首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 170 毫秒
1.
In this study, the effect of (Boc-Lys (Boc)-Arg-Asp-Ser (tBu)-OtBu), a tetrapeptide derivative (PEP1261) was examined for antiproliferative potency and apoptotic induction. Synovial fibroblasts were isolated from collagen-induced arthritic (CIA) rats and exposed to peptides viz., PEP1261, and parental peptides (KRDS and RGDS). Viability of the cells decreased in the presence of PEP1261 at a lower concentration (0.1 mM) when compared to RGDS and KRDS (1 mM). The treatment of cells with peptides showed induction of apoptosis, resulting in the cleavage of caspase-3 as well as its substrate poly-(ADP-ribose) polymerase (PARP). Pretreatment of cells with caspase-3 inhibitor prevented inhibition of [3H] thymidine incorporation, DNA fragmentation, and cleavage of caspase-3 and PARP as confirmed by western blotting as well as annexin-V/PI-staining using flow cytometry. However, caspase-1 and caspase-2 inhibitors did not prevent the peptides from inducing apoptosis indicating that caspase-3 might have a role in the process of apoptosis induced by peptides. Treatment of synovial fibroblasts with nitric oxide donor, S-nitroso-N-acetyl-dl-penicillamine (SNAP) (500 μM) showed significant elevation of nitric oxide levels and resulted in absence of apoptosis by preventing the inhibition of [3H] thymidine incorporation. This was further evidenced by annexin V/propidium iodide (PI) staining and absence of DNA fragmentation, intra cellular caspase-3 activity and PARP cleavage. In contrast, SNAP followed by PEP1261 and parental peptides-induced apoptosis by lowering the levels of nitric oxide. These results suggested that PEP1261 suppressed the proliferation and induced apoptosis in cultured synovial fibroblasts from CIA rats. This study also confirmed that PEP1261 inhibited nitric oxide level in cultured synovial fibroblasts.  相似文献   

2.
Nitric oxide (NO) is a multifunctional messenger molecule generated from L-arginine by a family of enzymes, including nitric oxide synthase (NOS). This study was performed to examine whether NO modulates the production of matrix metalloproteinases (MMPs), which degrade all components of extracellular matrix (ECM), in rheumatoid synovial cells. We investigated the effects of exogenously generated NO by a NO donor, S-nitroso-N-acetyl-DL-penicillamine (SNAP), on the MMPs production by rheumatoid synovial cells. Culture media conditioned by SNAP-treated synovial cells were examined by gelatin zymography and immunoblot analysis. Incubation of synovial cells with SNAP resulted in gelatinase A production in a dose-dependent fashion. Furthermore, RT-PCR analysis demonstrated that MMP-2 mRNA expression was induced in SNAP-treated synovial cells. In contrast, SNAP did not influence the production of TIMP-1 and TIMP-2, which preferentially inhibit MMP-2, by rheumatoid synovial cells. Our data indicate that NO could modulate MMP production by rheumatoid synovial cells and therefore contribute to ECM degradation of articular components in RA.  相似文献   

3.
Alpinia galanga has been used as alternative medicine for anti-rheumatic activities. However, the precise action of the extract on arthritic diseases is not yet fully understood. In this study, we investigated the effects of A. galanga extracts on the expression of genes involved in catabolic activities in an interleukin-1β (IL-1β)-induced human synovial fibroblast as an inflammatory model. Confluent primary human synovial fibroblasts were treated for 24?h with A. galanga hexane extracts in the presence of recombinant human IL-1β. MMPs in the culture medium were monitored by gelatin zymography. Total RNA was isolated from the cell lysate and analyzed via semi-quantitative RT-PCR. After treatment with A. galanga extracts, MMP-2 activity in the culture medium was significantly reduced. In addition, MMP-1, MMP-3, MMP-13, and Cox-2 expression were downregulated. These data suggest that the decrease of gene expression and production of MMPs in synovial fibroblasts against inflammatory stimuli could be due to the effects of the A. galanga extracts. Therefore, A. galanga extracts might be a promising therapeutic agent for arthritis.  相似文献   

4.
Immunologically activated astrocytes over-express matrix metalloproteinase-9 (MMP-9) and nitric oxide (NO). Because they have both beneficial and detrimental effects on the pathophyiological outcomes of several neurological diseases, their expression should be tightly regulated in the CNS. NO can modify the activity of other proteins either by directly modifying protein structure or regulating the expression of target proteins. In this study, we investigated the role of NO on the expression of MMPs in rat primary astrocytes. Rat primary astrocytes were stimulated with lipopolysaccharide (LPS), resulting in the over-expression of both MMP-9 and NO. Inhibition of NO production using nitric oxide synthase inhibitor, Nomega-nitro-l-arginine methyl ester (l-NAME), further increased MMP-9 expression, suggesting NO inhibits MMP-9 expression. In line with this observation, exogenous addition of NO donor, sodium nitroprusside (SNP) or S-nitroso-N-acetylpenicillamine (SNAP), inhibited MMP-9 expression in astrocytes. The inhibitory effect of NO was mediated by the down-regulation of mRNA and protein levels of MMP-9 but not by the direct modification of the enzymatic activity of MMP-9. The effect of NO on MMP-9 expression was mimicked by dibutyryl-cGMP and inhibited by PKG inhibitor KT5823, suggesting NO regulates MMP-9 expression via guanylate cyclase-PKG pathway. Finally, SNP or dibutyryl-cGMP inhibited the activation of ERK1/2 in LPS-stimulated astrocytes, which is an essential regulator of MMP-9 expression in astrocytes. The regulation of MMP-9 expression by NO may confer additional levels of fine-tuning of the level of MMP-9 during brain inflammatory conditions.  相似文献   

5.
Cardiovascular diseases involve critical mechanisms including impaired nitric oxide (NO) levels and abnormal matrix metalloproteinase (MMP) activity. While NO downregulates MMP expression in some cell types, no previous study has examined whether NO downregulates MMP levels in endothelial cells. We hypothesized that NO donors could attenuate MMP-9 production by human umbilical vein endothelial cells (HUVECs) as a result of less NFκB activation or cyclic GMP (cGMP)-mediated mechanisms. We studied the effects of DetaNONOate (10–400 μM) or SNAP (50–400 μM) on phorbol 12-myristate 13-acetate (PMA; 10 nM)-induced increases in MMP-9 activity (by gel zymography) or concentrations (by ELISA) as well as on a tissue inhibitor of MMPs’ (TIMP)-1 concentrations (by ELISA) in the conditioned medium of HUVECs incubated for 24 h with these drugs. We also examined whether the irreversible inhibitor of soluble guanylyl cyclase ODQ modified the effects of SNAP or whether 8-bromo-cGMP (a cell-permeable analog of cGMP) influenced PMA-induced effects on MMP-9 expression. Total and phospho-NFκB p65 concentrations were measured in HUVEC lysates to assess NFκB activation. Both NO donors attenuated PMA-induced increases in MMP-9 activity and concentrations without significantly affecting TIMP-1 concentrations. This effect was not modified by ODQ, and 8-bromo-cGMP did not affect MMP-9 concentrations. While PMA increased phospho-NFκB p65 concentrations, SNAP had no influence on this effect. In conclusion, this study shows that NO donors may attenuate imbalanced MMP expression and activity in endothelial cells independent of cGMP- or NFκB-mediated mechanisms. Our results may offer an important pharmacological strategy to approach cardiovascular diseases.  相似文献   

6.
PEP1261, a tetrapeptide derivative used in this study, corresponds to residues 39-42 of human lactoferrin. The parent protein lactoferrin is known to exhibit antinociceptive activity and it regulates many aspects of inflammation. This study is aimed to evaluate the antinociceptive and antipyretic activities of PEP1261 in rats. PEP1261 exhibits a significant dose dependent antinociceptive activity with optimal effect at 40 mg/kg body weight (b.w.) (i.p.) in both tail-flick model and acetic acid induced writhing in rats. PEP1261 at the doses of 20 and 40 mg/kg b.w. (i.p.) is also observed to exhibit notable antipyretic effect in lipopolysaccharide-induced pyrexia in rats. In conclusion, the results suggest that PEP1261 possesses antinociceptive and antipyretic activities better than the control peptide KRDS.  相似文献   

7.
8.
Deficient formation of endogenous nitric oxide (NO) contributes to cardiovascular diseases, and this may be associated with increased circulating levels of matrix metalloproteinase-9 (MMP-9), as previously shown in white subjects. Because interethnic differences exist with respect to risk factors, prevalence, and severity of cardiovascular diseases, we designed this study to examine whether the circulating levels of nitrites (a marker of endogenous NO formation) are associated with the plasma levels of MMP-9 and MMP-2 in healthy black subjects. We studied 198 healthy subjects self-reported as blacks not taking any medications. Venous blood samples were collected and plasma and whole blood nitrite levels were measured using an ozone-based chemiluminescence assay. Plasma MMP-2 and MMP-9 levels were determined by gelatin zymography. We found a positive correlation between plasma MMP-9 and MMP-2 levels (P < 0.0001, rs = 0.556). Interestingly, we found a negative relationship between the plasma MMP-9 levels and the plasma or whole blood nitrites levels (P = 0.04, rs = -0.149; and P < 0.0001, rs = -0.349, respectively). In parallel, we found similar negative relationships between plasma MMP-2 levels and plasma or whole blood nitrites levels (P = 0.02, rs = -0.172; and P < 0.0001, rs = -0.454, respectively). This is the first study to show that endogenous nitric oxide formation correlates negatively with the circulating levels of both MMP-2 and MMP-9 in black subjects. Our findings suggest a mechanistic link between deficient NO formation and increased MMPs levels, which may promote cardiovascular diseases.  相似文献   

9.
10.
Induction of COX-2 expression by nitric oxide in rheumatoid synovial cells   总被引:4,自引:0,他引:4  
Prostaglandins formed by cyclooxygenase (COX) enzymes are important mediators of inflammation. The contribution of inducible COX-2 in the rheumatoid synovium is well documented. In this study, we evaluated the contribution of nitric oxide (NO) to COX-2 expression in rheumatoid synovial cells. Exposure of rheumatoid synovial cells to a NO donor, SNAP, induced COX-2 protein expression in a dose-dependent manner. RT-PCR analysis also demonstrated that COX-2 mRNA was induced in SNAP-treated synovial cells. Dexamethasone at therapeutic concentrations markedly inhibited this NO-mediated COX-2 expression in synovial cells. In contrast to its effect on COX-2 expression, SNAP did not affect the constitutive expression of COX-1 in rheumatoid synovial cells. Our findings suggest that NO is an important modulator of COX-2 expression and that glucocorticoids exert their anti-inflammatory action in rheumatoid synovium, at least in part, by suppression of COX-2 induction.  相似文献   

11.
12.
Matrix metalloproteinases (MMPs) are proteolytic enzymes involved in degradation of extracellular matrix, a process that initiates uncontrolled spread of proliferating cancer cells and therefore plays a crucial role in cancer invasion and metastasis. Compounds able to modulate MMP activity may become important tools in cancer research. In the present study we examined the effect of two μ-selective opioids, morphine and endomorphin-2 (EM-2) on the production of MMP-2 and MMP-9 in MCF-7 cells. We report that both opioids time- and concentration-dependently inhibited the expression and secretion of these MMPs. The observed effect was not reversed by naloxone (Nal). Further experiments showed that morphine and EM-2 decreased endothelial nitric oxide synthase (eNOS) mRNA level and nitric oxide (NO) secretion in MCF-7 cells. These findings indicate that attenuation of MMP secretion by opioids was not mediated by opioid receptors but was under the control of nitric oxide system.  相似文献   

13.
Allergic rhinitis is an inflammatory disease characterized by nasal wall remodeling with intense infiltration of eosinophils and mast cells/basophils. Matrix metalloproteinases (MMPs), MMP-2 and MMP-9, are the major proteolytic enzymes that induce airway remodeling. These enzymes are also important in the migration of inflammatory cells through basement membrane components. We evaluated whether tranilast (TR) could inhibit MMP production from nasal fibroblasts in response to tumor necrosis factor-alpha (TNF-alpha) stimulation in vitro. Nasal fibroblasts (NF) were established from nasal polyp tissues taken from patients with allergic rhinitis. NF (2 x 10(5) cells/mL) were stimulated with TNF-alpha in the presence of various concentrations of TR. After 24 hours, the culture supernatants were obtained and assayed for MMP-2, MMP-9, TIMP-1, and TIMP-2 levels by ELISA. The influence of TR on mRNA expression of MMPs and TIMPs in cells cultured for 12 hours was also evaluated by RT-PCR. TR at more than 5 x 10(-5) M inhibited the production of MMP-2 and MMP-9 from NF in response to TNF-alpha stimulation, whereas TIMP-1 and TIMP-2 production was scarcely affected. TR also inhibited MMP mRNA expression in NF after TNF-alpha stimulation. The present data suggest that the attenuating effect of TR on MMP-2 and MMP-9 production from NF induced by inflammatory stimulation may underlie the therapeutic mode of action of the agent in patients with allergic diseases, including allergic rhinitis.  相似文献   

14.
Infections of body tissue by Staphylococcus aureus are quickly followed by degradation of connective tissue. Patients with rheumatoid arthritis are more prone to S. aureus-mediated septic arthritis. Various types of collagen form the major structural matrix of different connective tissues of the body. These different collagens are degraded by specific matrix metalloproteinases (MMPs) produced by fibroblasts, other connective tissue cells, and inflammatory cells that are induced by interleukin-1 (IL-1) and tumor necrosis factor (TNF). To determine the host's contribution in the joint destruction of S. aureus-mediated septic arthritis, we analyzed the MMP expression profile in human dermal and synovial fibroblasts upon exposure to culture supernatant and whole cell lysates of S. aureus. Human dermal and synovial fibroblasts treated with cell lysate and filtered culture supernatants had significantly enhanced expression of MMP-1, MMP-2, MMP-3, MMP-7, MMP-10, and MMP-11 compared with the untreated controls (p < 0.05). In the S. aureus culture supernatant, the MMP induction activity was identified to be within the molecular-weight range of 30 to >50 kDa. The MMP expression profile was similar in fibroblasts exposed to a combination of IL-1/TNF. mRNA levels of several genes of the mitogen-activated protein kinase (MAPK) signal transduction pathway were significantly elevated in fibroblasts treated with S. aureus cell lysate and culture supernatant. Also, tyrosine phosphorylation was significantly higher in fibroblasts treated with S. aureus components. Tyrosine phosphorylation and MAPK gene expression patterns were similar in fibroblasts treated with a combination of IL-1/TNF and S. aureus. Mutants lacking staphylococcal accessory regulator (Sar) and accessory gene regulator (Agr), which cause significantly less severe septic arthritis in murine models, were able to induce expression of several MMP mRNA comparable with that of their isogenic parent strain but induced notably higher levels of tissue inhibitors of metalloproteinases (TIMPs). To our knowledge, this is the first report of induction of multiple MMP/TIMP expression from human dermal and synovial fibroblasts upon S. aureus treatment. We propose that host-derived MMPs contribute to the progressive joint destruction observed in S. aureus-mediated septic arthritis.  相似文献   

15.
Matrix metalloproteinases (MMPs) are thought to be responsible for dermal photoaging in human skin. In the present study, we evaluated the involvement of macrophage migration inhibitory factor (MIF) in MMP-1 expression under ultraviolet A (UVA) irradiation in cultured human dermal fibroblasts. UVA (20 J/cm(2)) up-regulates MIF production, and UVA-induced MMP-1 mRNA production is inhibited by an anti-MIF antibody. MIF (100 ng/ml) was shown to induce MMP-1 in cultured human dermal fibroblasts. We found that MIF (100 ng/ml) enhanced MMP-1 activity in cultured fibroblasts assessed by zymography. Moreover, we observed that fibroblasts obtained from MIF-deficient mice were much less sensitive to UVA regarding MMP-13 expression than those from wild-type BALB/c mice. Furthermore, after UVA irradiation (10 J/cm(2)), dermal fibroblasts of MIF-deficient mice produced significantly decreased levels of MMP-13 compared with fibroblasts of wild-type mice. Next we investigated the signal transduction pathway of MIF. The up-regulation of MMP-1 mRNA by MIF stimulation was found to be inhibited by a PKC inhibitor (GF109203X), a Src-family tyrosine kinase inhibitor (herbimycin A), a tyrosine kinase inhibitor (genistein), a PKA inhibitor (H89), a MEK inhibitor (PD98089), and a JNK inhibitor (SP600125). In contrast, the p38 inhibitor (SB203580) was found to have little effect on expression of MMP-1 mRNA. We found that PKC-pan, PKC alpha/beta II, PKC delta (Thr505), PKC delta (Ser(643)), Raf, and MAPK were phosphorylated by MIF. Moreover, we demonstrated that phosphorylation of PKC alpha/beta II and MAPK in response to MIF was suppressed by genistein, and herbimycin A as well as by transfection of the plasmid of C-terminal Src kinase. The DNA binding activity of AP-1 was significantly up-regulated 2 h after MIF stimulation. Taken together, these results suggest that MIF is involved in the up-regulation of UVA-induced MMP-1 in dermal fibroblasts through PKC-, PKA-, Src family tyrosine kinase-, MAPK-, c-Jun-, and AP-1-dependent pathways.  相似文献   

16.
βig-h3 is a TGF-β (transforming growth factor β)-induced ECM (extracellular matrix) protein that induces the secretion of MMPs (matrix metalloproteinases). However, the mechanism of induction is yet to be established. In this study, siRNAs (small interfering RNAs) targeted against βig-h3 were transfected into SMMC-7721 cells [a HCC (human hepatocellular carcinoma) cell line] to knockdown the expression of βig-h3. We found that NiCl2, a potent blocker of extracellular Ca2+ entry, reduced βig-h3-induced secretion of MMP-2 and -9. Further investigation suggested that reduction in the levels of βig-h3 decreased the secretion of MMP-2 and -9 that was enhanced by an increase in the concentration of extracellular Ca2+. SNAP (S-nitroso-N-acetylpenicillamine), a NO (nitric oxide) donor, and 8-Br-cGMP (8-bromo-cGMP) inhibited thapsigargin-induced Ca2+ entry and MMP secretion in the invasive potential of human SMMC-7721 cells. Further, the inhibitory effects of 8-Br-cGMP and SNAP could be significantly enhanced by down-regulating βig-h3. βig-h3 attenuates the negative regulation of NO/cGMP-sensitive store-operated Ca2+ entry. Our findings suggest that the expression of βig-h3 might play an important role in the regulation of store-operated Ca2+ entry to increase the invasive potential of HCC cells.  相似文献   

17.
18.
19.
A tetrapeptide derivative PEP1261 {Boc-Lys-(Boc)-Arg-Asp-Ser-(tBu)-OtBu}, corresponding to residues 39–42 of human lactoferrin, was tested for its antiinflammatory action in adjuvant induced arthritis in rats. Administration of heat killed Mycobacterium tuberculosis (500 g/0.1 ml of paraffin oil) intradermally into the foot pad of right hind paw resulted in an increased paw volume and an increase in the levels of reactive oxygen species and -glucuronidase as well as a decrease in the antioxidants levels. PEP1261, at an effective dose of 10 mg/kg body wt., exhibited a significant antiarthritic activity as evidenced by lowering of paw volume and inhibited the free radicals toxicity by increasing the antioxidants levels. This peptide derivative was also shown to have a membrane stabilizing action by significantly decreasing the total and free activity of -glucuronidase and inhibiting the rate of release of the enzyme from lysosomal rich fraction. Histopathological studies confirmed the above results by showing a decrease in mononuclear cell infiltration, hypertrophy, hyperplasia and pannus formation after PEP1261 treatment in arthritic rats.  相似文献   

20.
Infections of body tissue by Staphylococcus aureus are quickly followed by degradation of connective tissue. Patients with rheumatoid arthritis are more prone to S. aureus-mediated septic arthritis. Various types of collagen form the major structural matrix of different connective tissues of the body. These different collagens are degraded by specific matrix metalloproteinases (MMPs) produced by fibroblasts, other connective tissue cells, and inflammatory cells that are induced by interleukin-1 (IL-1) and tumor necrosis factor (TNF). To determine the host's contribution in the joint destruction of S. aureus-mediated septic arthritis, we analyzed the MMP expression profile in human dermal and synovial fibroblasts upon exposure to culture supernatant and whole cell lysates of S. aureus. Human dermal and synovial fibroblasts treated with cell lysate and filtered culture supernatants had significantly enhanced expression of MMP-1, MMP-2, MMP-3, MMP-7, MMP-10, and MMP-11 compared with the untreated controls (p < 0.05). In the S. aureus culture supernatant, the MMP induction activity was identified to be within the molecular-weight range of 30 to >50 kDa. The MMP expression profile was similar in fibroblasts exposed to a combination of IL-1/TNF. mRNA levels of several genes of the mitogen-activated protein kinase (MAPK) signal transduction pathway were significantly elevated in fibroblasts treated with S. aureus cell lysate and culture supernatant. Also, tyrosine phosphorylation was significantly higher in fibroblasts treated with S. aureus components. Tyrosine phosphorylation and MAPK gene expression patterns were similar in fibroblasts treated with a combination of IL-1/TNF and S. aureus. Mutants lacking staphylococcal accessory regulator (Sar) and accessory gene regulator (Agr), which cause significantly less severe septic arthritis in murine models, were able to induce expression of several MMP mRNA comparable with that of their isogenic parent strain but induced notably higher levels of tissue inhibitors of metalloproteinases (TIMPs). To our knowledge, this is the first report of induction of multiple MMP/TIMP expression from human dermal and synovial fibroblasts upon S. aureus treatment. We propose that host-derived MMPs contribute to the progressive joint destruction observed in S. aureus-mediated septic arthritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号