首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Optimization of pH controlled liquid hot water pretreatment of corn stover   总被引:4,自引:0,他引:4  
Controlled pH, liquid hot water pretreatment of corn stover has been optimized for enzyme digestibility with respect to processing temperature and time. This processing technology does not require the addition of chemicals such as sulfuric acid, lime, or ammonia that add cost to the process because these chemicals must be neutralized or recovered in addition to the significant expense of the chemicals themselves. Second, an optimized controlled pH, liquid hot water pretreatment process maximizes the solubilization of the hemicellulose fraction as liquid soluble oligosaccharides while minimizing the formation of monomeric sugars. The optimized conditions for controlled pH, liquid hot water pretreatment of a 16% slurry of corn stover in water was found to be 190 degrees C for 15 min. At the optimal conditions, 90% of the cellulose was hydrolyzed to glucose by 15FPU of cellulase per gram of glucan. When the resulting pretreated slurry, in undiluted form, was hydrolyzed by 11FPU of cellulase per gram of glucan, a hydrolyzate containing 32.5 g/L glucose and 18 g/L xylose was formed. Both the xylose and the glucose in this undiluted hydrolyzate were shown to be fermented by recombinant yeast 424A(LNH-ST) to ethanol at 88% of theoretical yield.  相似文献   

2.
In this study, the alkaline twin-screw extrusion pretreated corn stover was subjected to enzymatic hydrolysis after washing. The impact of solid loading and enzyme dose on enzymatic hydrolysis was investigated. It was found that 68.2 g/L of total fermentable sugar could be obtained after enzymatic hydrolysis with the solid loading of 10 %, while the highest sugar recovery of 91.07 % was achieved when the solid loading was 2 % with the cellulase dose of 24 FPU/g substrate. Subsequently, the hydrolyzate was fermented by Clostridium acetobutylicum ATCC 824. The acetone–butanol–ethanol (ABE) production of the hydrolyzate was compared with the glucose, xylose and simulated hydrolyzate medium which have the same reducing sugar concentration. It was shown that 7.1 g/L butanol and 11.2 g/L ABE could be produced after 72 h fermentation for the hydrolyzate obtained from enzymatic hydrolysis with 6 % solid loading. This is comparable to the glucose and simulated hydrozate medium, and the overall ABE yield could reach 0.112 g/g raw corn stover.  相似文献   

3.
Biomimetic catalysis for hemicellulose hydrolysis in corn stover   总被引:2,自引:0,他引:2  
Efficient and economical hydrolysis of plant cell wall polysaccharides into monomeric sugars is a significant technical hurdle in biomass processing for renewable fuels and chemicals. One possible approach to overcoming this hurdle is a biomimetic approach with dicarboxylic acid catalyst mimicking the catalytic core microenvironment in natural enzymes. This paper reports developments in the use of a dicarboxylic acid catalyst, maleic acid, for hemicellulose hydrolysis in corn stover. Hemicellulose hydrolysis and xylose degradation kinetics in the presence of maleic acid was compared to sulfuric acid. At optimized reaction conditions for each acid, maleic acid hydrolysis results in minimal xylose degradation, whereas sulfuric acid causes 3-10 times more xylose degradation. These results formed the basis for optimizing the hydrolysis of hemicellulose from corn stover using maleic acid. At 40 g/L dry corn stover solid-loading, both acid catalysts can achieve near-quantitative monomeric xylose yield. At higher solids loadings (150-200 g dry stover per liter), sulfuric acid catalyzed hydrolysis results in more than 30% degradation of the xylose, even under the previously reported optimal condition. However, as a result of minimized xylose degradation, optimized biomimetic hydrolysis of hemicellulose by maleic acid can reach approximately 95% monomeric xylose yields with trace amounts of furfural. Fermentation of the resulting unconditioned hydrolysate by recombinant S. cerevisiae results in 87% of theoretical ethanol yield. Enzyme digestibility experiments on the residual corn stover solids show that >90% yields of glucose can be produced in 160 h from the remaining cellulose with cellulases (15 FPU/g-glucan).  相似文献   

4.
The inhibitory effects of furfural and acetic acid on the fermentation of xylose and glucose to ethanol in YEPDX medium by a recombinant Saccharomyces cerevisiae strain (LNH‐ST 424A) were investigated. Initial furfural concentrations below 5 g/L caused negligible inhibition to glucose and xylose consumption rates in batch fermentations with high inoculum (4.5–6.0 g/L). At higher initial furfural concentrations (10–15 g/L) the inhibition became significant with xylose consumption rates especially affected. Interactive inhibition between acetic acid and pH were observed and quantified, and the results suggested the importance of conditioning the pH of hydrolysates for optimal fermentation performance. Poplar biomass pretreated by various CAFI processes (dilute acid, AFEX, ARP, SO2‐catalyzed steam explosion, and controlled‐pH) under respective optimal conditions was enzymatically hydrolyzed, and the mixed sugar streams in the hydrolysates were fermented. The 5‐hydroxymethyl furfural (HMF) and furfural concentrations were low in all hydrolysates and did not pose negative effects on fermentation. Maximum ethanol productivity showed that 0–6.2 g/L initial acetic acid does not substantially affect the ethanol fermentation with proper pH adjustment, confirming the results from rich media fermentations with reagent grade sugars. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

5.
Biological pretreatment of lignocellulosic biomass by white‐rot fungus can represent a low‐cost and eco‐friendly alternative to harsh physical, chemical, or physico‐chemical pretreatment methods to facilitate enzymatic hydrolysis. In this work, solid‐state cultivation of corn stover with Phlebia brevispora NRRL‐13018 was optimized with respect to duration, moisture content and inoculum size. Changes in composition of pretreated corn stover and its susceptibility to enzymatic hydrolysis were analyzed. About 84% moisture and 42 days incubation at 28°C were found to be optimal for pretreatment with respect to enzymatic saccharification. Inoculum size had little effect compared to moisture level. Ergosterol data shows continued growth of the fungus studied up to 57 days. No furfural and hydroxymethyl furfural were produced. The total sugar yield was 442 ± 5 mg/g of pretreated corn stover. About 36 ± 0.6 g ethanol was produced from 150 g pretreated stover per L by fed‐batch simultaneous saccharification and fermentation (SSF) using mixed sugar utilizing ethanologenic recombinant Eschericia coli FBR5 strain. The ethanol yields were 32.0 ± 0.2 and 38.0 ± 0.2 g from 200 g pretreated corn stover per L by fed‐batch SSF using Saccharomyces cerevisiae D5A and xylose utilizing recombinant S. cerevisiae YRH400 strain, respectively. This research demonstrates that P. brevispora NRRL‐13018 has potential to be used for biological pretreatment of lignocellulosic biomass. This is the first report on the production of ethanol from P. brevispora pretreated corn stover. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:365–374, 2017  相似文献   

6.
Both the current corn starch to ethanol industry and the emerging lignocellulosic biofuels industry view recycling of spent fermentation broth or stillage as a method to reduce fresh water use. The objective of this study was to understand the impact of recycling stillage on conversion of corn stover to ethanol. Sugars in a dilute‐acid pretreated corn stover hydrolysate were fermented to ethanol by the glucose–xylose fermenting bacteria Zymomonas mobilis 8b. Three serial fermentations were performed at two different initial sugar concentrations using either 10% or 25% of the stillage as makeup water for the next fermentation in the series. Serial fermentations were performed to achieve near steady state concentration of inhibitors and other compounds in the corn stover hydrolysate. Little impact on ethanol yields was seen at sugar concentrations equivalent to pretreated corn stover slurry at 15% (w/w) with 10% recycle of the stillage. However, ethanol yields became progressively poorer as the sugar concentration increased and fraction of the stillage recycled increased. At an equivalent corn stover slurry concentration of 20% with 25% recycled stillage the ethanol yield was only 5%. For this microorganism with dilute‐acid pretreated corn stover, recycling a large fraction of the stillage had a significant negative impact on fermentation performance. Although this finding is of concern for biochemical‐based lignocellulose conversion processes, other microorganism/pretreatment technology combinations will likely perform differently. Biotechnol. Bioeng. 2010;105: 992–996. © 2009 Wiley Periodicals, Inc.  相似文献   

7.
为了提高沙柳生物转化过程的经济可行性,考察了沙柳原料经过蒸爆、超微粉碎+稀酸、超微粉碎+稀碱预处理后高浓度底物补料酶解的效果,并对其高浓度水解糖液进行了乙醇发酵。结果表明:蒸爆处理法水解效果最好,通过补料酶解,底物质量分数可以达到30%,酶解液中总糖质量浓度达到132 g/L,葡萄糖质量浓度105 g/L;超微粉碎+稀酸预处理原料底物质量分数可以达到22%,酶解液中总糖质量浓度达到123 g/L,葡萄糖质量浓度73 g/L;超微粉碎+稀碱预处理原料底物质量分数可以达到22%,酶解液中总糖质量浓度133 g/L,葡萄糖质量浓度77 g/L。3种预处理使沙柳原料的酶解糖液都可以较好地被酿酒酵母利用发酵产乙醇,蒸爆处理原料的酶解糖液乙醇发酵效果最好,乙醇质量浓度达到47 g/L。  相似文献   

8.
Inorganic salts, NaCl, KCl, CaCl2, MgCl2, FeCl2, FeSO4, FeCl3, and Fe2(SO4)3, were studied as catalysts for the degradation of hemicellulose in corn stover. FeCl3 significantly increased the hemicellulose degradation in aqueous solutions heated between 140 and 200 °C with high xylose recovery and low cellulose removal, amounting to 90% and <10%, respectively. Hemicellulose removal increased 11-fold when the corn stover was pretreated with 0.1 M FeCl3 compared to pretreatment with hot water under otherwise the same conditions, which was also 6-fold greater than pretreatment with dilute sulfuric acid at the same pH. Optimum pretreatment conditions were found where the corn stover was pretreated with 0.1 M FeCl3 at 140 °C for 20 min. Under such conditions, 91% of hemicellulose was removed, and the recovery of monomeric and oligomeric xylose in liquid fraction achieved 89%, meanwhile, only 9% of cellulose was removed.  相似文献   

9.
Mucor indicus fermented dilute-acid lignocellulosic hydrolyzates to ethanol in fed-batch cultivation with complete hexose utilization and partial uptake of xylose. The fungus was tolerant to the inhibitors present in the hydrolyzates. It grew in media containing furfural (1 g/l), hydroxymethylfurfural (1 g/l), vanillin (1 g/l), or acetic acid (7 g/l), but did not germinate directly in the hydrolyzate. However, with fed-batch methodology, after initial growth of M. indicus in 500 ml enzymatic wheat hydrolyzate, lignocellulosic hydrolyzate was fermented with feeding rates 55 and 100 ml/h. The fungus consumed more than 46% of the initial xylose, while less than half of this xylose was excreted in the form of xylitol. The ethanol yield was 0.43 g/g total consumed sugar, and reached the maximum concentration of 19.6 g ethanol/l at the end of feeding phase. Filamentous growth, which is regarded as the main obstacle to large-scale cultivation of M. indicus, was avoided in the fed-batch experiments.  相似文献   

10.
Dilute sulfuric acid pretreated corn stover is potential feedstock of industrial interest for second generation fuel ethanol production. However, the toxicity of corn stover hydrolysate (PCS) has been a challenge for fermentation by recombinant xylose fermenting organisms. In this work, the thermophilic anaerobic bacterial strain Thermoanaerobacter BG1L1 was assessed for its ability to ferment undetoxified PCS hydrolysate in a continuous immobilized reactor system at 70°C. The tested strain showed significant resistance to PCS, and substrate concentrations up to 15% total solids (TS) were fermented yielding ethanol of 0.39–0.42 g/g-sugars consumed. Xylose was nearly completely utilized (89–98%) for PCS up to 10% TS, whereas at 15% TS, xylose conversion was lowered to 67%. The reactor was operated continuously for 135 days, and no contamination was seen without the use of any agent for preventing bacterial infections. This study demonstrated that the use of immobilized thermophilic anaerobic bacteria for continuous ethanol fermentation could be promising in a commercial ethanol process in terms of system stability to process hardiness and reactor contamination. The tested microorganism has considerable potential to be a novel candidate for lignocellulose bioconversion into ethanol.  相似文献   

11.
Bioethanol produced from lignocellulosic materials has the potential to be economically feasible, if both glucose and xylose released from cellulose and hemicellulose can be efficiently converted to ethanol. Saccharomyces spp. can efficiently convert glucose to ethanol; however, xylose conversion to ethanol is a major hurdle due to lack of xylose‐metabolizing pathways. In this study, a novel two‐stage fermentation process was investigated to improve bioethanol productivity. In this process, xylose is converted into biomass via non‐Saccharomyces microorganism and coupled to a glucose‐utilizing Saccharomyces fermentation. Escherichia coli was determined to efficiently convert xylose to biomass, which was then killed to produce E. coli extract. Since earlier studies with Saccharomyces pastorianus demonstrated that xylose isomerase increased ethanol productivities on pure sugars, the addition of both E. coli extract and xylose isomerase to S. pastorianus fermentations on pure sugars and corn stover hydrolysates were investigated. It was determined that the xylose isomerase addition increased ethanol productivities on pure sugars but was not as effective alone on the corn stover hydrolysates. It was observed that the E. coli extract addition increased ethanol productivities on both corn stover hydrolysates and pure sugars. The ethanol productivities observed on the corn stover hydrolysates with the E. coli extract addition was the same as observed on pure sugars with both E. coli extract and xylose isomerase additions. These results indicate that the two‐stage fermentation process has the capability to be a competitive alternative to recombinant Saccharomyces cerevisiae‐based fermentations. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:300–310, 2014  相似文献   

12.
Hemicellulose is a potential by-product currently under-utilized in the papermaking industry. It is a hetero-carbohydrate polymer. For hardwood hemicelluloses, D-xylose is the major component upon depolymerization. At SUNY-ESF, wood extracts were obtained by extracting sugar maple wood chips with hot water at an elevated temperature. The wood extracts were then concentrated and acid hydrolyzed. Ethanologenic bacteria, E. coli FBR5, had a good performance in pure xylose medium for ethanol production. However, FBR5 was strongly inhibited in dilute sulfuric acid hydrolyzate of hot-water wood extract. FBR5 was challenged by hot-water wood extract hydrolyzate in this study. After repeated strain adaptation, an improved strain: E. coli FBHW was obtained. Fermentation experiments indicated that FBHW was resistant to the toxicity of hydrolyzate in the fermentation media of concentrated hydrolyzate, and xylose was completely utilized by the strain to produce ethanol. FBHW was grown in the concentrated hydrolyzate without any detoxification treatment and has yielded 36.8 g/L ethanol.  相似文献   

13.
Summary Xylonic acid was produced efficiently from pure xylose by Pseudomonas fragi ATCC 4973 and Gluconobacter oxydans subsp. suboxydans ATCC 621. The yield from 10% xylose was in both cases over 95% of the theoretical. However, the sensitivities of the strains towards the major inhibitors found in hemicellulose hydrolyzates, ie. acetic acid, furfural and two lignin-derived compounds, varied. G. oxydans tolerated all these inhibitors better than P. fragi. In tests using steamed hemicellulose hydrolyzate, G. oxydans was able to utilize the substrate only at dilute xylose concentrations. After ether extraction or mixed bed resin pretreatment, the fermentability of the hydrolyzate was increased significantly.  相似文献   

14.
Summary The hemicellulose component of corn cobs was completely hydrolyzed by treatment with dilute sulphuric acid. HPLC analysis showed the prehydrolysate to contain 36g/L xylose; 7g/L arabinose; 6g/L glucose and 4.2g/L acetic acid. The patented genetically engineered ethanologenEscherichia coli B (ATCC 11303 pLOI 297) exhibited high performance characteristics with a synthetic model medium in which the pH was controlled at 7 in order to minimize sensitivity to acetic acid. With the synthetic medium, fermentation was completed in 36h and the process yield was 0.49g/g, equivalent to 96% max. theoretical conversion efficiency. However, with the supplemented corn cob prehydrolysate medium, about 20% of the sugar remained unfermented after 8 days, with a conversion efficiency of <40%. Treatment of the prehydrolysate with calcium hydroxide did not result in a significant improvement in fermentation performance. Based on the poor yield, it is concluded that, under the test conditions employed, this patented ethanologen does not qualify as a potential process biocatalyst for the production of fermentation fuel ethanol from corn residue hemicellulose hydrolysate prepared with dilute sulphuric acid.  相似文献   

15.
In the U.S., forest and crop residues contain enough glucose and xylose to supply 10 times the country's usage of ethanol and ethylene, but an efficient fermentation scheme is lacking,(1,2,3) To develop a strategy for process design, specific ethanol productivities and yields of Pachysolen tannophilus NRRL Y-2460 and Saccharomyces cerevisiae NRRL Y-2235 were compared. Batch cultures and continuous stirred reactors (CSTR) loaded with immobilized cells were fed glucose and xylose. As expected from previous reports, Y-2235 fermented glucose but not xylose. Y-2460 consumed both sugars but fermented glucose inefficiently relative to Y-2235, and it suffered a diauxic lag lasting 10-20 h when given a sugar mixture. Immobilized Y-2235 exhibited increasing productivity but constant yield with in creasing glucose concentration. In contrast, Y-2460 exhibited an optimum productivity at 30-40 g/L xylose and a declining yield with increasing xylose concentration. Immobilized Y-2235 tolerated more than 100 g/L ethanol while the productivity and yield of Y-2460 fell by 80 and 58%, respectively, as ethanol reached 50 g/L. A 38.8-g/L ethanol stream could be produced as 103 g/L xylose was continuously fed to Y-2460. If it was blended with a 274 g/L glucose stream to give a composite of 23.7 g/L ethanol and 107 g/L glucose, Y-2235 could en rich the ethanol to 75 g/L. Taken together these results suggest use of a two-stage continuous reactor for pro cessing xylose and glucose from lignocellulose. An immobilized Y-2460 CSTR (or cascade) would convert the hemicellulose hydrolyzate. Then downstream, an immobilized Y-2235 plug flow reactor would enrich the hemicellulose-derived ethanol to more than 70 g/L upon addition of cellulose hydrolyzate.  相似文献   

16.
In this study ethanol was produced from corn stover pretreated by alkaline and acidic wet oxidation (WO) (195 degrees C, 15 min, 12 bar oxygen) followed by nonisothermal simultaneous saccharification and fermentation (SSF). In the first step of the SSF, small amounts of cellulases were added at 50 degrees C, the optimal temperature of enzymes, in order to obtain better mixing condition due to some liquefaction. In the second step more cellulases were added in combination with dried baker's yeast (Saccharomyces cerevisiae) at 30 degrees C. The phenols (0.4-0.5 g/L) and carboxylic acids (4.6-5.9 g/L) were present in the hemicellulose rich hydrolyzate at subinhibitory levels, thus no detoxification was needed prior to SSF of the whole slurry. Based on the cellulose available in the WO corn stover 83% of the theoretical ethanol yield was obtained under optimized SSF conditions. This was achieved with a substrate concentration of 12% dry matter (DM) acidic WO corn stover at 30 FPU/g DM (43.5 FPU/g cellulose) enzyme loading. Even with 20 and 15 FPU/g DM (corresponding to 29 and 22 FPU/g cellulose) enzyme loading, ethanol yields of 76 and 73%, respectively, were obtained. After 120 h of SSF the highest ethanol concentration of 52 g/L (6 vol.%) was achieved, which exceeds the technical and economical limit of the industrial-scale alcohol distillation. The SSF results showed that the cellulose in pretreated corn stover can be efficiently fermented to ethanol with up to 15% DM concentration. A further increase of substrate concentration reduced the ethanol yield significant as a result of insufficient mass transfer. It was also shown that the fermentation could be followed with an easy monitoring system based on the weight loss of the produced CO2.  相似文献   

17.
Summary Fermentation of an enzymatic hydrolyzate of ammonia fiber explosion (AFEX) pretreated corn fiber (containing a mixture of different sugars including glucose, xylose, arabinose, and galactose) by genetically-engineered Escherichia coli strain SL40 and KO11 and Klebsiella oxytoca strain P2 was investigated under pH-controlled conditions. Both E. coli strains (SL40 and KO11) efficiently utilized most of the sugars contained in the hydrolyzate and produced a maximum of 26.6 and 27.1 g/l ethanol, respectively, equivalent to 90 and 92% of the theoretical yield. Very little difference was observed in cell growth and ethanol production between fermentations of the enzymatic hydrolyzate and mixtures of pure sugars, simulating the hydrolyzate. These results confirm the fermentability of the AFEX-treated corn fiber hydrolyzate by ethanologenic E. coli. K.oxytoca strain P2, on the other hand, showed comparatively poor growth and ethanol production (maximum 20 g/l) from both enzymatic hydrolyzate and simulated sugar mixtures under the same fermentation conditions.  相似文献   

18.
Several alcohol dehydrogenase (ADH)-related genes have been identified as enzymes for reducing levels of toxic compounds, such as, furfural and/or 5-hydroxymethylfurfural (5-HMF), in hydrolysates of pretreated lignocelluloses. To date, overexpression of these ADH genes in yeast cells have aided ethanol production from glucose or glucose/xylose mixture in the presence of furfural or 5-HMF. However, the effects of these ADH isozymes on ethanol production from xylose as a sole carbon source remain uncertain. We showed that overexpression of mutant NADH-dependent ADH1 derived from TMB3000 strain in the recombinant Saccharomyces cerevisiae, into which xylose reductase (XR) and xylitol dehydrogenase (XDH) pathway of Pichia stipitis has been introduced, improved ethanol production from xylose as a sole carbon source in the presence of 5-HMF. Enhanced furan-reducing activity is able to regenerate NAD+ to relieve redox imbalance, resulting in increased ethanol yield arising from decreased xylitol accumulation. In addition, we found that overexpression of wild-type ADH1 prevented the more severe inhibitory effects of furfural in xylose fermentation as well as overexpression of TMB3000-derived mutant. After 120 h of fermentation, the recombinant strains overexpressing wild-type and mutant ADH1 completely consumed 50 g/L xylose in the presence of 40 mM furfural and most efficiently produced ethanol (15.70 g/L and 15.24 g/L) when compared with any other test conditions. This is the first report describing the improvement of ethanol production from xylose as the sole carbon source in the presence of furan derivatives with xylose-utilizing recombinant yeast strains via the overexpression of ADH-related genes.  相似文献   

19.
Escherichia coli KO11, carrying the ethanol pathway genes pdc (pyruvate decarboxylase) and adh (alcohol dehydrogenase) from Zymomonas mobilis integrated into its chromosome, has the ability to metabolize pentoses and hexoses to ethanol, both in synthetic medium and in hemicellulosic hydrolysates. In the fermentation of sugar mixtures simulating hemicellulose hydrolysate sugar composition (10.0 g of glucose/l and 40.0 g of xylose/l) and supplemented with tryptone and yeast extract, recombinant bacteria produced 24.58 g of ethanol/l, equivalent to 96.4% of the maximum theoretical yield. Corn steep powder (CSP), a byproduct of the corn starch-processing industry, was used to replace tryptone and yeast extract. At a concentration of 12.5 g/l, it was able to support the fermentation of glucose (80.0 g/l) to ethanol, with both ethanol yield and volumetric productivity comparable to those obtained with fermentation media containing tryptone and yeast extract. Hemicellulose hydrolysate of sugar cane bagasse supplemented with tryptone and yeast extract was also readily fermented to ethanol within 48 h, and ethanol yield achieved 91.5% of the theoretical maximum conversion efficiency. However, fermentation of bagasse hydrolysate supplemented with 12.5 g of CSP/l took twice as long to complete. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

20.
玉米秸秆酸解副产物对重组酿酒酵母6508-127发酵的影响   总被引:10,自引:0,他引:10  
将木质纤维素类生物质如玉米秸秆等用稀酸水解预处理,在半纤维素水解为单糖的同时,水解液中还会产生一些可能对后续发酵有影响的副产物。本实验分别考查了在玉米秸秆稀酸水解液中检测出的乙酸、甲酸、香草醛、糠醛和羟甲基糠醛对重组木糖发酵菌株S. cerevisiae 6508-127生长和发酵的影响。结果表明,甲酸和乙酸对菌体生长的抑制强于乙醇生成,且甲酸的抑制程度远大于乙酸;2g/L香草醛可使菌体生长延滞期明显延长,而在较低浓度(≤1.2g/L)此现象不明显。糠醛在0.5-1.5g/L范围内对菌体生长有抑制作用,但使乙醇得率提高;羟甲基糠醛在0.2g/L浓度存在就使乙醇得率有明显降低,但使生物量得率提高;研究中还发现,糠醛、羟甲基糠醛和香草醛可被S. cerevisiae 6508-127代谢。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号