首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
A full-length cDNA clone encoding the PSI-F subunit of barley photosystem I has been isolated and sequenced. The open reading frame encodes a precursor polypeptide with a deduced molecular mass of 24837 Da. The barley PSI-F precursor contains a bipartite presequence with characteristics similar to the presequences of proteins destined to the thylakoid lumen. In vitro import studies demonstrate that an in vitro synthesized precursor is transported across the chloroplast envelope and directed to the thylakoid membrane, where it accumulates in a protease-resistant form. Incubation of the precursor with a chloroplast stromal extract results in processing to a form intermediate in size between the precursor and mature forms. Hydrophobicity analysis of the barley PSI-F protein reveals a hydrophobic region predicted to be a membrane spanning -helix. The hydrophobic nature of PSI-F combined with a bipartite presequence is unusual. We postulate that the second domain in the bipartite presequence of the PSI-F precursor proteins is required to ensure the proper orientation of PSI-F in the thylakoid membrane. The expression of the PsaF gene is light-induced similar to other barley photosystem I genes.Abbreviations 16K 23K and 33K proteins, the 16 kDa, 23 kDa and 33 kDa subunits of the photosystem II oxygen-evolving complex - PSI-N and PSI-F photosystem I subunit N and F - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

2.
An in-vitro system has been established to study the integration of early light-inducible proteins (ELIP) into isolated thylakoid membranes. The in-vitro-expressed ELIP precursor proteins exist in two forms, a high-molecular-mass aggregate which is accessible to trypsin but no longer to the stromal processing protease and a soluble form which is readily cleaved to the mature form by the stromal protease. The mature form of ELIP is integrated into thylakoid membranes; its correct integration can be deduced from the observation that the posttranslationally transported products and the in-vitro integrated ELIP species are cleaved by trypsin to products of the same apparent molecular mass. Trypsin-resistant fragments of high-molecular-mass and low-molecular-mass ELIP appear to have the same size. The processed ELIP species, as well as an engineered mature form of ELIP, are integrated into isolated thylakoid membranes. Integration of the mature protein occurs in the absence of stroma, into sodium-chloride-washed, and trypsin-treated thylakoid membranes. The process of integration is almost temperature independent over 0-30 degrees C. Analysis of the time course of integration leads to the conclusion that, under in-vitro conditions, processing but not integration into membranes is the rate-limiting step. In the absence of stroma, the ELIP precursor is bound to the thylakoid membranes, however, it is no longer accessible to the stromal maturating protease when added after binding has occurred. In conclusion, integration of ELIP differs in many essential details from that of its relatives, the light-harvesting chlorophyll a/b protein family.  相似文献   

3.
The precursor to the nuclear-coded 17 kDa early light-inducible protein (ELIP) of pea has been transported into isolated intact chloroplasts. The location of the mature protein in the thylakoid membranes was investigated after using cleavable crosslinkers such as DSP and SAND in conjunction with immuno-fractionation methods and by application of mild detergent fractionation. We show that ELIP is integrated into the membranes via the unstacked stroma thylakoids. After isolation of protein complexes by solubilization of membranes with Triton X-100 and sucrose density-gradient centrifugation the crosslinked ELIP comigrates with the PS II core complex. Using SAND we identified ELIP as a 41–51 kDa crosslinked product while with DSP four products of 80 kDa, 70 kDa, 50–42 kDa and 23–21 kDa were found. The immunoprecipitation data suggested that the D1-protein of the PS II complex is one of the ELIP partners in crosslinked products.Abbreviations chl chlorophyll - D1 herbicide-binding protein - DSP dithiobis-(succinimidylpropionate) - ELIP early light-inducible protein - LHC I and LHC II light-harvesting chlorophyll a/b complex associated with photosystem I or II - PAGE polyacrylamide gel electrophoresis - poly(A)-rich RNA polyadenyd mRNA - PS I and PS II photosystems I and II - SAND sulfosuccinimidyl 2-(m-azido-o-nitro-benzamido)-ethyl-1,3-dithiopropionate - Triton X-100 octylphenoxypolyethoxyethanol  相似文献   

4.
The sequences of the nuclear genes of the 33 kDa (OEE1) and the 16 kDa (OEE3) polypeptides of the oxygen evolving complex of Chlamydomonas reinhardtii have been established. Comparison between the OEE1 protein sequences of C. reinhardtii and higher plants and cyanobacteria reveals 67 and 47% homology. In contrast, C. reinhardtii and higher plants have only 28% overall homology for OEE3 which is mostly limited to the central portion of the protein. The transit peptides of the C. reinhardtii proteins consist of 52 (OEE1) and, most likely, 51 (OEE1) amino acids. They have a basic amino terminal region and, at least in the case of OEE1, a hydrophobic segment at their carboxy terminal end typical of thylakoid lumen proteins. Comparison of the genomic and cDNA clones indicates that the OEE1 and OEE3 genes contain five and four introns, respectively, some of which are located within the coding sequences of the transit peptides.  相似文献   

5.
cDNA species encoding precursor polypeptides of the chlorophyll a/b/c light-harvesting complex (LHC) of Mantoniella squamata were cloned and sequenced. The precursor polypeptides have molecular weights of 24.2 kDa and are related to the major chlorophyll a/b polypeptides of higher plants. Southern analysis showed that their genes belong to the nuclear encoded Lhc multigene family; the investigated genes most probably do not contain introns. The chlorophyll a/b/c polypeptides contain two highly conserved regions common to all LHC polypeptides and three hydrophobic -helices, which span the thylakoid membrane. The first membrane-spanning helix, however, is not detected by predictive methods: its atypical hydrophilic domains may bind the chlorophyll c molecules within the hydrophobic membrane environment. Homology to LHC 11 of higher plants and green algae is specifically evident in the C-terminal region comprising helix III and the preceding stroma-exposed domain. The N-terminal region of 29 amino acids resembles the structure of a transit sequence, which shows only minor similarities to those of LHC II sequences. Strikingly, the mature light-harvesting polypeptides of M. squamata lack an N-terminal domain of 30 amino acids, which, in higher plants, contains the phosphorylation site of LHC 11 and simultaneously mediates membrane stacking. Therefore, the chlorophyll a/b/c polypeptides of M. squamata do not exhibit any light-dependent preference for photosystem I or 11. The lack of this domain also indicates that the attractive forces between stacked thylakoids are weak.This study is dedicated to Prof. Dr. W Rüdiger on the occasion of his 60th birthday  相似文献   

6.
Summary A 9 kDa polypeptide which is loosely attached to the inner surface of the thylakoid membrane and is important for the oxygen-evolving activity of Photosystem II in the thermophilic cyanobacterium Phormidium laminosum has been purified, a partial amino acid sequence obtained and its gene cloned and sequenced. The derived amino acid sequence indicates that the 9 kDa polypeptide is initially synthesised with an N-terminal leader sequence of 44 amino acids to direct it across the thylakoid membrane. The leader sequence consists of a positively charged N-terminal region, a long hydrophobic region and a typical cleavage site. These features have analogous counterparts in the thylakoid-transfer domain of lumenal polypeptides from chloroplasts of higher plants. These findings support the view of the proposed function of this domain in the two-stage processing model for import of lumenal, nuclear-encoded polypeptides. In addition, there is striking primary sequence homology between the leader sequences of the 9 kDa polypeptide and those of alkaline phosphatase (from the periplasmic space of Escherichia coli) and, particularly in the region of the cleavage site, the 16 kDa polypeptide of the oxygen-evolving apparatus in the thylakoid lumen of spinach chloroplasts.  相似文献   

7.
Two cDNA clones encoding fucoxanthin chlorophyll a/c-binding proteins (FCP) in the diatom Odontella sinensis have been cloned and sequenced. The derived amino acid sequences of both clones are identical, comparison of the corresponding nucleic acids reveals differences only in the third codon position, suggesting a recent gene duplication. The derived proteins are similar to the chlorophyll a/b-binding proteins of higher plants. The presequences for plastid import resemble signal sequences for cotranslational import rather than transit peptides of higher plants. They are very similar to the presequences of FCP proteins in the diatom Phaeodactylum, but different from the presequences of the -subunit of CF0CF1 of Odontella and the peridinin chlorophyll a binding proteins (PCP) of the dinoflagellate Symbiodinium.Abbreviations CAB chlorophyll a/b-binding protein - FCP fucoxanthin chlorophyll a/c-binding protein - fcp the respective FCP genes - LHC light-harvesting complex - PCP peridinin chlorophyll a-binding protein - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate  相似文献   

8.
We are interested in the mechanism of insertion of proteins into the chloroplast thylakoid membrane and the role that accessory pigments may play in this process. For this reason we have begun a molecular analysis of mutant plants deficient in pigments that associate with thylakoid membrane proteins. We have characterized plants that are homozygous for the previously isolated, recessive mutation chlorina-1 (ch-1) or Arabidopsis thaliana. Despite the lack of chlorophyll b and light-harvesting proteins of photosystem II (LHCPII) near normal levels of LHCPII mRNA are found in the mutant, in contrast to LHCPII mRNA levels in carotenoid-deficient mutants. The LHCPII mRNA of chlorina-1 plants can be translated in vitro so it is likely that LHCPII is not stable in ch-1 plants. Moreover, the thylakoid membranes of ch-1 plants remain appressed even though LHCPII levels are drastically reduced.  相似文献   

9.
Summary A Chlamydomonas gene encodes a protein that shows sequence similarity with the subunit of guanine nucleotide binding proteins from mammals, fruit fly and yeast. In addition to amino acid sequences similarity, each of these proteins contains a segmented repeat structure in which certain amino acids form a consensus sequence. Thus this gene product has been designated a Chlamydomonas subunit-like polypeptide (Cblp). The mRNA is constitutively expressed during the cell cycle and during flagellar regeneration.  相似文献   

10.
A single general import pathway in vascular plants mediates the transport of precursor proteins across the two membranes of the chloroplast envelope, and at least four pathways are responsible for thylakoid protein targeting. While the transport systems in the thylakoid are related to bacterial secretion systems, the envelope machinery is thought to have arisen with the endosymbiotic event and to be derived, at least in part, from proteins present in the original endosymbiont. Recently the moss Physcomitrella patens has gained worldwide attention for its ability to undergo homologous recombination in the nuclear genome at rates unseen in any other land plants. Because of this, we were interested to know whether it would be a useful model system for studying chloroplast protein transport. We searched the large database of P. patens expressed sequence tags for chloroplast transport components and found many putative homologues. We obtained full-length sequences for homologues of three Toc components from moss. To our knowledge, this is the first sequence information for these proteins from non-vascular plants. In addition to identifying components of the transport machinery from moss, we isolated plastids and tested their activity in protein import assays. Our data indicate that moss and pea (Pisum sativum) plastid transport systems are functionally similar. These findings identify P. patens as a potentially useful tool for combining genetic and biochemical approaches for the study of chloroplast protein targeting. Abbreviations: EST, expressed sequence tag; LHCP, light-harvesting chlorophyll-binding protein; NIBB, National Institute for Basic Biology; OE17, 17 kDa subunit of the oxygen-evolving complex; PC, plastocyanin; PEP, Physcomitrella EST Programme; SPP, stromal processing peptidase; SRP, signal recognition particle; Tat, twin-arginine translocation; Tic, translocon at the inner membrane of the chloroplast envelope; Toc, translocon at the outer membrane of the chloroplast envelope; TPP, thylakoid processing peptidase; TPR, tetratricopeptide repeatSupplementary material to this paper is available in electronic form at .This revised version was opublished online in July 2005 with corrected page numbers.  相似文献   

11.
Previously, a ferredoxin-type iron-sulfur protein, frx B protein, was identified in a high-salt extract of the purified thylakoid membrane of Chlamydomonas reinhardtii, a unicellular green alga. Polyclonal antibody was raised against a synthetic pentadecameric peptide with an amino acid sequence corresponding to the highly conserved region of the putative frx B proteins of 3 land plants [21]. In this report, protein(s) reacting strongly and specifically with this antibody was detected in the equivalent high-salt extract prepared from purified chloroplast of spinach and tobacco. One strong reaction polypeptide band from tobacco chloroplast was purified from SDS-polyacrylamide gel and subjected to endoproteinase lys C digestion. The resulting polypeptides were separated by reversed-phase chromatography. N-terminal sequencing of 3 purified polypeptides revealed that the protein is encoded by the frxB gene identified from DNA sequence analysis.  相似文献   

12.
13.
Chloroplast transit peptides from the green alga Chlamydomonas reinhardtii have been analyzed and compared with chloroplast transit peptides from higher plants and mitochondrial targeting peptides from yeast, Neurospora and higher eukaryotes. In terms of length and amino acid composition, chloroplast transit peptides from C. reinhardtii are more similar to mitochondrial targetting peptides than to chloroplast transit peptides from higher plants. They also contain the potential amphiphilic α-helix characteristic of mitochondrial presequences. However, in similarity with chloroplast transit peptides from higher plants, they contain a C-terminal region with the potential to form an amphiphilic β-strand. As in higher plants, transit peptides that route proteins to the thylakoid lumen consist of an N-tenninal domain similar to stroma-targeting transit peptides attached to a C-terminal apolar domain that share many characteristics with secretory signal peptides.  相似文献   

14.
A cDNA clone encoding a 15.501 Da photosystem I (PSI) subunit of barley was isolated using an oligonucleotide based on the NH2-terminal amino acid sequence of the isolated protein. The polypeptide, which migrates with an apparent molecular mass of 9.5 kDa on denaturing SDS-PAGE, has been designated PSI-N, and the corresponding gene is PsaN. Analysis of the deduced protein sequence indicates a mature protein of 85 amino acid residues and a molecular mass of 9818 Da. PSI-N is a hydrophilic, extrinsic protein with no predicted membrane-spanning regions. The transit peptide of 60 residues (5683 Da) contains a predicted hydrophobic -helix, suggesting that the protein is routed into the thylakoid lumen. Thus, PSI-N is the second known lumenal protein component associated with PSI, together with PSI-F.  相似文献   

15.
Koussevitzky S  Ne'eman E  Harel E 《Planta》2004,219(3):412-419
Polyphenol oxidase (PPO; EC 1.10.3.2 or EC 1.14.18.1) takes part in the response of tomato plants (Lycopersicon esculentum Mill.) to wounding and herbivore attack, mediated by the octadecanoid wound-signaling pathway. Wounding and methyl jasmonate (MeJA) induce expression of ppo genes and markedly increase the level of the enzyme. We report that pretreatment with MeJA also markedly increased the ability of isolated tomato chloroplasts to import and process PPO precursors (pPPO). Pea (Pisum sativum L.) chloroplasts showed no such response. Wounding or ethylene alone was ineffective but ethylene was synergistic with MeJA. Treatment with MeJA conferred a strong binding of pPPO, or its processing intermediate, to thylakoids and subsequent translocation into the lumen and processing to the mature protein. The effect on PPO import and translocation was evident after 8–16 h exposure to MeJA. Membrane-bound pPPO was cross-linked to a proteinaceous component of the thylakoid translocation apparatus, apparently induced by MeJA. The import and processing of other nuclear-encoded thylakoid proteins were not affected by MeJA in tomato. A 90-kDa protein that co-fractionated with thylakoids was induced along with the increase in competence for PPO import, and was identified as the proteinase-inhibitor multicystatin. It is concluded that the 90-kDa protein observed is part of the MeJA-induced defense response of tomato, not a component of the thylakoid translocation apparatus.Abbreviations Chl Chlorophyll - i and p Prefixes used to denote the intermediate and precursor forms of a protein, respectively - JA Jasmonic acid - LSU Large subunit of Rubisco - MeJA Methyl jasmonate - OE23 and OE33 23- and 33-kDa subunits of the oxygen-evolving complex of PSII - PC Plastocyanin - pPPO (iPPO, PPO) Precursor (intermediate, mature) form of polyphenol oxidase  相似文献   

16.
Signal peptide mutants ofEscherichia coli   总被引:10,自引:0,他引:10  
Numerous secretory proteins of the Gram-negative bacteriaE. coli are synthesized as precursor proteins which require an amino terminal extension known as the signal peptide for translocation across the cytoplasmic membrane. Following translocation, the signal peptide is proteolytically cleaved from the precursor to produce the mature exported protein. Signal peptides do not exhibit sequence homology, but invariably share common structural features: (1) The basic amino acid residues positioned at the amino terminus of the signal peptide are probably involved in precursor protein binding to the cytoplasmic membrane surface. (2) A stretch of 10 to 15 nonpolar amino acid residues form a hydrophobic core in the signal peptide which can insert into the lipid bilayer. (3) Small residues capable of -turn formation are located at the cleavage site in the carboxyl terminus of the signal peptide. (4) Charge characteristics of the amino terminal region of the mature protein can also influence precursor protein export. A variety of mutations in each of the structurally distinct regions of the signal peptide have been constructedvia site-directed mutagenesis or isolated through genetic selection. These mutants have shed considerable light on the structure and function of the signal peptide and are reviewed here.  相似文献   

17.
PsbW is a nuclear-encoded protein located in the thylakoid membrane of the chloroplast. Studies in higher plants have provided substantial evidence that PsbW is a core component of photosystem II. However, recent data have been presented to suggest that PsbW is also a subunit of photosystem I. Such a sharing of subunits between the two photosystems would represent a novel phenomenon. To investigate this, we have cloned and characterized the psbW gene from the green alga Chlamydomonas reinhardtii. The gene is split by five introns and encodes a polypeptide of 115 residues comprising the 6.1 kDa mature PsbW protein preceded by a 59 amino acid bipartite transit sequence. Using antibodies raised to PsbW we have examined: (1) C. reinhardtii mutants lacking either photosystem and (2) purified photosystem preparations. We find that PsbW is a subunit of photosystem II, but not photosystem I.  相似文献   

18.
Characterization of the genes involved in the process of protein translocation is important in understanding their structure-function relationships. However, little is known about the signals that govern chlamydial gene expression and translocation. We have cloned a 1.7 kb HindIII-PstI fragment containing the secY gene of Chlamydia trachomatis. The complete nucleotide sequence reveals three open reading frames. The amino acid sequence shows highest homology with Escherichia coli proteins L15, SecY and S13, corresponding to the spc- ribosomal protein operons. The product of the C. trachomatis secY gene is composed of 457 amino acids with a calculated molecular mass of 50 195 Daltons. Its amino acid sequence shows 27.4% and 35.7% identity to E. coli and Bacillus subtilis SecY proteins, respectively. The distribution of hydrophobic amino acids in the C. trachomatis secY gene product is suggestive of it being an integral membrane protein with ten transmembrane segments, the second, third and seventh membrane segments sharing > 45% identity with E. coli SceY. Our results suggest that despite evolutionary differences, eubacteria share a similar protein export apparatus.  相似文献   

19.
Summary We have cloned and characterized members of a gene family encoding polypeptide constituents of the fucoxanthin, chlorophyll a/c protein complex, a light-harvesting complex associated with photosystem II of diatoms and brown algae. Three cDNA clones encoding proteins associated with this complex in the diatom Phaeodactylum tricornutum have been isolated. As deduced from the nucleotide sequences, these light-harvesting proteins show homology to the chlorophyll a/b binding polypeptides of higher plants. Specifically, the N-terminal regions of the fucoxanthin, chlorophyll a/c-binding proteins are homologous to the chlorophyll a/b binding proteins in both the third membrane-spanning domain and the stroma-exposed region between membrane-spanning domains 2 and 3. Like the chlorophyll a/b-binding proteins, the mature fucoxanthin, chlorophyll a/c polypeptides have three hydrophobic -helical domains which could span the membrane bilayer. The similarities between the two light-harvesting proteins might reflect the fact that both bind chlorophyll molecules and/or might be important for maintaining certain structural features of the complex. There is little similarity between the N-terminal sequences of the primary translation products of the fucoxanthin, chlorophyll a/c proteins and any transit sequences that have been characterized. Instead, the N-terminal sequences have features resembling those of signal sequences. Thus either transit peptides used in P. tricornutum show little resemblance to those of higher plants and green algae or the nuclear-encoded plastid proteins enter the organelle via a mechanism different from that used in higher plants.  相似文献   

20.
Pure plasma membrane and thylakoid membrane fractions from Synechocystis 6803 were isolated to study the localisation and processing of the precursor form of the D1 protein (pD1) of photosystem II (PSII). PSII core proteins (D1, D2 and cytb559) were localised both to plasma and thylakoid membrane fractions, the majority in thylakoids. pD1 was found only in the thylakoid membrane where active PSII is known to function. Membrane fatty acid unsaturation was shown to be critical in processing of pD1 into mature D1 protein. This was concluded from pulse-labelling experiments at low temperature using wild type and a mutant Synechocystis 6803 with a low level of membrane fatty acid unsaturation. Further, pD1 was identified as two distinct bands, an indication of two cleavage sites in the precursor peptide or, alternatively, two different conformations of pD1. Our results provide evidence for thylakoid membranes being a primary synthesis site for D1 protein during its light-activated turnover. The existence of the PSII core proteins in the plasma membrane, on the other hand, may be related to the biosynthesis of new PSII complexes in these membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号