首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Thermodynamics of RNA-RNA duplexes with 2- or 4-thiouridines: implications for antisense design and targeting a group I intron
Authors:Testa S M  Disney M D  Turner D H  Kierzek R
Institution:Department of Chemistry, University of Rochester, New York 14627-0216, USA.
Abstract:Antisense compounds are designed to optimize selective hybridization of an exogenous oligonucleotide to a cellular target. Typically, Watson-Crick base pairing between the antisense compound and target provides the key recognition element. Uridine (U), however, not only stably base pairs with adenosine (A) but also with guanosine (G), thus reducing specificity. Studies of duplex formation by oligonucleotides with either an internal or a terminal 2- or 4-thiouridine (s(2)U or s(4)U) show that s(2)U can increase the stability of base pairing with A more than with G, while s(4)U can increase the stability of base pairing with G more than with A. The latter may be useful when binding can be enhanced by tertiary interactions with a s(4)U-G pair. To test the effects of s(2)U and s(4)U substitutions on tertiary interactions, binding to a group I intron ribozyme from mouse-derived Pneumocystis carinii was measured for the hexamers, r(AUGACU), r(AUGACs(2)U), and r(AUGACs(4)U), which mimic the 3' end of the 5' exon. The results suggest that at least one of the carbonyl groups of the 3' terminal U of r(AUGACU) is involved in tertiary interactions with the catalytic core of the ribozyme and/or thio groups change the orientation of a terminal U-G base pair. Thus thio substitutions may affect tertiary interactions. Studies of trans-splicing of 5' exon mimics to a truncated rRNA precursor, however, indicate that thio substitutions have negligible effects on overall reactivity. Therefore, modified bases can enhance the specificity of base pairing while retaining other activities and, thus, increase the specificity of antisense compounds targeting cellular RNA.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号