首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pancreatic cancer has a poor prognosis with a 5-year survival rate of <5%. It does not respond well to either chemotherapy or radiotherapy, due partly to apoptotic resistance (AR) of the cancer cells. AR has been attributed to certain genetic abnormalities or defects in apoptotic signaling pathways. In pancreatic cancer, significant mutations of K-ras and p53, constitutive activation of NFκB, over-expression of heat shock proteins (Hsp90, Hsp70), histone deacetylase (HDACs) and the activities of other proteins (COX-2, Nrf2 and bcl-2 family members) are closely linked with resistance to apoptosis and invasion. AR has also been associated with aberrant signaling of MAPK, PI3K–AKT, JAK/STAT, SHH, Notch, and Wnt/β-catenin pathways. Strategies targeting these signaling molecules and pathways provide an alternative for overcoming AR in pancreatic cancer. The use of herbal medicines or natural products (HM/NPs) alone or in combination with conventional anti-cancer agents has been shown to produce beneficial effects through actions upon multiple molecular pathways involved in AR. The current standard first-line chemotherapeutic agents for pancreatic cancer are gemcitabine (Gem) or Gem-containing combinations; however, the efficacy is dissatisfied and this limitation is largely attributed to AR. Meanwhile, emerging data have pointed to a combination of HM/NPs that may augment the sensitivity of pancreatic cancer cells to Gem. Greater understanding of how these compounds affect the molecular mechanisms of apoptosis may propel development of HM/NPs as anti-cancer agents and/or adjuvant therapies forward.In this review, we give a critical appraisal of the use of HM/NPs alone and in combination with anti-cancer drugs. We also discuss the potential regulatory mechanisms whereby AR is involved in these protective pathways.  相似文献   

2.
The human population at large is exposed to many critical factors (e.g. bad food habits, chemical substances, and stress) leading to the development of serious diseases. Colon or colorectal cancer is one of the most prevalent types of cancer in many countries. Despite being a multi-factorial chronic disease, resulting from the interaction of multiple genetic and environmental factors, the critical factor is mostly a poor diet regimen. Therefore, an accumulation of constant mutations leads to a complex arrangement of events during tumor initiation, development and propagation. It is well known that many plants are rich in polyphenols with anti-oxidant, anti-atherogenic, anti-diabetic, anti-cancer, anti-viral, and anti-inflammatory properties. These compounds are secondary metabolites with the ability to donate electrons to free radicals through different mechanisms. In recent years, a large number of studies have attributed a protective effect to polyphenols and foods containing these compounds (e.g. plants, vegetables, cereals, tea, coffee or chocolate). Polyphenolic compounds have been described to inhibit cancer development and propagation, being used as chemopreventive agents. Some polyphenols reported a preventive action against colon cancer, e.g. curcumin, gallic acid, ellagic acid, and epigallocatechin-3-gallate. The present article focuses on the properties of these molecules as chemopreventive agents and the recent advances on their formulation in nanoparticulate systems for targeted therapy and increased bioavailability.  相似文献   

3.
多年来研究人员一直在寻求单克隆抗体在病毒性疾病中的临床应用。鼠源单克隆抗体可能会引发患的免疫反应,降低其疗效,故研究人员相继开发了嵌合抗体、改型抗体、噬菌体抗体及利用基因工程方法改造植物和动物产生人源抗体以应用于临床治疗。抗体工程在控制多种病毒感染性疾病方面已经发挥了一定作用并将发挥重要作用。  相似文献   

4.
5.
6.
Pharmaceutical protein production in plants has been greatly promoted by the development of viral-based vectors and transient expression systems. Tobacco and related Nicotiana species are currently the most common host plants for the generation of plant-made pharmaceutical proteins (PMPs). Downstream processing of target PMPs from these plants, however, is hindered by potential technical and regulatory difficulties owing to the presence of high levels of phenolics and toxic alkaloids. Here, we explored the use of lettuce, which grows quickly yet produces low levels of secondary metabolites and viral vector-based transient expression systems to develop a robust PMP production platform. Our results showed that a geminiviral replicon system based on the bean yellow dwarf virus permits high-level expression in lettuce of virus-like particles (VLP) derived from the Norwalk virus capsid protein and therapeutic monoclonal antibodies (mAbs) against Ebola and West Nile viruses. These vaccine and therapeutic candidates can be readily purified from lettuce leaves with scalable processing methods while fully retaining functional activity. Furthermore, this study also demonstrated the feasibility of using commercially produced lettuce for high-level PMP production. This allows our production system to have access to unlimited quantities of inexpensive plant material for large-scale production. These results establish a new production platform for biological pharmaceutical agents that are effective, safe, low cost, and amenable to large-scale manufacturing.  相似文献   

7.
Platinum-based anti-cancer agents have been used for many years to treat many different types of cancer. However, the efficacy of these drugs is limited by serious side effects. One of the strategies to reduce the side effects is encapsulation of the drug in a lipid formulation. Recently, we discovered a novel method for the efficient encapsulation of cisplatin in a lipid formulation. The method is unique in that it does not generate conventional liposomes but nanocapsules: small aggregates of solid cisplatin covered by a lipid bilayer. Also carboplatin, a cisplatin-derived anti-cancer drug with different chemical properties, can be efficiently encapsulated by a similar method. The encapsulation in nanocapsules dramatically improves the in vitro cytotoxicity of the platinum drugs. Our results hold the promise that the nanocapsule technology could prove successful in the efficient encapsulation of many other (platinum-based) drugs, and thereby improve their therapeutic index and profile in vivo.  相似文献   

8.
Towards the scientific validation of traditional medicinal plants   总被引:2,自引:0,他引:2  
A large proportion of the population of developing countries usestraditional medicine alone, or in combination with Western drugs to treat awide variety of ailments. There has seldom been effective collaborationbetween the traditional and Western medical practitioners, largely due tothe perception that the use of traditional and herbal medicines has noscientific basis. With the renewed interest from Western countries in herbalremedies, and the increasingly urgent need to develop new effective drugs,traditionally used medicinal plants have recently received the attention ofthe pharmaceutical and scientific communities. This involves the isolationand identification of the secondary metabolites produced by the plants andused as the active principles in medical preparations. Research into thescientific validation of southern African medicinal plants used in thetreatment of pain and inflammation, hypertension and parasitic diseasesincluding those with anthelmintic, anti-amoebic, anti-bacterial and anti-bilharzia activity, is the current focus of studies conducted at the ResearchCentre for Plant Growth and Development.  相似文献   

9.
Secondary metabolites Already 400 million years ago when land plants evolved, they probably produced secondary metabolites as means of defence against herbivores, microbes and competing plants. Secondary metabolites usually are bioactive agents, which can interfere with molecular targets in animals and microbes. Therefore, many plants and substances isolated from them can serve as valuable drugs in medicine and pharmacy. Some secondary metabolites also serve as signal compounds to attract pollinating animals and seed‐dispersing animals, but also for UV protection, as antioxidants or mobile nitrogen stores. Biology and evolution but also physiological and genetic bases of secondary metabolism are discussed in this overview.  相似文献   

10.
After cardiovascular disease, cancer is the leading cause of death worldwide with devastating health and economic consequences, particularly in developing countries. Inter-patient variations in anti-cancer drug responses further limit the success of therapeutic interventions. Therefore, personalized medicines approach is key for this patient group involving molecular and genetic screening and appropriate stratification of patients to treatment regimen that they will respond to. However, the knowledge related to adequate risk stratification methods identifying patients who will respond to specific anti-cancer agents is still lacking in many cancer types. Recent advancements in three-dimensional (3D) bioprinting technology, have been extensively used to generate representative bioengineered tumor in vitro models, which recapitulate the human tumor tissues and microenvironment for high-throughput drug screening. Bioprinting process involves the precise deposition of multiple layers of different cell types in combination with biomaterials capable of generating 3D bioengineered tissues based on a computer-aided design. Bioprinted cancer models containing patient-derived cancer and stromal cells together with genetic material, extracellular matrix proteins and growth factors, represent a promising approach for personalized cancer therapy screening. Both natural and synthetic biopolymers have been utilized to support the proliferation of cells and biological material within the personalized tumor models/implants. These models can provide a physiologically pertinent cell–cell and cell–matrix interactions by mimicking the 3D heterogeneity of real tumors. Here, we reviewed the potential applications of 3D bioprinted tumor constructs as personalized in vitro models in anticancer drug screening and in the establishment of precision treatment regimens.  相似文献   

11.
12.
Antibody molecular farming in plants and plant cells   总被引:1,自引:0,他引:1  
`Molecular Farming' is a novel approach to the production of pharmaceuticals, where valuable recombinant proteins can be produced in transgenic organisms on an agricultural scale. Plants have been traditionally used as a source of medicines, but the use of transgenic plants in molecular farming represents a novel source of molecular medicines that include plasma proteins, enzymes, growth factors, vaccines and recombinant antibodies. Until recently, the wide use of these molecular medicines was limited because of the difficulty in producing these proteins outside animals or animal cell cultures. The application of molecular biology and plant biotechnology in the 1990s showed that many molecular medicines could be synthesised in plants. The goal of this Molecular Farming technology is to produce pharmaceuticals that are safer, easier to produce and less expensive than those produced in animals or microbial cultures. Here, we examine the production of recombinant antibodies by Molecular Farming.  相似文献   

13.
Retrocyclin‐101 (RC101) and Protegrin‐1 (PG1) are two important antimicrobial peptides that can be used as therapeutic agents against bacterial and/or viral infections, especially those caused by the HIV‐1 or sexually transmitted bacteria. Because of their antimicrobial activity and complex secondary structures, they have not yet been produced in microbial systems and their chemical synthesis is prohibitively expensive. Therefore, we created chloroplast transformation vectors with the RC101 or PG1 coding sequence, fused with GFP to confer stability, furin or Factor Xa cleavage site to liberate the mature peptide from their fusion proteins and a His‐tag to aid in their purification. Stable integration of RC101 into the tobacco chloroplast genome and homoplasmy were confirmed by Southern blots. RC101 and PG1 accumulated up to 32%–38% and 17%~26% of the total soluble protein. Both RC101 and PG1 were cleaved from GFP by corresponding proteases in vitro, and Factor Xa–like protease activity was observed within chloroplasts. Confocal microscopy studies showed location of GFP fluorescence within chloroplasts. Organic extraction resulted in 10.6‐fold higher yield of RC101 than purification by affinity chromatography using His‐tag. In planta bioassays with Erwinia carotovora confirmed the antibacterial activity of RC101 and PG1 expressed in chloroplasts. RC101 transplastomic plants were resistant to tobacco mosaic virus infections, confirming antiviral activity. Because RC101 and PG1 have not yet been produced in other cell culture or microbial systems, chloroplasts can be used as bioreactors for producing these proteins. Adequate yield of purified antimicrobial peptides from transplastomic plants should facilitate further preclinical studies.  相似文献   

14.
Inorganic nanoparticles (NPs) are among the most produced NPs that could be used in consumer products and as healthcare materials, however, the intrinsic toxicity particularly through the mechanism associated oxidative stress raises the health concern about inorganic NP exposure. Phytochemicals are bioactive metabolites derived from plants as well as non-pathogenic microorganisms living within plants and have been shown to be beneficial to human health with their anti-aging, anti-cancer, anti-inflammation and anti-oxidant properties. In the present review, the influence of on the biocompatibility of inorganic NPs was discussed. It has been shown that phytochemicals could be used as bio-friendly capping agents for green synthesis of inorganic NPs, and phytochemical coated inorganic NPs were remarkable stable and biocompatible with high therapeutic efficiency. Meanwhile, the presence of phytochemicals was also able to reduce the side effects and enhance the therapeutic abilities of inorganic NPs, which is likely attributed to the anti-oxidative properties of phytochemicals. Thus, using phytochemicals could be a promising and plausible way to reduce side effects and increase the biocompatibility of inorganic NPs for biomedical applications.  相似文献   

15.
Mitochondria have recently emerged as new and promising targets for cancer prevention and therapy. One of the reasons for this is that mitochondria are instrumental to many types of cell death and often lie downstream from the initial actions of anti-cancer drugs. Unlike the tumour suppressor gene encoding p53 that is notoriously prone to inactivating mutations but whose function is essential for induction of apoptosis by DNA-targeting agents (such as doxorubicin or 5-fluorouracil), mitochondria present targets that are not so compromised by genetic mutation and whose targeting overcomes problems with mutations of upstream targets such as p53. We have recently proposed a novel class of anti-cancer agents, mitocans that exert their anti-cancer activity by destabilising mitochondria, promoting the selective induction of apoptotic death in tumour cells. In this communication, we review recent findings on mitocans and propose a common basis for their mode of action in inducing apoptosis of cancer cells. We use as an example the analogues of vitamin E that are proving to be cancer cell-specific and may soon be developed into efficient anti-cancer drugs.  相似文献   

16.
Polymorphisms of the CYP1B1 gene have higher risk for prostate cancer   总被引:6,自引:0,他引:6  
Various carcinogenic factors including estrogen metabolites play a role in malignant transformation. These metabolites are formed in part, as a result of the hydroxylation activity of cytochrome P450 (CYP) 1B1. Variant forms of this enzyme have been shown to enhance its activity, and thus, we hypothesize that single nucleotide polymorphisms of the CYP1B1 gene can be a risk factor for prostate cancer. To test this hypothesis, the genetic distribution of six different CYP1B1 polymorphisms at intron 1 (C-->T), codon 48 (C-->G), codon 119 (G-->T), codon 432 (C-->G), codon 449 (C-->T), and codon 453 (A-->G) was analyzed in 117 prostate cancer samples and 200 healthy normal subjects from a Japanese population. Results of these experiments demonstrate that the genotype at codon 119 is significantly different between prostate cancer patients and controls (P<0.001). The odds ratio of genotype T/T compared to G/G (reference) was calculated as 4.02 with a 95% confidence interval of 1.73-9.38. All other codons, except 453, showed polymorphisms but were not significantly different between cancer patients and controls. No association was found between stage and grade of cancer with any of the polymorphic sites. This is the first report that demonstrates the polymorphism at codon 119 of CYP1B1 to be associated with prostatic carcinogenesis. These results are important in understanding the role of CYP1B1 polymorphisms in the pathogenesis of prostate cancer.  相似文献   

17.
Variation in plant secondary metabolite content can arise due to environmental and genetic variables. Because these metabolites are important in modifying a plant’s interaction with the environment, many studies have examined patterns of variation in plant secondary metabolites. Investigations of chemical defenses are often linked to questions about the efficacies of plant defenses and hypotheses on their evolution in different plant guilds. We performed a series of meta-analyses to examine the importance of environmental and genetic sources of variation in secondary metabolites as well as the antiherbivore properties of different classes of defense. We found both environmental and genetic variation affect secondary metabolite production, supporting continued study of the carbon-nutrient balance and growth-differentiation balance hypotheses. Defenses in woody plants are more affected by genetic variation, and herbaceous plant defenses are more influenced by environmental variation. Plant defenses in agricultural and natural systems show similar responses to manipulations, as do plants in laboratory, greenhouse, or field studies. What does such variation mean to herbivores? A comparison of biotic, physical, and chemical defenses revealed the most effective defensive strategy for a plant is biotic mutualisms with ants. Fast-growing plants are most often defended with qualitative defenses and slow-growing plants with quantitative defenses, as the plant apparency and resource availability hypotheses predict. However, we found the resource availability hypothesis provides the best explanation for the evolution of plant defenses, but the fact that there is considerable genetic and environmental variation in defenses indicates herbivores can affect plant chemistry in ecological and evolutionary time.  相似文献   

18.
19.
The production of biopharmaceutical proteins in plants requires efficient downstream processing steps that remove impurities such as host cell proteins (HCPs) and adventitious endotoxins produced by bacteria during transient expression. We therefore strived to develop effective routines for endotoxin removal from plant extracts and the subsequent use of the extracts to generate antibodies detecting a broad set of HCPs. At first, we depleted the superabundant protein ribulose‐1,5‐bisphosphate carboxylase/oxygenase (RuBisCO) for which PEG precipitation achieved the best results, preventing a dominant immune reaction against this protein. We found that a mixture of sera from rabbits immunized with pre‐depleted or post‐depleted extracts detected more HCPs than the individual sera used alone. We also developed a powerful endotoxin removal procedure using Polymyxin B for extracts from wild type plants or a combination of fiber‐flow filtration and EndoTrap Blue for tobacco plants infiltrated with Agrobacterium tumefaciens. The antibodies we generated will be useful for quality and performance assessment in future process development and the methods we present can easily be transferred to other expression systems rendering them useful in the field of plant molecular farming.  相似文献   

20.
Plant cell cultivations are being considered as an alternative to agricultural processes for producing valuable phytochemicals. Since many of these products (secondary metabolites) are obtained by direct extraction from plants grown in natural habitat, several factors can alter their yield. The use of plant cell cultures has overcome several inconveniences for the production of these secondary metabolites. Organized cultures, and especially root cultures, can make a significant contribution in the production of secondary metabolites. Most of the research efforts that use differentiated cultures instead of cell suspension cultures have focused on transformed (hairy) roots. Agrobacterium rhizogenes causes hairy root disease in plants. The neoplastic (cancerous) roots produced by A. rhizogenes infection are characterized by high growth rate, genetic stability and growth in hormone free media. These genetically transformed root cultures can produce levels of secondary metabolites comparable to that of intact plants. Hairy root cultures offer promise for high production and productivity of valuable secondary metabolites (used as pharmaceuticals, pigments and flavors) in many plants. The main constraint for commercial exploitation of hairy root cultivations is the development and scaling up of appropriate reactor vessels (bioreactors) that permit the growth of interconnected tissues normally unevenly distributed throughout the vessel. Emphasis has focused on designing appropriate bioreactors suitable to culture the delicate and sensitive plant hairy roots. Recent reactors used for mass production of hairy roots can roughly be divided as liquid-phase, gas-phase, or hybrid reactors. The present review highlights the nature, applications, perspectives and scale up of hairy root cultures for the production of valuable secondary metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号