首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 918 毫秒
1.
Important general insights into the mechanism of pre-mRNA splicing have emerged from studies of the U12-dependent spliceosome. Here, photochemical cross-linking analyses during U12-dependent spliceosome assembly have surprisingly revealed that an upstream 5' exon region is required for establishing two essential catalytic core interactions, U12/U6atac helix Ib and U6atac/5' splice site contacts, but not for U5/5' exon interactions or partial unwinding of U4atac/U6atac. A novel intermediate, representing an alternative pathway for catalytic core formation, is a ternary snRNA complex containing U4atac/U6atac stem II and U12/U6atac helix Ia that forms even without U6atac replacing U11 at the 5' splice site. A powerful oligonucleotide displacement method suggests that the blocked complexes analyzed to deduce the interdependence of these multiple RNA exchanges are authentic intermediates in U12-dependent spliceosome assembly.  相似文献   

2.
The U2/U6 snRNA complex is a conserved and essential component of the active spliceosome that interacts with the pre-mRNA substrate and essential protein splicing factors to promote splicing catalysis. Here we have elucidated the solution structure of a 111-nucleotide U2/U6 complex using an approach that integrates SAXS, NMR, and molecular modeling. The U2/U6 structure contains a three-helix junction that forms an extended "Y" shape. The U6 internal stem-loop (ISL) forms a continuous stack with U2/U6 Helices Ib, Ia, and III. The coaxial stacking of Helix Ib on the U6 ISL is a configuration that is similar to the Domain V structure in group II introns. Interestingly, essential features of the complex--including the U80 metal binding site, AGC triad, and pre-mRNA recognition sites--localize to one face of the molecule. This observation suggests that the U2/U6 structure is well-suited for orienting substrate and cofactors during splicing catalysis.  相似文献   

3.
During pre-mRNA splicing, the spliceosome must configure the substrate, catalyze 5′ splice site cleavage, reposition the substrate, and catalyze exon ligation. The highly conserved U2/U6 helix I, which adjoins sequences that define the reactive sites, has been proposed to configure the substrate for 5′ splice site cleavage and promote catalysis. However, a role for this helix at either catalytic step has not been tested rigorously and previous observations question its role at the catalytic steps. Through a comprehensive molecular genetic study of U2/U6 helix I, we found that weakening U2/U6 helix I, but not mutually exclusive structures, compromised splicing of a substrate limited at the catalytic step of 5′ splice site cleavage, providing the first compelling evidence that this helix indeed configures the substrate during 5′ splice site cleavage. Further, mutations that we proved weaken only U2/U6 helix I suppressed a mutation in PRP16, a DEAH-box ATPase required after 5′ splice site cleavage, providing persuasive evidence that helix I is destabilized by Prp16p and suggesting that this structure is unwound between the catalytic steps. Lastly, weakening U2/U6 helix I also compromised splicing of a substrate limited at the catalytic step of exon ligation, providing evidence that U2/U6 helix I reforms and functions during exon ligation. Thus, our data provide evidence for a fundamental and apparently dynamic role for U2/U6 helix I during the catalytic stages of splicing.  相似文献   

4.
U12 snRNA is required for branch point recognition in the U12-dependent spliceosome. Using site-specific cross-linking, we have captured an unexpected interaction between the 5' end of the U12 snRNA and the -2 position upstream of the 5' splice site of P120 and SCN4a splicing substrates. The U12 snRNA nucleotides that contact the 5' exon are the same ones that form the catalytically important helix Ib with U6atac snRNA in the spliceosome catalytic core. However, the U12/5' exon interaction is transient, occurring prior to the entry of the U4atac/U6atac.U5 tri-snRNP to the spliceosome. This suggests that the helix Ib region of U12 snRNA is positioned near the 5' splice site early during spliceosome assembly and only later interacts with U6atac to form helix Ib. We also provide evidence that U12 snRNA can simultaneously interact with 5' exon sequences near 5' splice site and the branch point sequence, suggesting that the 5' splice site and branch point sequences are separated by <40 to 50 A in the complex A of the U12-dependent spliceosome. Thus, no major rearrangements are subsequently needed to position these sites for the first step of catalysis.  相似文献   

5.
The U2 and U6 snRNAs contribute to the catalysis of intron removal while U5 snRNA loop 1 holds the exons for ligation during pre-mRNA splicing. It is unclear how different exons are positioned precisely with U5 loop 1. Here, we investigate the role of U2 and U6 in positioning the exons with U5 loop 1. Reconstitution in vitro of spliceosomes with mutations in U2 allows U5-pre-mRNA interactions before the first step of splicing. However, insertion in U2 helix Ia disrupts U5-exon interactions with the intron lariat-3' exon splicing intermediate. Conversely, U6 helix Ia insertions prevent U5-pre-mRNA interactions before the first step of splicing. In vivo, synthetic lethal interactions have been identified between U2 insertion and U5 loop 1 insertion mutants. Additionally, analysis of U2 insertion mutants in vivo reveals that they influence the efficiency, but not the accuracy of splicing. Our data suggest that U2 aligns the exons with U5 loop 1 for ligation during the second step of pre-mRNA splicing.  相似文献   

6.
Three different base paired stems form between U2 and U6 snRNA over the course of the mRNA splicing reaction (helices I, II and III). One possible function of U2/U6 helix II is to facilitate subsequent U2/U6 helix I and III interactions, which participate directly in catalysis. Using an in vitro trans-splicing assay, we investigated the function of sequences located just upstream from the branch site (BS). We find that these upstream sequences are essential for stable binding of U2 to the branch region, and for U2/U6 helix II formation, but not for initial U2/BS pairing. We also show that non-functional upstream sequences cause U2 snRNA stem–loop IIa to be exposed to dimethylsulfate modification, perhaps reflecting a U2 snRNA conformational change and/or loss of SF3b proteins. Our data suggest that initial binding of U2 snRNP to the BS region must be stabilized by an interaction with upstream sequences before U2/U6 helix II can form or U2 stem–loop IIa can participate in spliceosome assembly.  相似文献   

7.
A role for U2/U6 helix Ib in 5' splice site selection.   总被引:4,自引:4,他引:0       下载免费PDF全文
Selection of pre-mRNA splice sites is a highly accurate process involving many trans-acting factors. Recently, we described a role for U6 snRNA position G52 in selection of the first intron nucleotide (+1G). Because some U2 alleles suppress U6-G52 mutations, we investigated whether the corresponding U2 snRNA region also influenced 5' splice site selection. Our results demonstrate that U2 snRNAs mutated at position U23, but not adjacent nucleotides, specifically affect 5' splice site cleavage. Furthermore, all U2 position U23 mutations are synthetic lethal with the thermosensitive U6-G52U allele. Interestingly, the U2-U23C substitution has an unprecedented hyperaccurate splicing phenotype in which cleavage of introns with a +1G substitution is reduced, whereas the strain grows with wild-type kinetics. U2 position U23 forms the first base pair with U6 position A59 in U2/U6 helix Ib. Restoration of the helical structure suppresses 5' splice site cleavage defects, showing an important role for the helix Ib structure in 5' splice site selection. U2/U6 helix Ib and helix II have recently been described as being functionally redundant. This report demonstrates a unique role for helix Ib in 5' splice site selection that is not shared with helix II.  相似文献   

8.
U6 spliceosomal RNA has a complex secondary structure that includes a highly conserved stemloop near the 3' end. The 3' stem is unwound when U6 RNA base-pairs with U4 RNA during spliceosome assembly, but likely reforms when U4 RNA leaves the spliceosome prior to the catalysis of splicing. A mutation in yeast U6 RNA that hyperstabilizes the 3' stem confers cold sensitivity and inhibits U4/U6 assembly as well as a later step in splicing. Here we show that extragenic suppressors of the 3' stem mutation map to the gene coding for splicing factor Prp24. The suppressor mutations are located in the second and third of three RNA-recognition motifs (RRMs) in Prp24 and are predicted to disrupt RNA binding. Mutations in U6 RNA predicted to destabilize a novel helix adjacent to the 3' stem also suppress the 3' stem mutation and enhance the growth defect of a suppressor mutation in RRM2 of Prp24. Both phenotypes are reverted by a compensatory mutation that restores pairing in the novel helix. These results are best explained by a model in which RRMs 2 and 3 of Prp24 stabilize an extended intramolecular structure in U6 RNA that competes with the U4/U6 RNA interaction, and thus influence both association and dissociation of U4 and U6 RNAs during the splicing cycle.  相似文献   

9.
U2 and U6 snRNAs pair to form a phylogenetically conserved complex at the catalytic core of the spliceosome. Interactions with divalent metal ions, particularly Mg(II), at specific sites are essential for its folding and catalytic activity. We used a novel Förster resonance energy transfer (FRET) method between site-bound luminescent lanthanide ions and a covalently attached fluorescent dye, combined with supporting stoichiometric and mutational studies, to determine locations of site-bound Tb(III) within the human U2–U6 complex. At pH 7.2, we detected three metal-ion-binding sites in: (1) the consensus ACACAGA sequence, which forms the internal loop between helices I and III; (2) the four-way junction, which contains the conserved AGC triad; and (3) the internal loop of the U6 intra-molecular stem loop (ISL). Binding at each of these sites is supported by previous phosphorothioate substitution studies and, in the case of the ISL site, by NMR. Binding of Tb(III) at the four-way junction and the ISL sites was found to be pH-dependent, with no ion binding observed below pH 6 and 7, respectively. This pH dependence of metal ion binding suggests that the local environment may play a role in the binding of metal ions, which may impact on splicing activity.  相似文献   

10.
In the pre-mRNA processing machinery of eukaryotic cells, U6 snRNA is located at or near the active site for pre-mRNA splicing catalysis, and U6 is involved in catalyzing the first chemical step of splicing. We have further defined the roles of key features of yeast U6 snRNA in the splicing process. By assaying spliceosome assembly and splicing in yeast extracts, we found that mutations of yeast U6 nt 56 and 57 are similar to previously reported deletions of U2 nt 27 or 28, all within yeast U2-U6 helix Ia. These mutations lead to the accumulation of yeast A1 spliceosomes, which form just prior to the Prp2 ATPase step and the first chemical step of splicing. These results strongly suggest that, at a late stage of spliceosome assembly, the presence of U2-U6 helix Ia is important for promoting the first chemical step of splicing, presumably by bringing together the 5' splice site region of pre-mRNA, which is base paired to U6 snRNA, and the branchsite region of the intron, which is base paired to U2 snRNA, for activation of the first chemical step of splicing, as previously proposed by Madhani and Guthrie [Cell, 1992, 71: 803-817]. In the 3' intramolecular stem-loop of U6, mutation G81C causes an allele-specific accumulation of U6 snRNP. Base pairing of the U6 3' stem-loop in yeast spliceosomes does not extend as far as to include the U6 sequence of U2-U6 helix Ib, in contrast to the human U6 3' stem-loop structure.  相似文献   

11.
Intron removal in nuclear precursor mRNA is catalyzed through two transesterification reactions by a multi-megaDalton ribonucleoprotein machine called the spliceosome. A complex between U2 and U6 small nuclear RNAs is a core component of the spliceosome. Here we present an NMR structural analysis of a protein-free U2-U6 complex from Saccharomyces cerevisiae. The observed folding of the U2-U6 complex is a four-helix junction, in which the catalytically important AGC triad base-pairs only within U6 and not with U2. The base-pairing of the AGC triad extends the U6 intramolecular stem-loop (U6 ISL), and the NMR structure of this extended U6 ISL reveals structural similarities with domain 5 of group II self-splicing introns. The observed conformation of the four-helix junction could be relevant to the first, but not the second, step of splicing and may help to position the U6 ISL adjacent to the 5' splice site.  相似文献   

12.
Components essential for nuclear pre-messenger RNA splicing have been partially purified from HeLa cell nuclear extracts by chromatography on DEAE-Sepharose, heparin-Sepharose, Mono Q, and Mono S. We have obtained six fractions which, when combined, efficiently splice a synthetic adenovirus 2 major late RNA substrate in vitro. All fractions contain components that support the formation of splicing intermediates (the cleaved 5' exon and the intron-exon 2 lariat). At least one of the fractions also contains an activity that is essential for the second step in the splicing reaction, namely cleavage at the 3' splice site and exon ligation. Two of the fractions are enriched in the major small nuclear ribonucleoprotein particles U1, U2, U4/U6, and U5. They participate in the formation of the splicing complexes which precedes the cleavage and ligation reactions. The remaining four fractions appear to contain protein factors, as suggested by their resistance to micrococcal nuclease.  相似文献   

13.
We develop a statistical mechanical model for RNA/RNA complexes with both intramolecular and intermolecular interactions. As an application of the model, we compute the free energy landscapes, which give the full distribution for all the possible conformations, for U4/U6 and U2/U6 in major spliceosome and U4atac/U6atac and U12/U6atac in minor spliceosome. Different snRNA experiments found contrasting structures, our free energy landscape theory shows why these structures emerge and how they compete with each other. For yeast U2/U6, the model predicts that the two distinct experimental structures, the four-helix junction structure and the helix Ib-containing structure, can actually coexist and specifically compete with each other. In addition, the energy landscapes suggest possible mechanisms for the conformational switches in splicing. For instance, our calculation shows that coaxial stacking is essential for stabilizing the four-helix junction in yeast U2/U6. Therefore, inhibition of the coaxial stacking possibly by protein-binding may activate the conformational switch from the four-helix junction to the helix Ib-containing structure. Moreover, the change of the energy landscape shape gives information about the conformational changes. We find multiple (native-like and misfolded) intermediates formed through base-pairing rearrangements in snRNA complexes. For example, the unfolding of the U2/U6 undergoes a transition to a misfolded state which is functional, while in the unfolding of U12/U6atac, the functional helix Ib is found to be the last one to unfold and is thus the most stable structural component. Furthermore, the energy landscape gives the stabilities of all the possible (functional) intermediates and such information is directly related to splicing efficiency.  相似文献   

14.
C H Kim  D E Ryan  T Marciniec    J Abelson 《The EMBO journal》1997,16(8):2119-2129
We have identified 2'-hydroxyl groups of the U6 phosphate-ribose backbone which are required for reconstitution of splicing activity in U6-depleted yeast extract. To screen the 2'-hydroxyls of yeast U6 at nucleotides 39-88, spanning the conserved central domain, synthetic U6 RNAs were constructed with deoxyribonucleotides incorporated site specifically. Only four individual deoxynucleotide substitutions blocked splicing activity: dA51 (in the ACAGAG sequence), dA62 (next to the AGC triad), and dU70 and dC72 (both in the loop of the 3' intramolecular stem-loop). Native gel analysis revealed that these deoxy-substituted U6 RNAs were competent for assembly of spliceosomes. Interestingly, a 2'-O-methyl substituent at A51, A62, U70 or C72 did not inhibit splicing activity, indicating that the essential 2'-OH groups at these positions in U6 act as hydrogen bond acceptors or neutral coordinated ligands. The requisite 2'-hydroxyls at A62, U70 and C72 show both similarities and differences relative to the positions of essential 2'-hydroxyls of catalytic domain V of group II ribozymes. The identification of the essential 2'-hydroxyls at positions 62, 70 and 72 corroborates that the 3' intramolecular stem-loop in U6 plays an important role in pre-mRNA splicing.  相似文献   

15.
M Liu  W C Chu  J C Liu    J Horowitz 《Nucleic acids research》1997,25(24):4883-4890
Although the anticodon is the primary element in Escherichia coli tRNAValfor recognition by valyl-tRNA synthetase (ValRS), nucleotides in the acceptor stem and other parts of the tRNA modulate recognition. Study of the steady state aminoacylation kinetics of acceptor stem mutants of E.coli tRNAValdemonstrates that replacing any base pair in the acceptor helix with another Watson-Crick base pair has little effect on aminoacylation efficiency. The absence of essential recognition nucleotides in the acceptor helix was confirmed by converting E.coli tRNAAlaand yeast tRNAPhe, whose acceptor stem sequences differ significantly from that of tRNAVal, to efficient valine acceptors. This transformation requires, in addition to a valine anticodon, replacement of the G:U base pair in the acceptor stem of these tRNAs. Mutational analysis of tRNAValverifies that G:U base pairs in the acceptor helix act as negative determinants of synthetase recognition. Insertion of G:U in place of the conserved U4:A69 in tRNAValreduces the efficiency of aminoacylation, due largely to an increase in K m. A smaller but significant decline in aminoacylation efficiency occurs when G:U is located at position 3:70; lesser effects are observed for G:U at other positions in the acceptor helix. The negative effects of G:U base pairs are strongly correlated with changes in helix structure in the vicinity of position 4:69 as monitored by19F NMR spectroscopy of 5-fluorouracil-substituted tRNAVal. This suggests that maintaining regular A-type RNA helix geometry in the acceptor stem is important for proper recognition of tRNAValby valyl-tRNA synthetase.19F NMR also shows that formation of the tRNAVal-valyl-tRNA synthetase complex does not disrupt the first base pair in the acceptor stem, a result different from that reported for the tRNAGln-glutaminyl-tRNA synthetase complex.  相似文献   

16.
Base substitutions in U2/U6 helix I, a conserved base-pairing interaction between the U6 and U2 snRNAs, have previously been found to specifically block the second catalytic step of nuclear pre-mRNA splicing. To further assess the role of U2/U6 helix I in the second catalytic step, we have screened mutations in U2/U6 helix I to identify those that influence 3' splice site selection using a derivative of the yeast actin pre-mRNA. In these derivatives, the spacing between the branch site adenosine and 3' splice site has been reduced from 43 to 12 nt and this results in enhanced splicing of mutants in the conserved 3' terminal intron residue. In this context, mutation of the conserved 3' intron terminal G to a C also results in the partial activation of a nearby cryptic 3' splice site with U as the 3' terminal intron nucleotide. Using this highly sensitive mutant substrate, we have identified a mutation in the U6 snRNA (U57A) that significantly increases the selection of the cryptic 3' splice site over the normal 3' splice site and augments its utilization relative to that observed with the wild-type U2 or U6 snRNAs. In a previous study, we found that the same U6 mutation suppressed the effects of an A-to-G branch site mutation in an allele-specific fashion. The ability of U6-U57 mutants to influence the fidelity of both branch site and 3' splice site recognition suggests that this nucleotide may participate in the formation of the active site(s) of the spliceosome.  相似文献   

17.
The U6 small nuclear RNA (snRNA) undergoes major conformational changes during the assembly of the spliceosome and catalysis of splicing. It associates with the specific protein Prp24p, and a set of seven LSm2p-8p proteins, to form the U6 small nuclear ribonucleoprotein (snRNP). These proteins have been proposed to act as RNA chaperones that stimulate pairing of U6 with U4 snRNA to form the intermolecular stem I and stem II of the U4/U6 duplex, whose formation is essential for spliceosomal function. However, the mechanism whereby Prp24p and the LSm complex facilitate U4/U6 base-pairing, as well as the exact binding site(s) of Prp24p in the native U6 snRNP, are not well understood. Here, we have investigated the secondary structure of the U6 snRNA in purified U6 snRNPs and compared it with its naked form. Using RNA structure-probing techniques, we demonstrate that within the U6 snRNP a large internal region of the U6 snRNA is unpaired and protected from chemical modification by bound Prp24p. Several of these U6 nucleotides are available for base-pairing interaction, as only their sugar backbone is contacted by Prp24p. Thus, Prp24p can present them to the U4 snRNA and facilitate formation of U4/U6 stem I. We show that the 3' stem-loop is not bound strongly by U6 proteins in native particles. However, when compared to the 3' stem-loop in the naked U6 snRNA, it has a more open conformation, which would facilitate formation of stem II with the U4 snRNA. Our data suggest that the combined association of Prp24p and the LSm complex confers upon U6 nucleotides a conformation favourable for U4/U6 base-pairing. Interestingly, we find that the open structure of the yeast U6 snRNA in native snRNPs can also be adopted by human U6 and U6atac snRNAs.  相似文献   

18.
Splice site recognition and catalysis of the transesterification reactions in the spliceosome are accompanied by a dynamic series of interactions involving conserved or invariant sequences in the spliceosomal snRNAs. We have used site-specific photoactivated crosslinking in yeast spliceosomes to monitor interactions between snRNAs and exon sequences near the 5' and 3' splice sites. The last nucleotide of the 5' exon can be crosslinked to an invariant loop sequence in U5 SnRNA before and after 5' splice site cleavage. The first nucleotide of the 3' exon can also be crosslinked to the same U5 loop sequence, but this contact is only detectable after the first transesterification. These results are in close agreement with earlier data from mammalian splicing extracts, and they are consistent with a model in which U5 snRNA aligns the 5' and 3' exons for the second transesterification. After the first catalytic step of splicing, the first nucleotide of the 3' exon can also crosslink to nt U23 in U2 snRNA. This is one of a cluster of residues in U2-U6 helix I implicated by mutational analysis in the second catalytic step of splicing. The crosslinking data suggest that these residues in U2-U6 helix I are in close proximity to the scissile phosphodiester bond at the 3' splice site prior to the second transesterification. These results constitute the first biochemical evidence for a direct interaction between the 3' splice site and U2 snRNA.  相似文献   

19.
Compensatory mutations have been constructed which demonstrate that P8 and P6, two of nine proposed base-pairing interactions characteristic of group I introns, exist within the folded structure of the Tetrahymena thermophila rRNA intervening sequence, and that these secondary structure elements are important for splicing in E. coli and self-splicing in vitro. Two-base mutations in the 5' and 3' segments of P8 are predicted to disrupt P8 and a strong splicing-defective phenotype is observed in each case. A compensatory four-base mutation in P8 is predicted to restore pairing, and results in the restoration of splicing activity to nearly wild type levels. Thus, we conclude that P8 exists and is essential for splicing. In contrast to the strong phenotypes generally exhibited by mutations which disrupt RNA secondary structure, a two-base mutation in L8, the loop between P8[5'] and P8[3'], results in only a slight decrease in splicing activity. We also tested P6, a pairing which is proposed to consist of only two base-pairs in this intron. A two-base mutation in P6[3'] reduces splicing activity to a greater extent than does a two-base mutation in P6[5']. Comparison of the activities of these mutants and a compensatory P6 four-base mutant support the existence of P6, and suggest that the P6 pairing may be particularly important in the exon ligation step of splicing.  相似文献   

20.
Testa SM  Disney MD  Turner DH  Kierzek R 《Biochemistry》1999,38(50):16655-16662
Antisense compounds are designed to optimize selective hybridization of an exogenous oligonucleotide to a cellular target. Typically, Watson-Crick base pairing between the antisense compound and target provides the key recognition element. Uridine (U), however, not only stably base pairs with adenosine (A) but also with guanosine (G), thus reducing specificity. Studies of duplex formation by oligonucleotides with either an internal or a terminal 2- or 4-thiouridine (s(2)U or s(4)U) show that s(2)U can increase the stability of base pairing with A more than with G, while s(4)U can increase the stability of base pairing with G more than with A. The latter may be useful when binding can be enhanced by tertiary interactions with a s(4)U-G pair. To test the effects of s(2)U and s(4)U substitutions on tertiary interactions, binding to a group I intron ribozyme from mouse-derived Pneumocystis carinii was measured for the hexamers, r(AUGACU), r(AUGACs(2)U), and r(AUGACs(4)U), which mimic the 3' end of the 5' exon. The results suggest that at least one of the carbonyl groups of the 3' terminal U of r(AUGACU) is involved in tertiary interactions with the catalytic core of the ribozyme and/or thio groups change the orientation of a terminal U-G base pair. Thus thio substitutions may affect tertiary interactions. Studies of trans-splicing of 5' exon mimics to a truncated rRNA precursor, however, indicate that thio substitutions have negligible effects on overall reactivity. Therefore, modified bases can enhance the specificity of base pairing while retaining other activities and, thus, increase the specificity of antisense compounds targeting cellular RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号