首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular farming of pharmaceutical proteins   总被引:38,自引:0,他引:38  
Molecular farming is the production of pharmaceutically important and commercially valuable proteins in plants. Its purpose is to provide a safe and inexpensive means for the mass production of recombinant pharmaceutical proteins. Complex mammalian proteins can be produced in transformed plants or transformed plant suspension cells. Plants are suitable for the production of pharmaceutical proteins on a field scale because the expressed proteins are functional and almost indistinguishable from their mammalian counterparts. The breadth of therapeutic proteins produced by plants range from interleukins to recombinant antibodies. Molecular farming in plants has the potential to provide virtually unlimited quantities of recombinant proteins for use as diagnostic and therapeutic tools in health care and the life sciences. Plants produce a large amount of biomass and protein production can be increased using plant suspension cell culture in fermenters, or by the propagation of stably transformed plant lines in the field. Transgenic plants can also produce organs rich in a recombinant protein for its long-term storage. This demonstrates the promise of using transgenic plants as bioreactors for the molecular farming of recombinant therapeutics, including vaccines, diagnostics, such as recombinant antibodies, plasma proteins, cytokines and growth factors. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Hightech from Natures Pharmacy Plants produce a plethora of valuable natural products, many of which are used as pharmaceuticals. Today, a large fraction of the novel pharmaceuticals entering the market are biomolecules of proteinaceous nature (antibodies, hormones, cytokines, vaccines) and they are produced in transgenic organisms like bacteria, yeast, or mammalian cell cultures. Plants are also capable to serve as a production host for novel therapeutics like monoclonal antibodies, hormones like insulin, or subunit vaccines. Transgenic plants and plant cell cultures are already modified to produce protein biopharmaceuticals and vaccines on a large scale basis and in some aspects they have clear advantages over conventional production hosts (e.g. cost of goods, speed of production, or posttranslational modification of therapeutic proteins). Therefore, plant biotechnology could create entirely novel medicinal plants with applications not known before.  相似文献   

3.
Antibody production by molecular farming in plants   总被引:7,自引:0,他引:7  
"Molecular farming" is the production of pharmaceutical proteins in transgenic plants and has great potential for the production of therapeutic anti-cancer antibodies and recombinant therapeutic proteins. Plants make fully functional recombinant human or animal antibodies. Cultivating transgenic plants on an agricultural scale will produce almost unlimited supplies of recombinant proteins for uses in medicine. Combinatorial library technology is a key tool for the generation and optimisation of therapeutic antibodies ahead of their expression in plants. Optimised antibody expression can be rapidly verified using transient expression assays in plants before creation of transgenic suspension cells or plant lines. Subcellular targeting signals that increase expression levels and optimise protein stability can be identified and exploited using transient expression to create high expresser plant lines. When high expresser lines have been selected, the final step is the development of efficient purification methods to retrieve functional antibody. Antibody production on an industrial scale is then possible using plant suspension cell culture in fermenters, or by the propagation of stably transformed plant lines in the field. Recombinant proteins can be produced either in whole plants or in seeds and tubers, which can be used for the long-term storage of both the protein and its production system. The review will discuss these developments and how we are moving toward the molecular farming of therapeutic antibodies becoming an economic and clinical reality.  相似文献   

4.
'Molecular farming' is the production of recombinant proteins in plants. It is intended to harness the power of agriculture to cultivate and harvest transgenic plants producing recombinant therapeutics. Molecular farming has the potential to provide virtually unlimited quantities of recombinant antibodies for use as diagnostic and therapeutic tools in both health care and the life sciences. Importantly, recombinant antibody expression can be used to modify the inherent properties of plants, for example by using expressed antipathogen antibodies to increase disease resistance. Plant transformation is technically straightforward for model plant species and some cereals, and the functional expression of recombinant proteins can be rapidly analyzed using transient expression systems in intact or virally infected plants. Protein production can then be increased using plant suspension cell production in fermenters, or by the propagation of stably transformed plant lines in the field. Transgenic plants can be exploited to produce organs rich in a recombinant protein for its long-term storage. This demonstrates the promise of using transgenic plants as bioreactors for the 'molecular farming' of recombinant therapeutics, blood substitutes and diagnostics, such as recombinant antibodies.  相似文献   

5.
利用转基因植物表达药用蛋白   总被引:7,自引:0,他引:7  
随着药物生物技术和植物基因工程迅速发展 ,转基因植物被用作生物反应器生产具有医疗价值的多肽和蛋白质已成为生物医学研究的热点。研究表明转基因植物表达的蛋白质能够保持原有的结构和功能 ,这预示它将为药用蛋白的生产提供一条安全和廉价的新途径。主要概述了近年来国内外转基因植物生产诸如疫苗、抗体和其他药用蛋白或多肽等的研究进展 ,并着重探讨了存在的问题和解决策略。  相似文献   

6.
7.
The low cost of production makes plants an ideal candidate for producing many high value compounds through genetic engineering. Expression of vaccines, therapeutic proteins, nutraceuticals, industrial enzymes, and other bio-polymers has been achieved in different plants. A few products for human health care that have been produced in plant systems are currently undergoing human clinical trials. Some recombinant molecules produced in plants for diagnostic use are currently available in the market and several other compounds are in the pipeline for commercialization. The involvement of several biotechnology companies and the successes achieved provide promise for the growth of this emerging field, “Molecular Farming”.  相似文献   

8.
The molecular breeding of plants that have been genetically engineered for improved disease resistance and stress tolerance has been undertaken with the goal of improving food production. More recently, it has been realized that transgenic plants can serve as bioreactors for the production of proteins or compounds with industrial or clinical uses. Several different recombinant enzymes and antibodies have been produced in this manner. To maximize the potential of industrial plants as a production system for proteins, efficient expression systems utilizing promoters that optimize transgene expression, 5′-untranslated region elements for efficient translation, and appropriate post-translational modifications and localization must be developed. This review summarizes successful examples of the production of recombinant enzymes, antibodies, and vaccines using signal peptides that direct vesicular localization in transgenic plants. We further discuss the modulation of recombinant protein localization to the endoplasmic reticulum, vacuolar system, or extracellular compartments by varying the signal peptide.  相似文献   

9.
重组蛋白为疾病治疗提供了新手段,同时创造了可观的经济效益。利用经济作物(主要是烟草)、谷类作物、豆科作物和蔬菜作物生产具有药用价值的重组蛋白是“分子农业”最热门的研究内容。尽管许多重组蛋白已在植物中表达,但只有一小部分已成功投入使用。为了极大地克服限制植物生产重组蛋白发展的问题,研究人员改进表达系统以增加重组蛋白的产量。本文从分析植物产生重组蛋白产量低和/或生物活性低等问题入手,综述了近些年来解决这些问题的优化策略,同时提出了提高植物生产重组蛋白产量的研究方向。  相似文献   

10.
植物生物反应器生产药物蛋白的前景   总被引:7,自引:0,他引:7  
肖乃仲  白云峰  刘锦秀  王兴智 《遗传》2003,25(1):107-112
转基因植物作为生物反应器生产重要的药用蛋白,如抗体、血液替代品和疫苗,为健康保健和科学研究提供充足的生物药物,满足人们日益增长的需要。本文综述了这一领域的研究进展以及商业化前景。  相似文献   

11.
The products of Plant Molecular Farming are recombinant proteins or their metabolic products. In this study, patent data was employed to assess industrial trend in the research and innovation process of Plant Molecular Farming within national and international context. The US Patent and Trade Organization (USPTO), the European Patent Office (EPO) issued a total of 585 patents covering Plant Molecular Farming from 2002 through 2006. By nationality, US inventors predominated as recipients of PMF patents, followed by Germany, Denmark, and Japan. The PMF patents were catagorized in five major areas of research namely pharmaceutical and nutraceuticals with 170 patents (31%) and plant expression tools and methods for alternative production systems with 169 patents (29%) were the dominating patent applications, followed by 102 patent claims associated with antibodies (17%), 71 patents of industrial molecules (12%), 48 patents of vaccines (8%), and finally 18 patents related to post-translational protein glycosylation (3%). The greatest proportion of patentees was of US origin (52%), and PMF associated patenting activities at the USPTO and EPO were dominated with 67% by private organizations. Disclaimer: The views expressed in this study do not necessarily reflect those of the European Commission.  相似文献   

12.
Recombinant proteins are widely used today in many industries, including the biopharmaceutical industry, and can be expressed in bacteria, yeasts, mammalian and insect cell cultures, or in transgenic plants and animals. In addition, transgenic algae have also been shown to support recombinant protein expression, both from the nuclear and chloroplast genomes. However, to date, there are only a few reports on recombinant proteins expressed in the algal chloroplast. It is unclear whether this is because of few attempts or of limitations of the system that preclude expression of many proteins. Thus, we sought to assess the versatility of transgenic algae as a recombinant protein production platform. To do this, we tested whether the algal chloroplast could support the expression of a diverse set of current or potential human therapeutic proteins. Of the seven proteins chosen, >50% expressed at levels sufficient for commercial production. Three expressed at 2%–3% of total soluble protein, while a forth protein accumulated to similar levels when translationally fused to a well‐expressed serum amyloid protein. All of the algal chloroplast‐expressed proteins are soluble and showed biological activity comparable to that of the same proteins expressed using traditional production platforms. Thus, the success rate, expression levels, and bioactivity achieved demonstrate the utility of Chlamydomonas reinhardtii as a robust platform for human therapeutic protein production.  相似文献   

13.
Expression in transgenic plants is potentially one of the most economical systems for large-scale production of valuable peptide and protein products. However, the downstream processing of recombinant proteins produced in plants has not been extensively studied. In this work, we studied the extraction and purification of recombinant aprotinin, a protease inhibitor used as a therapeutic compound, produced in transgenic corn seed. Conditions for extraction from transgenic corn meal that maximize aprotinin concentration and its fraction of the total soluble protein in the extract were found: pH 3.0 and 200 mM NaCl. Aprotinin, together with a native corn trypsin inhibitor (CTI), was captured using a tryspin-agarose column. These two inhibitors were separated using an agarose-IDA-Cu2+ column that proved to efficiently absorb the CTI while the recombinant aprotinin was collected in the flowthrough with purity of at least 79%. The high purity of the recombinant aprotinin was verified by SDS-PAGE and N-terminal sequencing. The overall recombinant aprotinin recovery yield and purification factor were 49% and 280, respectively. Because CTI was also purified, the recovery and purification process studied has the advantage of possible CTI co-production. Finally, the work presented here introduces additional information on the recovery and purification of recombinant proteins produced in plants and corroborates with past research on the potential use of plants as biorreactors.  相似文献   

14.
The high fibrin specificity of Desmodus rotundus salivary plasminogen activator alpha1 (DSPAalpha1 or desmoteplase (INN)) makes it a promising candidate for the treatment of acute ischemic stroke. In the current study we explored the use of transgenic tobacco plants and BY-2 suspension cells as alternative production platforms for this drug. Four different N-terminal signal peptides, from plants and animals, were used to translocate the recombinant DSPAalpha1 protein to the endomembrane system. Intact recombinant DSPAalpha1 was produced in transgenic plants and BY-2 cells, although a certain degree of degradation was observed in immunoblotted extracts. The choice of signal peptide had no major influence on the degradation pattern or recombinant protein accumulation, which reached a maximum level of 38 microg/g leaf material. N-terminal sequencing of purified, His6-tagged DSPAalpha1 revealed only minor changes in the position of signal peptide cleavage compared to the same protein expressed in Chinese hamster ovary cells. However, correctly processed recombinant DSPAalpha1 was also detected. The enzymatic activity of the recombinant protein was confirmed using an in vitro assay with unpurified and purified samples, demonstrating that plants are suitable for the production of functional DSPAalpha1. In contrast to whole plant cell extracts, no recombinant DSPAalpha1 was detected in the culture supernatant of transgenic BY-2 cells. Further analysis showed that recombinant DSPAalpha1 is subject to proteolysis and that endogenous secreted BY-2 proteases are responsible for DSPAalpha1 degradation in the culture medium. The addition of a highly concentrated protease inhibitor mixture or 5 mM EDTA reduced DSPAalpha1 proteolysis, improving the accumulation of intact product in the culture medium. Strategies to improve the plant cell suspension system for the production of secreted recombinant proteins are discussed.  相似文献   

15.
Previous studies have shown that the production of recombinant antibodies in plants is highly efficient and presents numerous therapeutic applications. It is, however, known that plant glycoproteins display different glycosylation patterns to those exhibited by mammalian glycoproteins. Thus, it is important to know if these plant recombinant antibodies could induce undesirable immune responses in mammal; and to date no report has documented the potential immunogenicity of parenterally administered plant recombinant antibodies in animals. In order to answer this question, mice were immunised subcutaneously with a recombinant mouse monoclonal antibody produced in tobacco plants, together with alum as adjuvant. Two control groups were immunised in the same way with either the original murine monoclonal antibody or horseradish peroxidase (a plant glycoprotein). Analyses by direct immunoassay, competition immunoassay and real-time surface plasmon resonance, showed undetectable levels of antibody directed against both the protein and the glycan part of the plant recombinant antibody. These results have a direct relevance for the application of plant recombinant proteins as therapeutic agents and vaccines in humans.  相似文献   

16.
Biopharmaceutical production in transgenic livestock.   总被引:14,自引:0,他引:14  
The production of recombinant human proteins in the milk of transgenic dairy animals offers a safe, renewable source of commercially important proteins that cannot be produced as efficiently in adequate quantities by other methods. A decade of success in expressing a variety of proteins in livestock has brought three human recombinant proteins to human clinical trials. Recent progress has drawn on molecular biology and reproductive physiology to improve the efficiency of producing and reproducing useful transgenic founder animals, and to improve the expression of heterologous proteins in their milk.  相似文献   

17.
Antibody-Based Resistance to Plant Pathogens   总被引:2,自引:0,他引:2  
Plant diseases are a major threat to the world food supply, as up to 15% of production is lost to pathogens. In the past, disease control and the generation of resistant plant lines protected against viral, bacterial or fungal pathogens, was achieved using conventional breeding based on crossings, mutant screenings and backcrossing. Many approaches in this field have failed or the resistance obtained has been rapidly broken by the pathogens. Recent advances in molecular biotechnology have made it possible to obtain and to modify genes that are useful for generating disease resistant crops. Several strategies, including expression of pathogen-derived sequences or anti-pathogenic agents, have been developed to engineer improved pathogen resistance in transgenic plants. Antibody-based resistance is a novel strategy for generating transgenic plants resistant to pathogens. Decades ago it was shown that polyclonal and monoclonal antibodies can neutralize viruses, bacteria and selected fungi. This approach has been improved recently by the development of recombinant antibodies (rAbs). Crop resistance can be engineered by the expression of pathogen-specific antibodies, antibody fragments or antibody fusion proteins. The advantages of this approach are that rAbs can be engineered against almost any target molecule, and it has been demonstrated that expression of functional pathogen-specific rAbs in plants confers effective pathogen protection. The efficacy of antibody-based resistance was first shown for plant viruses and its application to other plant pathogens is becoming more established. However, successful use of antibodies to generate plant pathogen resistance relies on appropriate target selection, careful antibody design, efficient antibody expression, stability and targeting to appropriate cellular compartments.  相似文献   

18.
Herbal remedies were the first medicines used by humans due to the many pharmacologically active secondary metabolites produced by plants. Some of these metabolites inhibit cell division and can therefore be used for the treatment of cancer, e.g. the mitostatic drug paclitaxel (Taxol). The ability of plants to produce medicines targeting cancer has expanded due to the advent of genetic engineering, particularly in recent years because of the development of gene editing systems such as the CRISPR/Cas9 platform. These technologies allow the introduction of genetic modifications that facilitate the accumulation of native pharmaceutically-active substances, and even the production heterologous recombinant proteins, including human antibodies, lectins and vaccine candidates. Here we discuss the anti-cancer agents that are produced by plants naturally or following genetic modification, and the potential of these products to supply modern healthcare systems. Special emphasis will be put on proteinaceous anti-cancer agents, which can exhibit an improved selectivity and reduced side effects compared to small molecule-based drugs.  相似文献   

19.
20.
Chloroplast transformation is a promising approach for the commercial production of recombinant proteins in plants. However, gene containment still remains an issue for the large-scale cultivation of transplastomic plants in the field. Here, we have evaluated the potential of using tobacco transplastomic cell suspensions for the fully contained production of a modified form of the green fluorescent protein (GFP+) and, a vaccine antigen, fragment C of tetanus toxin (TetC). Expression of these proteins in cell suspension cultures (and calli) was much less than in leaves, reaching 0.5%-1.5% of total soluble protein (TSP), but still produced 2.4-7.2 mg/L of liquid culture. Much better expression levels were achieved with a novel protein production platform in which transgenic cell suspension cultures were placed in a temporary immersion bioreactor in the presence of Thidiazuron to initiate shoot formation. GFP+ yield reached 660 mg/L of bioreactor (33% TSP), and TetC accumulated to about 95 mg/L (8% TSP). This new production platform, combining the rapid generation of transplastomic cell suspension cultures and the use of temporary immersion bioreactors, is a promising route for the fully contained low-cost production of recombinant proteins in chloroplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号