首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Production of xylitol from xylose in batch fermentations of Candida mogii ATCC 18364 is discussed in the presence of glucose as the cosubstrate. Various initial ratios of glucose and xylose concentrations are assessed for their impact on yield and rate of production of xylitol. Supplementation with glucose at the beginning of the fermentation increased the specific growth rate, biomass yield and volumetric productivity of xylitol compared with fermentation that used xylose as the sole carbon source. A mathematical model is developed for eventual use in predicting the product formation rate and yield. The model parameters were estimated from experimental observations, using a genetic algorithm. Batch fermentations, which were carried out with xylose alone and a mixture of xylose and glucose, were used to validate the model. The model fitted well with the experimental data of cell growth, substrate consumption and xylitol production.  相似文献   

2.
Acetic acid is an important chemical raw material that can be produced directly from sugars in lignocellulosic biomass. Development of kinetic models that capture the bioconversion dynamics of multiple sugar systems will be critical to optimization and process control in future lignocellulosic biorefinery processes. In this work, a kinetic model was developed for the single- and dual-substrate conversion of xylose and glucose to acetic acid using the acetogen Moorella thermoacetica. Batch fermentations were performed experimentally at 20 g L?1 total sugar concentration using synthetic glucose, xylose, and a mixture of glucose and xylose at a 1:1 ratio. The product yield, calculated as total product formed divided by total sugars consumed, was 79.2, 69.9, and 69.7 % for conversion of glucose, xylose, and a mixture of glucose and xylose (1:1 ratio), respectively. During dual-substrate fermentation, M. thermoacetica demonstrated diauxic growth where xylose (the preferred substrate) was almost entirely consumed before consumption of glucose began. Kinetic parameters were similar for the single-substrate fermentations, and a strong linear correlation was determined between the maximum specific growth rate μ max and substrate inhibition constant, K s . Parameters estimated for the dual-substrate system demonstrated changes in the specific growth rate of both xylose and glucose consumption. In particular, the maximum growth rate related to glucose tripled compared to the single-substrate system. Kinetic growth is affected when multiple substrates are present in a fermentation system, and models should be developed to reflect these features.  相似文献   

3.
Ethanol is the most-widely used biofuel in the world today. Lignocellulosic plant biomass derived from agricultural residue can be converted to ethanol via microbial bioprocessing. Fungi such as Fusarium oxysporum can simultaneously saccharify straw to sugars and ferment sugars to ethanol. But there are many bottlenecks that need to be overcome to increase the efficacy of microbial production of ethanol from straw, not least enhancement of the rate of fermentation of both hexose and pentose sugars. This research tested the hypothesis that the rate of sugar uptake by F. oxysporum would enhance the ethanol yields from lignocellulosic straw and that high affinity glucose transporters can enhance ethanol yields from this substrate. We characterized a novel hexose transporter (Hxt) from this fungus. The F. oxysporum Hxt represents a novel transporter with homology to yeast glucose signaling/transporter proteins Rgt2 and Snf3, but it lacks their C-terminal domain which is necessary for glucose signalling. Its expression level decreased with increasing glucose concentration in the medium and in a glucose uptake study the Km(glucose) was 0.9 mM, which indicated that the protein is a high affinity glucose transporter. Post-translational gene silencing or over expression of the Hxt in F. oxysporum directly affected the glucose and xylose transport capacity and ethanol yielded by F. oxysporum from straw, glucose and xylose. Thus we conclude that this Hxt has the capacity to transport both C5 and C6 sugars and to enhance ethanol yields from lignocellulosic material. This study has confirmed that high affinity glucose transporters are ideal candidates for improving ethanol yields from lignocellulose because their activity and level of expression is high in low glucose concentrations, which is very common during the process of consolidated processing.  相似文献   

4.
Hemicellulose liquid hydrolyzate from dilute acid pretreated corn stover was fermented to ethanol using Pichia stipitis CBS 6054. The fermentation rate increased with aeration but the pH also increased due to consumption of acetic acid by Pichia stipitis. Hemicellulose hydrolyzate containing 34 g/L xylose, 8 g/L glucose, 8 g/L Acetic acid, 0.73 g/L furfural, and 1 g/L hydroxymethyl furfural was fermented to 15 g/L ethanol in 72 h. The yield in all the hemicellulose hydrolyzates was 0.37–0.44 g ethanol/g (glucose + xylose). Nondetoxified hemicellulose hydrolyzate from dilute acid pretreated corn stover was fermented to ethanol with high yields, and this has the potential to improve the economics of the biomass to ethanol process.  相似文献   

5.
This article reviews current co-culture systems for fermenting mixtures of glucose and xylose to ethanol. Thirty-five co-culture systems that ferment either synthetic glucose and xylose mixture or various biomass hydrolysates are examined. Strain combinations, fermentation modes and conditions, and fermentation performance for these co-culture systems are compared and discussed. It is noted that the combination of Pichia stipitis with Saccharomyces cerevisiae or its respiratory-deficient mutant is most commonly used. One of the best results for fermentation of glucose and xylose mixture is achieved by using co-culture of immobilized Zymomonas mobilis and free cells of P. stipitis, giving volumetric ethanol production of 1.277 g/l/h and ethanol yield of 0.49–0.50 g/g. The review discloses that, as a strategy for efficient conversion of glucose and xylose, co-culture fermentation for ethanol production from lignocellulosic biomass can increase ethanol yield and production rate, shorten fermentation time, and reduce process costs, and it is a promising technology although immature.  相似文献   

6.
Characteristics of ethanol production by a xylose-fermenting yeast,Pichia stipitis Y-7124, were studied. The sugar consumption rate and specific growth rate were higher in the glucose-containing medium than in the xylose-containing medium. Specific activities of xylose reductase and xylitol dehydrogenase were higher in the medium with xylose than glucose, suggesting their induction by xylose. Maximum specific growth rate and ethanol yield were achieved at 30 g xylose/L concentration without formation of by-products such as xylitol and acetic acid whereas a maximum ethanol concentration was obtained at 130 g/L xylose. Adding a respiratory inhibitor, rotenone, increased a maximum ethanol concentration by 10% compared with the control experiment. In order to evaluate the pattern of ethanol inhibition on specific growth rate, a kinetic model based on Luong’s equations was applied. The relationship between ethanol concentration and specific growth rate was hyperbolic for glucose and parabolic for xylose. A maximum ethanol concentration at which cells did not grow was 33.6 g/L for glucose and 44.7 g/L for xylose.  相似文献   

7.
The fermentation of xylose by Thermoanaerobacter ethanolicus ATCC 31938 was studied in pH-controlled batch and continuous cultures. In batch culture, a dependency of growth rate, product yield, and product distribution upon xylose concentration was observed. With 27 mM xylose media, an ethanol yield of 1.3 mol ethanol/mol xylose (78% of maximum theoretical yield) was typically obtained. With the same media, xylose-limited growth in continuous culture could be achieved with a volumetric productivity of 0.50 g ethanol/liter h and a yield of 0.42 g ethanol/g xylose (1.37 mol ethanol/mol xylose). With extended operation of the chemostat, variation in xylose uptake and a decline in ethanol yield was seen. Instability with respect to fermentation performance was attributed to a selection for mutant populations with different metabolic characteristics. Ethanol production in these T. ethanolicus systems was compared with xylose-to-ethanol conversions of other organisms. Relative to the other systems, T. ethanolicus offers the advantages of a high ethanol yield at low xylose concentrations in batch culture and of a rapid growth rate. Its disadvantages include a lower ethanol yield at higher xylose concentrations in batch culture and an instability of fermentation characteristics in continuous culture.  相似文献   

8.
建立筛选利用木糖为碳源产乙醇酵母模型,获得一株适合利用木质纤维素为原料产乙醇的酵母菌株。样品经麦芽汁培养基培养后,以木糖为唯一碳源的筛选培养基初筛,再以重铬酸钾显色法复筛。通过生理生化和26D1/D2区对筛选得到的菌株进行分析和鉴定,该菌初步鉴定为Pichia caribbica。经过筛选得到的菌株Y2-3以木糖(40g/L)为唯一碳源发酵时:生物量为23.5g/L,木糖利用率为94.7 %,乙醇终产量为4.57 g/L;以混合糖(葡萄糖40 g/L,木糖20 g/L)发酵时:生物量为28.6 g/L,木糖利用率为94.2 %,葡萄糖利用率为95.6%,乙醇终产量为20.6 g/L。Pichia caribbica是可以转化木糖及木糖-葡萄糖混合糖为乙醇的酵母菌株,为利用木质纤维素发酵乙醇的进一步研究奠定了基础。  相似文献   

9.
This research was designed to maximize ethanol production from a glucose-xylose sugar mixture (simulating a sugar cane bagasse hydrolysate) by co-fermentation with Zymomonas mobilis and Pachysolen tannophilus. The volumetric ethanol productivity of Z. mobilis with 50 g glucose/l was 2.87 g/l/h, giving an ethanol yield of 0.50 g/g glucose, which is 98% of the theoretical. P. tannophilus when cultured on 50 g xylose/l gave a volumetric ethanol productivity of 0.10 g/l/h with an ethanol yield of 0.15 g/g xylose, which is 29% of the theoretical. On optimization of the co-fermentation with the sugar mixture (60 g glucose/l and 40 g xylose/l) a total ethanol yield of 0.33 g/g sugar mixture, which is 65% of the theoretical yield, was obtained. The co-fermentation increased the ethanol yield from xylose to 0.17 g/g. Glucose and xylose were completely utilized and no residual sugar was detected in the medium at the end of the fermentation. The pH of the medium was found to be a good indicator of the fermentation status. The optimum conditions were a temperature of 30°C, initial inoculation with Z. mobilis and incubation with no aeration, inactivation of bacterium after the utilization of glucose, followed by inoculation with P. tannophilus and incubation with limited aeration.  相似文献   

10.
Bioethanol is the most commonly used renewable biofuel as an alternative to fossil fuels. Many microbial strains can convert lignocellulosics into bioethanol. However, very few natural strains with a high capability of fermenting pentose sugars and simultaneously utilizing various sugars have been reported. In this study, fermentation of sugar by Fusarium oxysporum G was performed for the production of ethanol to improve the performance of the fermentation process. The influences of pH, substrate concentration, temperature, and rotation speed on ethanol fermentation are investigated. The three significant factors (pH, substrate concentration, and temperature) are further optimized by quadratic orthogonal rotation regression combination design and response surface methodology (RSM). The optimum conditions are pH 4, 40?g/L of xylose, 32?°C, and 110?rpm obtained through single factor experiment design. Finally, it is found that the maximum ethanol production (10.0?g/L) can be achieved after 7 d of fermentation under conditions of pH 3.87, 45.2?g/L of xylose, and 30.4?°C. Glucose is utilized preferentially for the glucose–xylose mixture during the initial fermentation stage, but glucose and xylose are synchronously consumed without preference in the second period. These findings are significant for the potential industrial application of this strain for bioethanol production.  相似文献   

11.

Industrial production of lignocellulosic ethanol requires a microorganism utilizing both hexose and pentose, and tolerating inhibitors. In this study, a hydrolysate-cofermenting Saccharomyces cerevisiae strain was obtained through one step in vivo DNA assembly of pentose-metabolizing pathway genes, followed by consecutive adaptive evolution in pentose media containing acetic acid, and direct screening in biomass hydrolysate media. The strain was able to coferment glucose and xylose in synthetic media with the respective maximal specific rates of glucose and xylose consumption, and ethanol production of 3.47, 0.38 and 1.62 g/g DW/h, with an ethanol titre of 41.07 g/L and yield of 0.42 g/g. Industrial wheat straw hydrolysate fermentation resulted in maximal specific rates of glucose and xylose consumption, and ethanol production of 2.61, 0.54 and 1.38 g/g DW/h, respectively, with an ethanol titre of 54.11 g/L and yield of 0.44 g/g. These are among the best for wheat straw hydrolysate fermentation through separate hydrolysis and cofermentation.

  相似文献   

12.
Lignocellulosic biomass has considerable potential for the production of fuels and chemicals as a promising alternative to conventional fossil fuels. However, the bioconversion of lignocellulosic biomass to desired products must be improved to reach economic viability. One of the main technical hurdles is the presence of inhibitors in biomass hydrolysates, which hampers the bioconversion efficiency by biorefinery microbial platforms such as Saccharomyces cerevisiae in terms of both production yields and rates. In particular, acetic acid, a major inhibitor derived from lignocellulosic biomass, severely restrains the performance of engineered xylose‐utilizing S. cerevisiae strains, resulting in decreased cell growth, xylose utilization rate, and product yield. In this study, the robustness of XUSE, one of the best xylose‐utilizing strains, was improved for the efficient conversion of lignocellulosic biomass into bioethanol under the inhibitory condition of acetic acid stress. Through adaptive laboratory evolution, we successfully developed the evolved strain XUSAE57, which efficiently converted xylose to ethanol with high yields of 0.43–0.50 g ethanol/g xylose even under 2–5 g/L of acetic stress. XUSAE57 not only achieved twofold higher ethanol yields but also improved the xylose utilization rate by more than twofold compared to those of XUSE in the presence of 4 g/L of acetic acid. During fermentation of lignocellulosic hydrolysate, XUSAE57 simultaneously converted glucose and xylose with the highest ethanol yield reported to date (0.49 g ethanol/g sugars). This study demonstrates that the bioconversion of lignocellulosic biomass by an engineered strain could be significantly improved through adaptive laboratory evolution for acetate tolerance, which could help realize the development of an economically feasible lignocellulosic biorefinery to produce fuels and chemicals.  相似文献   

13.
Efficient conversion of both glucose and xylose in lignocellulosic biomass is necessary to make second-generation bioethanol from agricultural residues competitive with first-generation bioethanol and gasoline. Simultaneous saccharification and co-fermentation (SSCF) is a promising strategy for obtaining high ethanol yields. However, with this method, the xylose-fermenting capacity and viability of yeast tend to decline over time and restrict the xylose utilization. In this study, we examined the ethanol production from steam-pretreated wheat straw using an established SSCF strategy with substrate and enzyme feeding that was previously applied to steam-pretreated corn cobs. Based on our findings, we propose an alternative SSCF strategy to sustain the xylose-fermenting capacity and improve the ethanol yield. The xylose-rich hydrolyzate liquor was separated from the glucose-rich solids, and phases were co-fermented sequentially. By prefermentation of the hydrolyzate liquor followed fed-batch SSCF, xylose, and glucose conversion could be targeted in succession. Because the xylose-fermenting capacity declines over time, while glucose is still converted, it was advantageous to target xylose conversion upfront. With our strategy, an overall ethanol yield of 84% of the theoretical maximum based on both xylose and glucose was reached for a slurry with higher inhibitor concentrations, versus 92% for a slurry with lower inhibitor concentrations. Xylose utilization exceeded 90% after SSCF for both slurries. Sequential targeting of xylose and glucose conversion sustained xylose fermentation and improved xylose utilization and ethanol yield compared with fed-batch SSCF of whole slurry.  相似文献   

14.
Simplified modeling based on material balances for biomass, ethanol and substrate was used to describe the kinetics of fed-batch alcohol fermentation of sugarcane blackstrap molasses. Maintenance requirements were previously shown to be of particular significance in this system, owing to the use of massive inoculum to minimize inhibitions; therefore, they were taken into consideration for kinetic modeling. Average values of biomass and ethanol yields, productivities, and substrate consumption rates, calculated at the end of runs performed either at constant or exponentially varying flow rates, demonstrated that all of these parameters were influenced by the initial sugar-feeding rate, F(o)S(o). Under conditions of substrate shortage (F(o)S(o) 相似文献   

15.
For recombinant xylose-utilizing Saccharomyces cerevisiae, ethanol yield and productivity is substantially lower on xylose than on glucose. In contrast to glucose, xylose is a novel substrate for S. cerevisiae and it is not known how this substrate is recognized on a molecular level. Failure to activate appropriate genes during xylose-utilization has the potential to result in sub-optimal metabolism and decreased substrate uptake. Certain differences in fermentative performance between the two substrates have thus been ascribed to variations in regulatory response. In this study differences in substrate utilization of glucose and xylose was analyzed in the recombinant S. cerevisiae strain TMB3400. Continuous cultures were performed with glucose and xylose under carbon- and nitrogen-limited conditions. Whereas biomass yield and substrate uptake rate were similar during carbon-limited conditions, the metabolic profile was highly substrate dependent under nitrogen-limited conditions. While glycerol production occurred in both cases, ethanol production was only observed for glucose cultures. Addition of acetate and 2-deoxyglucose pulses to a xylose-limited culture was able to stimulate transient overflow metabolism and ethanol production. Application of glucose pulses enhanced xylose uptake rate under restricted co-substrate concentrations. Results are discussed in relation to regulation of sugar metabolism in Crabtree-positive and -negative yeast.  相似文献   

16.
Summary Production of ethanol from glucose and xylose by different Fusarium strains has been studied in shake flask cultures. The best strain was Fusarium oxysporum VTT-D-80134. The best ethanol yields were 50 % ethanol on both sugars. The fermentation time was 3 days on glucose and 6 days on xylose.  相似文献   

17.
Wood hydrolysate used for ethanol production by two strains ofFusarium oxysporum contained 2.3% (w/v) reducing sugars (xylose and glucose). Ethanol production at the optimum reducing sugar concentration of 54.8 g/l medium, at pH 5.5, and 30°C was 12.3 g/l and 11.7 g/l byF. oxysporum D-140 and NCIM-1072, respectively in shake flasks during 96 h fermentation. The maximum production of ethanol under optimum cultural conditions, and in the presence of yeast extract plus minerals, was 13.2 g/l medium byF. oxysporum D-140 over 108 h fermentation.
Résumé L'hydrolysat de bois utilisé pour la production d'éthanol par deux souches deFusarium oxysporum contenait 2.3% (poids/vol.) de sucres réducteurs (xylose et glucose). La production d'éthanol, à la concentration optimum en sucres réducleurs de 54.8 g par litre de milieu à pH 5.5 et à 30°C était de 12.3 g/l et 11.7 g/l respectivement chezF. oxysporum D-140 et NCIM-1072, en flacons agités pendant 96 h de fermentation. La production maximum d'éthanol, dans les conditions optimum de culture, et en prosence d'extrait de levure et de minéraux a mit de 13.2 g par litre de milieu chezF. oxysporum D-140 en 108 h de lermentation.
  相似文献   

18.
The fungus Rhizopus oryzae converts both glucose and xylose under aerobic conditions into chirally pure L+-lactic acid with by-products such as xylitol, glycerol, ethanol, carbon dioxide and fungal biomass. In this paper, we demonstrate that the production of lactic acid by R. oryzae CBS 112.07 only occurs under growing conditions. Deprivation of nutrients such as nitrogen, essential for fungal biomass formation, resulted in a cessation of lactic acid production. Complete xylose utilisation required a significantly lower C/N ratio (61/1) compared to glucose (201/1), caused by higher fungal biomass yields that were obtained with xylose as substrate. Decreasing the oxygen transfer rate resulted in decline of xylose consumption rates, whereas the conversion of glucose by R. oryzae was less affected. Both results were linked to the fact that R. oryzae CBS 112.07 utilises xylose via the two-step reduction/oxidation route. The consequences of these effects for R. oryzae as a potential lactic acid producer are discussed.  相似文献   

19.
Candida shehatae ATCC 22984, a xylose-fermenting yeast, showed an ability to produce ethanol in both glucose and xylose medium. Maximum ethanol produced by the yeast was 48.8?g/L in xylose and 52.6?g/L in glucose medium with ethanol yields that varied between 0.3 and 0.4?g/g depended on initial sugar concentrations. Xylitol was a coproduct of ethanol production using xylose as substrate, and glycerol was detected in both glucose and xylose media. Kinetic model equations indicated that growth, substrate consumption, and product formation of C. shehatae were governed by substrate limitation and inhibition by ethanol. The model suggested that cell growth was totally inhibited at 40?g/L of ethanol and ethanol production capacity of the yeast was 52?g/L, which were in good agreement with experimental results. The developed model could be used to explain C. shehatae fermentation in glucose and xylose media from 20 to 170?g/L sugar concentrations.  相似文献   

20.
Summary The fermentation by Candida shehatae and Pichia stipitis of xylitol and the various sugars which are liberated upon hydrolysis of lignocellulosic biomass was investigated. Both yeasts produced ethanol from d-glucose, d-mannose, d-galactose and d-xylose. Only P. stipitis fermented d-cellobiose, producing 6.5 g·l-1 ethanol from 20 g·l-1 cellobiose within 48 h. No ethanol was produced from l-arabinose, l-rhamnose or xylitol. Diauxie was evident during the fermentation of a sugar mixture. Following the depletion of glucose, P. stipitis fermented galactose, mannose, xylose and cellobiose simultaneously with no noticeable preceding lag period. A similar fermentation pattern was observed with C. shehatae, except that it failed to utilize cellobiose even though it grew on cellobiose when supplied as the sole sugar. P. stipitis produced considerably more ethanol from the sugar mixture than C. shehatae, primarily due to its ability to ferment cellobiose. In general P. stipitis exhibited a higher volumetric rate and yield of ethanol production. This yeast fermented glucose 30–50% more rapidly than xylose, whereas the rates of ethanol production from these two sugars by C. shehatae were similar. P. stipitis had no absolute vitamin requirement for xylose fermentation, but biotin and thiamine enhanced the rate and yield of ethanol production significantly.Nomenclature max Maximum specific growth rate, h-1 - Q p Maximum volumetric rate of ethanol production, calculated from the slope of the ethanol vs. time curve, g·(l·h)-1 - q p Maximum specific rate of ethanol production, g·(g cells·h) - Y p/s Ethanol yield coefficient, g ethanol·(g substrate utilized)-1 - Y x/s Cell yield coefficient, g biomass·(g substrate utilized)-1 - E Efficiency of substrate utilization, g substrate consumed·(g initial substrate)-1·100  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号