首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 346 毫秒
1.
李国栋 《生物磁学》2006,6(1):66-68
李国栋教授是我国名的物理学家,是我国生物磁学,广义磁学研究领域的开拓之一,每年为本刊撰写磁学领域发展的“专论与综述”。其每年撰写的内容包含:①生物磁性和生物磁场;②磁场生物效应;③生物磁技术;④生物磁法研究;⑤生物磁应用[编按]  相似文献   

2.
李国栋教授是我国著名的物理学家,是我国生物磁学,广义磁学研究领域的开拓者之一,每年为本刊撰写磁学领域发展的“专论与综述”。其每年撰写的内容包含:①生物磁性和生物磁场;②磁场生物效应;③生物磁技术;④生物磁法研究;⑤生物磁应用  相似文献   

3.
2002—2003年生物磁学新进展   总被引:12,自引:4,他引:8  
这一新进展综述自1979年开始每年撰写。最初在《中华物理医学杂志》发表,1994年起在《生物磁学》杂志发表。每年综述均介绍当时国内外生物磁学的若干重要的新进展。内容包括:生物磁场和生物磁性;磁场生物效应;生物磁技术;生物系统磁法研究;生物磁学应用。  相似文献   

4.
2001-2002年生物磁学新进展综述   总被引:19,自引:5,他引:14  
本综述自1979年开始每年撰写。最初在《中华物理医学》杂志发表,1994年起在《生物磁学》杂志发表。每年综述均介绍当时国内外生物磁学的若干重要新进展。内容包括:生物磁场和生物磁性;磁场生物效应;生物磁技术;生物系统磁法研究;生物磁学应用。  相似文献   

5.
本综述自1979年开始每年撰写,旨在介绍国内外生物磁学的重要进展,内容包括:生物磁场和生物磁性;磁场生物效应、生物磁技术;生物系统磁法研究、生物磁学应用。  相似文献   

6.
生物经济是指通过可持续的方式,利用可再生自然资源来生产食品、能源、生物技术产品和服务的一切经济活动的总和。生物经济是继农业经济、工业经济、信息经济之后,人类经济社会发展的第四次浪潮。概述全球生物经济发展现状,梳理世界主要经济体生物经济战略布局,归纳生物经济未来发展的四个主要方向,通过调研统计分析生物制药、生物基材料和化学品、生物农业和未来食品三个生物产业重点领域的投融资数据,预判未来生物产业投融资前景,并针对我国生物产业投融资提出建议。  相似文献   

7.
从生物酒精、生物柴油和其他可作为生物燃料的生物化学品3个方面讨论生物燃料生产的现状、酶制剂的应用和发展及未来生物技术的努力方向。在生物乙醇技术中,涵盖了第一代应用淀粉质和第二代采用纤维素类原料的生产,对生产量和发展潜力均相对较小的生物柴油也简单提及。  相似文献   

8.
历史生物地理学进展   总被引:5,自引:0,他引:5  
生物地理学研究动植物的地理分布。历史生物地理学重建生物区系历史。分替理论的复兴动摇了散布理论的上百年统治。最近10年主要是分替理论推动了历史生物地理学,出现了多个途径——种系发生物地理学、分支分替生物地理学、特有性的俭吝分析和泛生物地理学。岛屿生物地理学理论有了改进和严格的实验检验;庇所学说产生了新的模型。最后就我国如何发展生物地理学提出了对策措施。  相似文献   

9.
巴西生物燃料政策及对我国的启示   总被引:1,自引:0,他引:1  
巴西是世界上最早推行生物燃料政策的国家之一,目前已成为世界上第二大乙醇生产国和最大的乙醇出口国。本文简介了巴西推行生物燃料政策的背景、发展生物燃料的优势,详述了其生物燃料的政策特点和政策收益,以及对我国发展生物燃料的启示。  相似文献   

10.
生物能源包括生物乙醇(玉米乙醇和纤维素乙醇)、生物柴油、生物制氢、生物发电、沼气等。随着石油资源的日益枯竭和环境污染的日益严重,作为一种清洁可再生的新能源,生物能源的研究和开发引起了全球各界的广泛重视。因此,各国政府颁布相关政策、加大投资力度,以积极支持生物能源的发展。  相似文献   

11.
Cell‐free protein synthesis (CFPS) is a valuable method for the fast expression of difficult‐to‐express proteins as well as posttranslationally modified proteins. Since cell‐free systems circumvent possible cytotoxic effects caused by protein overexpression in living cells, they significantly enlarge the scale and variety of proteins that can be characterized. We demonstrate the high potential of eukaryotic CFPS to express various types of membrane proteins covering a broad range of structurally and functionally diverse proteins. Our eukaryotic cell‐free translation systems are capable to provide high molecular weight membrane proteins, fluorescent‐labeled membrane proteins, as well as posttranslationally modified proteins for further downstream analysis.  相似文献   

12.
In the formation of COPI vesicles, interactions take place between the coat protein coatomer and membrane proteins: either cargo proteins for retrieval to the endoplasmic reticulum (ER) or proteins that cycle between the ER and the Golgi. While the binding sites on coatomer for ER residents have been characterized, how cycling proteins bind to the COPI coat is still not clear. In order to understand at a molecular level the mechanism of uptake of such proteins, we have investigated the binding to coatomer of p24 proteins as examples of cycling proteins as well as that of ER-resident cargos. The p24 proteins required dimerization to interact with coatomer at two independent binding sites in gamma-COP. In contrast, ER-resident cargos bind to coatomer as monomers and to sites other than gamma-COP. The COPI coat therefore discriminates between p24 proteins and ER-resident proteins by differential binding involving distinct subunits.  相似文献   

13.
Human secreted proteins play a very important role in signal transduction. In order to study all potential secreted proteins identified from the human genome sequence, systematic production of large amounts of biologically active secreted proteins is a prerequisite. We selected 25 novel genes as a trial case for establishing a reliable expression system to produce active human secreted proteins in Escherichia coli. Expression of proteins with or without signal peptides was examined and compared in E. coli strains. The results indicated that deletion of signal peptides, to a certain extent, can improve the expression of these proteins and their solubilities. More importantly, under expression conditions such as induction temperature, N-terminus fusion peptides need to be optimized in order to express adequate amounts of soluble proteins. These recombinant proteins were characterized as well-folded proteins. This system enables us to rapidly obtain soluble and highly purified human secreted proteins for further functional studies.  相似文献   

14.
The folding of multisubunit proteins is of tremendous biological significance since the large majority of proteins exist as protein-protein complexes. Extensive experimental and computational studies have provided fundamental insights into the principles of folding of small monomeric proteins. Recently, important advances have been made in extending folding studies to multisubunit proteins, in particular homodimeric proteins. This review summarizes the equilibrium and kinetic theory and models underlying the quantitative analysis of dimeric protein folding using chemical denaturation, as well as the experimental results that have been obtained. Although various principles identified for monomer folding also apply to the folding of dimeric proteins, the effects of subunit association can manifest in complex ways, and are frequently overlooked. Changes in molecularity typically give rise to very different overall folding behaviour than is observed for monomeric proteins. The results obtained for dimers have provided key insights pertinent to understanding biological assembly and regulation of multisubunit proteins. These advances have set the stage for future advances in folding involving protein-protein interactions for natural multisubunit proteins and unnatural assemblies involved in disease.  相似文献   

15.
The silkworm spinneret is an important tissue for silk fibrillogenesis and spinning. All biochemical processes during silk fibrillogenesis are correlated with silk properties. Understanding the role of spinneret in silk fibrillogenesis may help to reveal the mechanism of silk fibrillogenesis as well as improve silk quality for commercial purposes. Thus, we profiled the proteome of silkworm spinneret. A total of 1572 proteins and 232 differential abundance proteins were identified. Silk fibrillogenesis‐related proteins, such as cuticle proteins, ion‐transporting proteins, muscular proteins, and energy metabolic proteins, were abundant in spinneret. Metabolic pathway and GO enrichment analyses revealed that the identified proteins were involved in energy metabolism, chitin binding, and cuticle construction. Active energy metabolism may provide abundant energy for the muscle contraction as well as ion and water exchange. The chitin binding and cuticle construction process may provide sufficient shear forces for silk formation. Our data suggest that silkworm spinneret provides a suitable physiological and biochemical environment for silk fibrillogenesis. These proteins are potential targets for improving silk quality in the silk industry. Data are available via ProteomeXchange with identifier PXD004455.  相似文献   

16.
Extracellular production of recombinant proteins in Escherichia coli has several advantages over cytoplasmic or periplasmic production. However, nonpathogenic laboratory strains of E. coli generally excrete only trace amounts of proteins into the culture medium under normal growth conditions. Here we report a systematic proteome-based approach for developing a system for high-level extracellular production of recombinant proteins in E. coli. First, we analyzed the extracellular proteome of an E. coli B strain, BL21(DE3), to identify naturally excreted proteins, assuming that these proteins may serve as potential fusion partners for the production of recombinant proteins in the medium. Next, overexpression and excretion studies were performed for the 20 selected fusion partners with molecular weights below 40 kDa. Twelve of them were found to allow fused proteins to excrete into the medium at considerable levels. The most efficient excreting fusion partner, OsmY, was used as a carrier protein to excrete heterologous proteins into the medium. E. coli alkaline phosphatase, Bacillus subtilis alpha-amylase, and human leptin used as model proteins could all be excreted into the medium at concentrations ranging from 5 to 64 mg/L during the flask cultivation. When only the signal peptide or the mature part of OsmY was used as a fusion partner, no such excretion was observed; this confirmed that these proteins were truly excreted rather than released by outer membrane leakage. The recombinant protein of interest could be recovered by cleaving off the fusion partner by enterokinase as demonstrated for alkaline phosphatase as an example. High cell density cultivation allowed production of these proteins to the levels of 250-700 mg/L in the culture medium, suggesting the good potential of this approach for the excretory production of recombinant proteins.  相似文献   

17.
Cell surface proteins, including extracellular matrix proteins, participate in all major cellular processes and functions, such as growth, differentiation, and proliferation. A comprehensive characterization of these proteins provides rich information for biomarker discovery, cell-type identification, and drug-target selection, as well as helping to advance our understanding of cellular biology and physiology. Surface proteins, however, pose significant analytical challenges, because of their inherently low abundance, high hydrophobicity, and heavy post-translational modifications. Taking advantage of the prevalent glycosylation on surface proteins, we introduce here a high-throughput glycopeptide-capture approach that integrates the advantages of several existing N-glycoproteomics means. Our method can enrich the glycopeptides derived from surface proteins and remove their glycans for facile proteomics using LC-MS. The resolved N-glycoproteome comprises the information of protein identity and quantity as well as their sites of glycosylation. This method has been applied to a series of studies in areas including cancer, stem cells, and drug toxicity. The limitation of the method lies in the low abundance of surface membrane proteins, such that a relatively large quantity of samples is required for this analysis compared to studies centered on cytosolic proteins.  相似文献   

18.
The 55 S mammalian mitochondrial ribosome (referred to hereafter as "mitoribosome") is protein-rich, containing nearly twice as much protein as the Escherichia coli ribosome. In order to produce soluble mitochondrial proteins and protein-deficient subribosomal particles for use in functional and structural studies, the proteins of bovine mitoribosomes were extracted by washing in a series of buffers containing increasing concentrations of LiCl as the only chaotropic agent. LiCl disruption is used in order to preserve the solubilized proteins in a substantially "native" configuration. The extraction mixtures were characterized by sucrose density gradient analysis and the compositions of the stripped protein and residual pellet fractions were determined by two-dimensional polyacrylamide gel electrophoresis. In order to analyze the behavior or individual proteins, the intensity of Coomassie blue stain for each protein was normalized against the intensity of stain for the same protein in a control sample. Buffers with 1, 2, and 4 M LiCl each extract a specific subset of mitoribosomal proteins, while another group of proteins remains in the residual pellet fraction. Although very few proteins are detected in only one condition, most proteins are specifically enriched in one fraction. This LiCl procedure, therefore, produces fractionated groups of mitoribosomal proteins which can be used directly as a source for those proteins in which they are enriched, or they can be used as a starting point in further purification procedures. In contrast to results with E. coli ribosomes, several mitoribosomal proteins remain core-associated, indicating a different structural organization in these ribosomes.  相似文献   

19.
Many proteins with pivotal roles in T cell activation are modified by fatty acylation. Examples of these include transmembrane proteins such as the co-receptors CD4 and CD8, the adaptors LAT and Cbp/PAG, the pre-TCR as well as proteins synthesized on free cytosolic ribosomes, such as the Src-related tyrosine kinases Lck and Fyn. The two main types of fatty acylations in eukaryotic cells are N-myristoylation and S-acylation, the latter being more commonly referred to as palmitoylation. N-Myristoylation occurs exclusively on proteins synthesized on soluble ribosomes and provides substrates with an affinity for membranes. Palmitoylation modifies a wide range of substrates that includes both cytosolic and transmembrane proteins, its functions are diverse and in many cases not yet understood. Like myristoylation, palmitoylation promotes membrane-binding of cytosolic proteins, but it has also been implicated in protein targeting, trafficking, stability and activity. In addition, many palmitoylated proteins are insoluble in cold non-ionic detergent, and have therefore been proposed to localize to lipid rafts. The organization of receptors and signaling proteins into microdomains such as lipid rafts provides an attractive model for the initiation and propagation of T cell signaling, although many aspects of this are still poorly understood. This review will discuss the current evidence for the involvement of acylations in the localizations and functions of T cell signaling proteins.  相似文献   

20.
Currently, there are no specific markers available for the early detection and for monitoring testicular cancer. Based upon an approach that targets nuclear structure, we have identified a set of proteins that are specific for seminomas, which may then have clinical utility for the disease. Utilizing samples obtained from men with no evidence of testicular cancer (n = 5) as well as those with seminomas (n = 6), nuclear matrix proteins were extracted and separated using a high‐resolution two‐dimensional electrophoresis gel system. The proteins were identified by mass spectrometry analysis. These analyses revealed seven nuclear matrix proteins associated with the normal testes, which did not appear in the seminomas. In the seminomas, four nuclear matrix proteins were identified to be associated with the disease that were absent in the normal testes. Mass spectrometric and immunoblot analyses of these proteins revealed that one of the proteins identified in the normal testes appears to be StAR‐related lipid transfer protein 7 (StARD7). In the non‐seminoma tissues, one of the identified proteins appears to be cell division protein kinase 10 (CDK10). Both StarD7 and CDK10 could potentially be involved in cell differentiation and growth, and thus may serve as potential targets for therapy of prognostication of seminomas. This is the first study to examine the role of nuclear structural proteins as potential biomarkers in testicular cancer. We are currently examining the roles of some of the identified proteins as potential biomarkers for the disease. J. Cell. Biochem. 108: 1274–1279, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号