首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Carbonyl modified proteins in cellular regulation, aging, and disease   总被引:21,自引:0,他引:21  
The oxidative modification of proteins by reactive species is implicated in the etiology or progression of a panoply of disorders and diseases. The level of these modified molecules can be quantitated by measurement of the protein carbonyl content, which has been shown to increase in a variety of diseases and processes, notably during aging. For the most part, oxidatively modified proteins are not repaired and must be removed by proteolytic degradation, a process which normally proceeds very efficiently, from microorganisms to mammals. In eukaryotes, removal is usually carried out by the proteosome, which selectively degrades oxidatively modified proteins, whether they be damaged by reactive oxygen species or specifically oxidized by cellular regulatory processes. The molecular deficiencies that cause accumulation of oxidatively modified proteins are not identified, but regardless of cause, the accumulation is likely to disrupt normal cellular function.  相似文献   

2.
Free radicals and disease.   总被引:6,自引:0,他引:6  
Free radicals and reactive oxygen species (ROS) have been associated with the etiology and/or progression of a number of diseases and in aging. Many of the proteins oxidatively modified by free radicals contain side-chain carbonyl derivatives, which can be used as markers for protein oxidation. The protein carbonyl content has been quantitated as a function of age for human cultured dermal fibroblasts, lens, and brain tissue. These data were analyzed using a simple autocatalytic model with the assumption that free radicals randomly oxidize proteins or peptides to form carbonyl derivatives and lead to their inactivation. The carbonylated proteins and peptides are highly susceptible to proteolytic degradation. Implication of free radicals in aging and in age-dependent susceptibility to neurodegenerative diseases will be discussed in light of this simplified kinetic model.  相似文献   

3.
The deleterious effects of oxidants on proteins may be modified by overexpression of uncoupling protein 3 (UCP3) in skeletal muscle cells exposed to hyperoxia or H2O2. UCP3 overexpression significantly attenuated the increase in protein carbonylation in response to hyperoxia and H2O2 exposures. However, antioxidant enzyme content and activity (superoxide dismutases, peroxiredoxins, glutathione peroxidase-I, and catalase) were reduced or not modified in UCP3-overexpressing myotubes exposed to oxidants. Protein nitration increased in UCP3-overexpressing cells exposed to hyperoxia, but not to H2O2. We conclude that protein oxidation rather than nitration is neutralized by UPC3 overexpression in mouse myotubes exposed to abundant reactive oxygen species.  相似文献   

4.
Changes in the oxidative status in the soluble proteins of bronchoalveolar lavage (BAL) fluid from monkeys were examined during 26 months of individual or combined exposure to quartz dust (5 mg/m3 of DQ12) and a hyperbaric atmosphere (2.5 bar). The oxidation of BAL proteins, assumed to be an indicator for oxidative stress in the lungs, was determined by measuring the amount of carbonyl groups in their amino acid side chains. The carbonyl content of BAL proteins (nmol carbonyl/mg protein) increased steadily to a maximum value of 156% of the control after 6 months exposure to hyperbaric atmosphere, and decreased below 50% of control levels in both the quartz alone exposed group and the group exposed to quartz in combination with a hyperbaric atmosphere. The effect of quartz on the production of reactive oxygen species by BAL cells was investigated in vitro. BAL cells from healthy monkeys preincubated with quartz and stimulated with phorbol-myristate acetate (PMA) produced reduced levels of extracellular superoxide anion and intracellular hydrogen peroxide compared with PMA-only stimulated cells. Thus the lowered carbonyl content of BAL proteins in the quartz exposed groups may have resulted from reduced production of the hydrogen peroxide which is essential for carbonyl formation by phagocytes. Changes in carbonyl content of BAL protein in vivo may be a new indicator for potential subsequent lung damage.  相似文献   

5.
The purpose of this study was to determine (1) whether oxidative damage to plasma proteins in mice and rats, accrued during aging and manifested as carbonyl modifications, was selective or random, and (2) whether the putative carbonylated proteins could be used as markers of oxidative stress and aging. The total protein carbonyl content of the plasma significantly increased with age in mice but not in rats. Immunostaining of mouse plasma proteins, resolved by SDS-PAGE to localize carbonyls, revealed that only two specific proteins exhibited an age-associated increase in carbonylation. These proteins with molecular weights of 68 and 75 kDa, were identified as albumin and transferrin, respectively. In the rat, albumin and a 167-kDa protein, alpha1-macroglobulin (alpha-1M), showed significant age-dependent accrual of carbonylation. In the plasma of middle age Rhesus monkeys, in addition to albumin, a 54-kDa protein showed carbonylation. However, neither transferrin nor alpha-1M were carbonylated in the plasma of Rhesus monkey. Albumin was the only protein that showed carbonylation in all the three species examined. Results of this study indicate that age-associated increase in protein carbonylation is a selective and not a random phenomenon. However, the set of proteins that become carbonylated differs in different species.  相似文献   

6.
吡哆胺-一种天然的AGEs/ALEs抑制剂   总被引:2,自引:0,他引:2  
衰老及老年相关疾病,如:糖尿病、动脉粥状硬化、各种神经退行性疾病等,与组织蛋白氧化修饰密切相关.在造成蛋白质氧化修饰的反应中,非酶糖基化和脂质过氧化是最重要的两类,它们最终形成非酶糖基化终产物(AGEs)和脂过氧化终产物(ALEs).基于羰基毒害衰老理论,具有强烈反应活性的羰基类化合物是非酶糖基化和脂质过氧化的共同中间产物,它们是造成蛋白修饰的直接原因之一.吡哆胺是维生素B6的一种天然成分;由于它能直接清除羰基类化合物,从而抑制AGEs/ALEs的生成;又因为吡哆胺对人体副作用很小.因此吡哆胺有望成为一种新型的防治多种老年相关疾病的药物.  相似文献   

7.
UVB is the most energetic and DNA-damaging to humans in ultraviolet radiation. Previous research has suggested that exposure to UVB causes skin pathologies because of direct DNA damage and the generation of reactive oxygen species (ROS). However, the detailed molecular mechanisms by which UVB leads to skin cancer have yet to be clarified. In the current study, normal skin fibroblast cells (CCD-966SK) were exposed to various doses of UVB, and the changes in protein expression and thiol reactivity were monitored with lysine- and cysteine-labeling 2D-DIGE and MALDI-TOF mass spectrometry. Our proteomic analysis revealed that 89 identified proteins showed significant changes in protein expression, and 37 in thiol reactivity. Many proteins that are known to be involved in protein folding, redox regulation and nucleotide biosynthesis were up-regulated under UVB irradiation. In contrast, proteins responsible for biosynthesis and protein degradation were down-regulated. In addition, the thiol-reactivity of proteins involving cytoskeleton, metabolism, and signal transduction were altered by UVB. In summary, these UVB-modulated cellular proteins and redox-regulated proteins might play important roles in the early stages of skin cancer formation and photoaging induced by UVB-irradiation. Such proteins might provide a potential target for the rational design of drugs to prevent UVB-induced diseases.  相似文献   

8.
Antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT) have been considered to have a beneficial effect against various diseases mediated by reactive oxygen species (ROS). Although a variety of modified recombinant antioxidant enzymes have been generated to protect against the oxidative stresses, the lack of their transduction ability into cells resulted in limited ability to detoxify intracellular ROS. To render the catalase enzyme capable of detoxifying intracellular ROS when added extracellularly, cell-permeable recombinant catalase proteins were generated. A human liver catalase gene was cloned and fused with a gene fragment encoding the HIV-1 Tat protein transduction domain (RKKRRQRRR) and arginine-rich peptides (RRRRRRRRR) in a bacterial expression vector to produce genetic in-frame Tat-CAT and 9Arg-CAT fusion proteins, respectively. The expressed and purified fusion proteins can be transduced into mammalian cells (HeLa and PC12 cells) in a time- and dose-dependent manner when added exogenously in culture medium, and transduced fusion proteins were enzymatically active and stable for 60 h. When exposed to H(2)O(2), the viability of HeLa cells transduced with Tat-CAT or 9Arg-CAT fusion proteins was significantly increased. In combination with transduced SOD, transduced catalase also resulted in a cooperative increase in cell viability when the cells were treated with paraquat, an intracellular antioxide anion generator. We then evaluated the ability of the catalase fusion proteins to transduce into animal skin. This analysis showed that Tat-CAT and 9Arg-CAT fusion proteins efficiently penetrated the epidermis as well as the dermis of the subcutaneous layer when sprayed on animal skin, as judged by immunohistochemistry and specific enzyme activities. These results suggest that Tat-CAT and 9Arg-CAT fusion proteins can be used in protein therapy for various disorders related to this antioxidant enzyme.  相似文献   

9.
Alzheimer's disease (AD) is a neurodegenerative disorder in which oxidative stress has been implicated as an important event in the progression of the pathology. In particular, it has been shown that protein modification by reactive oxygen species (ROS) occurs to a greater extent in AD than in control brain, suggesting a possible role for oxidation-related decrease in protein function in the process of neurodegeneration. Oxidative damage to proteins, assessed by measuring the protein carbonyl content, is involved in several events such as loss in specific protein function, abnormal protein clearance, depletion of the cellular redox-balance and interference with the cell cycle, and, ultimately, neuronal death. The present investigation represents a further step in understanding the relationship between oxidative modification of protein and neuronal death in AD. Previously, we used our proteomics approach, which successfully substitutes for labor-intensive immunochemical analysis, to detect proteins and identified creatine kinase, glutamine synthase and ubiquitin carboxy-terminal hydrolase L-1 as specifically oxidized proteins in AD brain. In this report we again applied our proteomics approach to identify new targets of protein oxidation in AD inferior parietal lobe (IPL). The dihydropyrimidinase related protein 2 (DRP-2), which is involved in the axonal growth and guidance, showed significantly increased level in protein carbonyls in AD brain, suggesting a role for impaired mechanism of neural network formation in AD. Additionally, the cytosolic enzyme alpha-enolase was identified as a target of protein oxidation and is involved the glycolytic pathway in the pathological events of AD. Finally, the heat shock cognate 71 (HSC-71) revealed increased, but not significant, oxidation in AD brain. These results are discussed with reference to potential involvement of these oxidatively modified proteins in neurodegeneration in AD brain.  相似文献   

10.
The effects of dissolved oxygen (DO) concentration on virally infected insect cells were investigated in 3-L bioreactor culture. Specifically, cultures of Spodoptera frugiperda Sf-9 (Sf-9) and Trichoplusia ni BTI-Tn-5B1-4 (Tn-5B1-4) were infected with Autographa californica multiple nucleopolyhedrovirus expressing secreted alkaline phosphatase (SEAP). Following infection at a DO concentration of 50% air saturation, the DO concentration was adjusted to a final value of either 190%, 50%, or 10% air saturation. Recombinant SEAP production, cell viability, protein carbonyl content, and thiobarbituric acid reactive substances (TBARS) content were monitored. The increases in protein carbonyl and TBARS contents are taken to be indicators of protein oxidation and lipid oxidation, respectively. DO concentration was found to have no noticeable effect on SEAP production or cell viability decline in the Sf-9 cell line. In the Tn-5B1-4 cell line, cells displayed an increased peak SEAP production rate for 190% air saturation and displayed an increased rate of viability decline at increased DO concentration. Protein carbonyl content showed no significant increase in the Sf-9 cell line by 72 h postinfection (pi) at any DO concentration but showed a twofold increase at 10% and 50% DO concentration and a threefold increase at 190% DO concentration by 72 h pi in Tn-5B1-4 cells. TBARS content was found to increase by approximately 50% in Sf-9 cells and by approximately twofold in Tn-5B1-4 cells by 72 h pi with no clear relationship to DO concentration. It is hypothesized that oxygen uptake changes due to the viral infection process may bear a relation to the observed increases in protein and lipid oxidation and that lipid oxidation may play an important role in the death of virally infected insect cells.  相似文献   

11.
Melatonin secreted by the pineal gland acts as a free radical scavenger besides its role as a hormonal signaling agent. It detoxifies a variety of free radicals and reactive oxygen intermediates including hydroxyl radical, peroxynitrite anion and singlet oxygen. Ascorbic acid (Vitamin C), a water soluble vitamin, is a naturally occurring antioxidant and cofactor in various enzymes. Protein carbonyls are formed as a consequence of the oxidative modification of proteins by reactive oxygen species. Oxidative modification alters the function of protein and is thought to play an important role in the decline of cellular functions during aging. In the present study, the effect of melatonin and ascorbic acid on age-related carbonyl content of cerebral hemispheres in mice was investigated. Protein carbonyls of cerebral hemispheres have been found to be significantly higher in 18-month-old mice as compared to 1-month old mice. Administration of a single dose of melatonin (10 mg/kg body weight) and ascorbic acid (10 mg/kg body weight) intraperitoneally for three consecutive days decreases the carbonyl content in 1- and 18-month-old mice significantly. The present study thus suggests that the formation of protein carbonyls in the cerebral hemispheres of the aging mice can be prevented by the antioxidative effects of melatonin and ascorbic acid that could in turn be beneficial in having health benefits from age-related neurodegenerative diseases.  相似文献   

12.
羰基毒害在糖尿病晚期并发症中的作用   总被引:2,自引:0,他引:2  
动物机体组织的氧化紧张损伤和老化交联是糖尿病晚期并发症中神经病变、动脉粥样硬化、风湿性关节炎、肾病变、白内障等老化慢性疾病的共同特征.对氧化紧张到底是糖尿病晚期并发症的初始原因还是糖尿病组织衰变的次级诱因提出了探讨.结果表明糖尿病患者机体和血浆中的糖氧化产物及脂类过氧化物的增多表明病患者体内氧化紧张的加强;然而,它们中的某些产物与氧化紧张并不相关;此外,其它一些氧化紧张的直接指标,如氨基酸的氧化,在糖尿病患者的皮肤胶原中也并没有增多.因此,对于糖尿病患者中蛋白质化学修饰的现象,用活性羰基的毒化超过其系统解毒能力的观点来解释更合适.这种在氧化或非氧化反应中形成的不饱和羰基化合物在体内总是以相对恒定的浓度存在,因而在糖尿病中,由羰基毒害引起组织中糖类和脂类衍生物的增长可以被认为是生物化学动力学的一种必然结果.  相似文献   

13.
Cataract is generally associated with the breakdown of the lens microarchitecture. Age-dependent chemical modifications and cross-linking of proteins are the major pathways for development of lens opacity. The specific alterations in lens proteins caused by glycation with four carbonyl metabolites, fructose, methylglyoxal, glyoxal, and ascorbic acid, were investigated. Decrease in intensity of tryptophan related fluorescence and level of reduced protein sulfhydryl groups, parameters that are indicative for changes in protein conformation, were observed after reaction with all studied carbonyl compounds. Protein carbonyl content, an index for oxidative damage to proteins, was strongly enhanced in methylglyoxal-treated proteins. Cross-linking of glycated proteins was confirmed by polyacrylamide electrophoresis. alpha-Oxoaldehydes were the most reactive in protein aggregation. They also formed specific chromophores absorbing UV light above 300 nm. Significant loss in lactate dehydrogenase activity resulted from incubation with methylglyoxal, followed by glyoxal and ascorbic acid. The results obtained showed that alterations in lens proteins do not follow the specific reactivity of studied carbonyl compounds. Despite the similarity in chemical structures of alpha-oxoaldehydes and ascorbic acid degradation products, they cause specific alterations in lens protein structure with different biological consequences.  相似文献   

14.
Non-enzymatic glycosylation (glycation) is a spontaneous set of reactions between reducing sugars and free amino groups in proteins or other biomolecules leading to the formation of fluorescent and coloured compounds known as advanced glycation end products (AGEs). AGEs cause structural changes of key proteins in humans, and therefore they are related with a number of physiological processes and diseases such as aging, atherosclerosis, cataract, arthritis, Alzheimer's disease. Two main strategies have been employed to prevent the formation of AGEs: a) low carbohydrate diet and b) pharmacological intervention. The latter includes treatment with reactive compounds which might be either sugar competitors (type A), carbonyl traps (type B) or free radical trapping antioxidants (type C). Acetylsalicylic acid (ASA, aspirin) is a good example of sugar competitor capable of inhibiting glycation by acetylating epsilon-amino groups of lysine residues in proteins. Taking into consideration the inhibiting effect of ASA on glycation we designed to study the antiglycation activity of other acetyl group-containing compounds (acetamides and acetyl esters) using the lysine-rich protein histone H1 as a model. The glycation of the histone H1 was carried out by either fructose or a complex mixture of glycating agents obtained from E. coli and monitored by fluorescent spectroscopy, SDS-PAGE and measurement of the content of reactive carbonyl groups in the target protein. Our results showed that the inhibitory effect of phenyl acetate, acetanilide, 4-acetamidophenylacetic acid and isopropenyl acetate was comparable to that of ASA. Based on the obtained results we conclude that these compounds act as free radical scavengers protecting proteins from the damaging effect of reactive oxygen species produced during the formation of AGEs.  相似文献   

15.
Tea catechins and other flavonoids have been shown to potentially protect against chronic cardiovascular diseases such as coronary heart disease and atherosclerosis. In this study, 6-month-old female Sprague-Dawley rats were fed green tea extract (50 mg/100 ml in drinking water) up to the age of 22 months, and the age-associated changes in Maillard-type fluorescence and carbonyl groups in the aortic and skin collagen were compared with those occurring in the water-fed control animals. Collagen-linked Maillard-type fluorescence was found to increase in both the aortic and skin tissues as animals aged. The age-associated increase in the fluorescence in the aortic collagen was remarkably inhibited by the green tea extract treatment, while that occurring in the skin collagen was not significantly inhibited by the treatment. The collagen carbonyl content also increased in both the aortic and skin tissues as animals aged. In contrast with the case of Maillard-type fluorescence, however, the age-associated increase in the carbonyl content was not inhibited by the green tea extract treatment either in the aortic or skin collagen. These results suggest that the inhibition of AGE formation in collagen is an important mechanism for the protective effects of tea catechins against cardiovascular diseases.  相似文献   

16.
This review considers the interrelation between different types of protein glycation, glycolysis, and the development of amyloid neurodegenerative diseases. The primary focus is on the role of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase in changing the concentration of carbonyl compounds – first and foremost, glyceraldehyde-3-phosphate and methylglyoxal. It has been suggested that various modifications of the enzyme – from the oxidation of the sulfhydryl groups of the active site to glycation with sugars – can lead to its inactivation, which causes a direct increase in glyceraldehyde-3-phosphate concentration and an indirect increase in the content of other aldehydes. This “primary inactivation” of glyceraldehyde-3-phosphate dehydrogenase promotes its glycation with aldehydes, including its own substrate, and a further irreversible decrease in its activity. Such a cycle can lead to numerous consequences – from the induction of apoptosis, which is activated by modified forms of the enzyme, to glycation of amyloidogenic proteins by glycolytic aldehydes. Of particular importance during the inhibition of glyceraldehyde-3-phosphate dehydrogenase is an increase in the content of the glycating compound methylglyoxal, which is much more active than reducing sugars (glucose, fructose, and others). In addition, methylglyoxal is formed by two pathways – in the cascade of reactions during glycation and from glycolytic aldehydes. The ability of methylglyoxal to glycate proteins makes it the main participant in this protein modification. We consider the effect of glycation on the pathological transformation of amyloidogenic proteins and peptides – β-amyloid peptide, α-synuclein, and prions. Our primary focus is on the glycation of monomeric forms of these proteins with methylglyoxal, although most works are dedicated to the analysis of the presence of “advanced glycation end products” in the already formed aggregates and fibrils of amyloid proteins. In our opinion, the modification of aggregates and fibrils is secondary in nature and does not play an important role in the development of neurodegenerative diseases. The glycation of amyloid proteins with carbonyl compounds can be one of the triggers of their transformation into toxic forms. The possible role of glycation of amyloidogenic proteins in the prevention of their modification by ubiquitin and the SUMO proteins due to a disruption of their degradation is separately considered.  相似文献   

17.
The pattern of oxidized amino acids in aortic proteins of nonhuman primates suggests that a species resembling hydroxyl radical damages proteins when blood glucose levels are high. However, recent studies argue strongly against a generalized increase in diabetic oxidative stress, which might instead be confined to the vascular wall. Here, we describe a pathway for glucose-stimulated protein oxidation and provide evidence of its complicity in diabetic microvascular disease. Low density lipoprotein incubated with pathophysiological concentrations of glucose became selectively enriched in ortho-tyrosine and meta-tyrosine, implicating a hydroxyl radical-like species in protein damage. Model system studies demonstrated that the reaction pathway requires both a reactive carbonyl group and a polyunsaturated fatty acid, involves lipid peroxidation, and is blocked by the carbonyl scavenger aminoguanidine. To explore the physiological relevance of the pathway, we used mass spectrometry and high pressure liquid chromatography to quantify oxidation products in control and hyperglycemic rats. Hyperglycemia raised levels of ortho-tyrosine, meta-tyrosine, and oxygenated lipids in the retina, a tissue rich in polyunsaturated fatty acids. Rats that received aminoguanidine did not show this increase in protein and lipid oxidation. In contrast, rats with diet-induced hyperlipidemia in the absence of hyperglycemia failed to exhibit increased protein and lipid oxidation products in the retina. Our observations suggest that generation of a hydroxyl radical-like species by a carbonyl/polyunsaturated fatty acid pathway might promote localized oxidative stress in tissues vulnerable to diabetic damage. This raises the possibility that antioxidant therapies that specifically inhibit the pathway might delay the vascular complications of diabetes.  相似文献   

18.
Reactive oxygen species (ROS) are generated by a variety of sources from the environment (e.g., photo-oxidations and emissions) and normal cellular functions (e.g., mitochondrial metabolism and neutrophil activation). ROS include free radicals (e.g., superoxide and hydroxyl radicals), nonradical oxygen species (e.g., hydrogen peroxide and peroxynitrite) and reactive lipids and carbohydrates (e. g., ketoaldehydes, hydroxynonenal). Oxidative damage to DNA can occur by many routes including the oxidative modification of the nucleotide bases, sugars, or by forming crosslinks. Such modifications can lead to mutations, pathologies, cellular aging and death. Oxidation of proteins appears to play a causative role in many chronic diseases of aging including cataractogenesis, rheumatoid arthritis, and various neurodegenerative diseases including Alzheimer's Disease (AD). Our goal is to elucidate the mechanism(s) by which oxidative modification results in the disease. These studies have shown that (a) cells from old individuals are more susceptible to oxidative damage than cells from young donors; (b) oxidative protein modification is not random; (c) some of the damage can be prevented by antioxidants, but there is an age-dependent difference; and (d) an age-related impairment of recognition and destruction of modified proteins exists. It is believed that mechanistic insight into oxidative damage will allow prevention or intervention such that these insults are not inevitable. Our studies are also designed to identify the proteins which are most susceptible to ROS damage and to use these as potential biomarkers for the early diagnosis of diseases such as AD. For example, separation of proteins from cells or tissues on one- and two-dimensional gels followed by staining for both total protein and specifically oxidized residues (e.g., nitrotyrosine) may allow identification of biomarkers for AD.  相似文献   

19.
Accumulation and aggregation of misfolded proteins is a hallmark of several diseases collectively known as proteinopathies. Autophagy has a cytoprotective role in diseases associated with protein aggregates. Age-related macular degeneration (AMD) is the most common neurodegenerative eye disease that evokes blindness in elderly. AMD is characterized by degeneration of retinal pigment epithelial (RPE) cells and leads to loss of photoreceptor cells and central vision. The initial phase associates with accumulation of intracellular lipofuscin and extracellular deposits called drusen. Epidemiological studies have suggested an inverse correlation between dietary intake of marine n-3 polyunsaturated fatty acids (PUFAs) and the risk of developing neurodegenerative diseases, including AMD. However, the disease-preventive mechanism(s) mobilized by n-3 PUFAs is not completely understood. In human retinal pigment epithelial cells we find that physiologically relevant doses of the n-3 PUFA docosahexaenoic acid (DHA) induce a transient increase in cellular reactive oxygen species (ROS) levels that activates the oxidative stress response regulator NFE2L2/NRF2 (nuclear factor, erythroid derived 2, like 2). Simultaneously, there is a transient increase in intracellular protein aggregates containing SQSTM1/p62 (sequestosome 1) and an increase in autophagy. Pretreatment with DHA rescues the cells from cell cycle arrest induced by misfolded proteins or oxidative stress. Cells with a downregulated oxidative stress response, or autophagy, respond with reduced cell growth and survival after DHA supplementation. These results suggest that DHA both induces endogenous antioxidants and mobilizes selective autophagy of misfolded proteins. Both mechanisms could be relevant to reduce the risk of developing aggregate-associate diseases such as AMD.  相似文献   

20.
DNA damage by carbonyl stress in human skin cells   总被引:1,自引:0,他引:1  
Reactive carbonyl species (RCS) are potent mediators of cellular carbonyl stress originating from endogenous chemical processes such as lipid peroxidation and glycation. Skin deterioration as observed in photoaging and diabetes has been linked to accumulative protein damage from glycation, but the effects of carbonyl stress on skin cell genomic integrity are ill defined. In this study, the genotoxic effects of acute carbonyl stress on HaCaT keratinocytes and CF3 fibroblasts were assessed. Administration of the alpha-dicarbonyl compounds glyoxal and methylglyoxal as physiologically relevant RCS inhibited skin cell proliferation, led to intra-cellular protein glycation as evidenced by the accumulation of N(epsilon)-(carboxymethyl)-L-lysine (CML) in histones, and caused extensive DNA strand cleavage as assessed by the comet assay. These effects were prevented by treatment with the carbonyl scavenger D-penicillamine. Both glyoxal and methylglyoxal damaged DNA in intact cells. Glyoxal caused DNA strand breaks while methylglyoxal produced extensive DNA-protein cross-linking as evidenced by pronounced nuclear condensation and total suppression of comet formation. Glycation by glyoxal and methylglyoxal resulted in histone cross-linking in vitro and induced oxygen-dependent cleavage of plasmid DNA, which was partly suppressed by the hydroxyl scavenger mannitol. We suggest that a chemical mechanism of cellular DNA damage by carbonyl stress occurs in which histone glycoxidation is followed by reactive oxygen induced DNA stand breaks. The genotoxic potential of RCS in cultured skin cells and its suppression by a carbonyl scavenger as described in this study have implications for skin damage and carcinogenesis and its prevention by agents selective for carbonyl stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号