transfer coefficient (alpha) and apparent heterogeneous electron transfer rate constant (k(s)) were estimated by cyclic voltammetry and nonlinear regression analysis. Biocatalytic activity was exemplified at the prepared electrode for reduction of hydrogen peroxide.  相似文献   

18.
We report a simple gaseous sensor for the sensitive detection of trace 2‐propanol in exhaled breath using in situ enrichment and cataluminescence detection method on the surface of nanomaterials. The influences of heating voltage and absorption time on the CTL intensity were discussed, respectively. In the selected conditions, the linear range of 2‐propanol concentration is 60–600 ppbv and the detection of limit is 11 ppbv. Moreover, the lifetime and selectivity of the sensor were also investigated. It has the potential to diagnostic volatile organic compounds in human breath. Copyright © 2010 John Wiley & Sons, Ltd  相似文献   

19.
Horseradish peroxidase (HRP) was immobilized onto a membrane of the regenerated silk fibroin (RSF) from waste milk. The structure of the blend membrane of RSF and HRP was characterized by the use of IR spectra. A second generation of H2O2 sensor on the basis of the immobilized HRP was fabricated, in which tetrathiafulvalene acts as mediating electron transfer between the immobilized enzyme and a glassy carbon electrode. Dependencies of pH and temperature on the H2O2 biosensor were checked by utilizing cyclic voltammetry. The sensor exhibits high sensitivity, good reproducibility and storage stability.  相似文献   

20.
A novel amperometric ethanol biosensor was constructed using alcohol dehydrogenase (ADH) physically immobilized within poly(vinyl alcohol)–multiwalled carbon nanotube (PVA–MWCNT) composite obtained by a freezing–thawing process. It comprises a MWCNT conduit, a PVA binder, and an ADH function. The measurement of ethanol is based on the signal produced by β-nicotinamide adenine dinucleotide (NADH), the product of the enzymatic reaction. The homogeneity of the resulting biocomposite film was characterized by atomic force microscopy (AFM). The performance of the PVA–MWCNT–ADH biocomposite modified glassy carbon electrode was evaluated using cyclic voltammetry and amperometry in the presence of NADH and in the presence of ethanol. The ethanol content in standard solutions was determined and a sensitivity of 196 nA mM−1, a linear range up to 1.5 mM, and a response time of about 8 s were obtained. These characteristics allowed its application for direct detection of ethanol in alcoholic beverages: beer, red wine, and spirit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号