首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
谷氨酰胺营养生理研究进展   总被引:15,自引:2,他引:13  
谷氨酰胺因其对人和动物中的重要生理作用而引起了广泛关注。谷氨酰氨是一种特殊的氨基酸,为快速繁殖细胞优先选择的呼吸燃料,如粘膜细胞和淋巴细胞;调节体内酸碱平衡;组织间氮的载体;核酸、核苷酸、氨基糖和蛋白质的重要前体。大量的证据表明谷氨酰胺是一种条件性必需氨基酸。在应激状况下,机体对谷氨酰胺的需要超过其合成能力,因此,可以通过肠外营养或饲料中添加谷氨酰胺以营养调控的方式加速动物体的康复。  相似文献   

2.
Glutamine is an important mitochondrial substrate implicated in the protection of cells from oxidant injury, but the mechanisms of its action are incompletely understood. Human pulmonary epithelial-like (A549) cells were exposed to 95% O2 for 4 days in the absence and presence of glutamine. Cell proliferation in normoxia was dependent on glutamine, and glutamine deprivation markedly accelerated cell death in hyperoxia. Glutamine significantly increased cellular ATP levels in normoxia and prevented the loss of ATP in hyperoxia seen in glutamine-deprived cells. Mitochondrial membrane potential as assessed by flow cytometry with chloromethyltetramethylrosamine was increased by glutamine in hyperoxia-exposed A549 cells, and a glutamine dose-dependent increase in mitochondrial membrane potential was detected. Glutamine-supplemented, hyperoxia-exposed cells had a higher O2 consumption rate and GSH content. Electron and fluorescence microscopy revealed that, in hyperoxia, glutamine protected cellular structures, especially mitochondria, from damage. In hyperoxia, activity of the tricarboxylic acid cycle enzyme alpha-ketoglutarate dehydrogenase was partially protected by its indirect substrate, glutamine, indicating a mechanism of mitochondrial protection.  相似文献   

3.
Using a specific fluorescent probe of mitochondrial membrane potential (tetramethylrhodamine ethyl ester), we have shown that glucose deprivation (GD) of cultured cerebellar granule neurons (CGN) for 3 h lowers mitochondrial membrane potential in these cells. Longer glucose starvation (24 h) causes CGN death that is not prevented by blockers of ionotropic glutamate receptors (MK-801 (10 μM) and NBQX (10 μM)). Glutamine or pyruvate (2 mM) maintain membrane potential of mitochondria and decrease CGN death under GD conditions. In the presence of glucose the mitochondrial respiratory chain blocker rotenone induces neuron death potentiated by glutamine. The potentiation effect is completely prevented by blockers of ionotropic glutamate receptors. These results show that glutamine under conditions of GD can be utilized by mitochondria as substrate, but at the same time, in the case of mitochondrial function deterioration, metabolism of this amino acid results in glutamate accumulation to toxic level.  相似文献   

4.
Glutamine synthetase (EC 6.3.1.2) was localized within the matrix compartment of avian liver mitochondria. The submitochondrial localization of this enzyme was determined by the digitonin-Lubrol method of Schnaitman and Greenawalt (35). The matrix fraction contained over 74% of the glutamine synthetase activity and the major proportion of the matirx marker enzymes, malate dehydrogenase (71%), NADP-dependent isocitrate dehydrogenase (83%), and glutamate dehydrogenase (57%). The highest specific activities of these enzymes were also found in the matrix compartment. Oxidation of glutamine by avian liver mitochondria was substantially less than that of glutamate. Bromofuroate, an inhibitor of glutamate dehydrogenase, blocked oxidation of glutamate and of glutamine whereas aminoxyacetate, a transaminase inhibitor, had little or no effect with either substrate. These results indicate that glutamine metabolism is probably initiated by the conversion of glutamine to glutamate rather than to an alpha-keto acid. The localization of a glutaminase activity within avian liver mitochondria plus the absence of an active mitochondrial glutamine transaminase is consistent with the differential effects of the transaminase and glutamate dehydrogenase inhibitors. The high glutamine synthetase activity (40:1) suggests that mitochondrial catabolism of glutamine is minimal, freeing most of the glutamine synthesized for purine (uric acid) biosynthesis.  相似文献   

5.
The amino acid specificity of the tRNA species coded for by HeLa cell mitochondrial DNA has been investigated by carrying out hybridizations between amino acid-tRNA complexes labeled in the amino acid and separated mitochondrial DNA strands.The results indicate that there are in HeLa cell mitochondria at least 17 distinct tRNA species hybridizable with mitochondrial DNA, which are specific for 16 amino acids. For 14 of the 16 amino acids, amino-acyl-tRNA synthetase activities distinct from the cytoplasmic ones have been detected in mitochondria. The remaining four amino acids (asparagine, glutamine, histidine and proline) have consistently failed to charge to any detectable extent mitochondrial tRNA species hybridizable with mitochondrial DNA.No obvious relationship appears to exist between the amino acids incorporated into tRNAs hybridizable to mitochondrial DNA and the previously observed pattern of chloramphenicol-sensitive amino acid incorporation by HeLa cell mitochondria.  相似文献   

6.
In this perspective, we revise the historic notion that cancer is a disease of mitochondria. We summarize recent findings on the function and rewiring of central carbon metabolism in melanoma. Metabolic profiling studies using stable isotope tracers show that glycolysis is decoupled from the tricarboxylic acid (TCA) cycle. This decoupling is not ‘dysfunction’ but rather an alternate wiring required by tumor cells to remain metabolically versatile. In large part, this requirement is met by glutamine feeding the TCA cycle as an alternative source of carbon. Glutamine is also used in non‐conventional ways, like traveling in reverse through the TCA flux to feed fatty acid biosynthesis. Biosynthetic networks linked with non‐essential amino acids alanine, serine, arginine, and proline are also significantly impacted by the use of glutamine as an alternate carbon source.  相似文献   

7.
Glutamine synthetase and glutaminase activities in various hepatoma cells   总被引:4,自引:0,他引:4  
Glutamine synthetase and glutaminase activities in a series of hepatoma cells of human and rat origins were determined for comparison with normal liver tissues. Marked decrease in glutamine synthetase activity was observed in the tumor cells. Phosphate-dependent and phosphate-independent glutaminase activities were increased compared with those from normal liver tissues. Well coupled mitochondria were isolated from HuH 13 line of human hepatoma cells and human liver. Oxypolarographic tests showed that glutamine oxidation was prominent in the tumor mitochondria, while mitochondria from the liver showed a feeble glutamine oxidation. Glutamine oxidation was inhibited by prior incubation of the mitochondria with DON (6-diazo-5-oxo-L-norleucine), which inhibited mitochondrial glutaminase. These results indicate that the product of glutamine hydrolysis, glutamate, is catabolized in the tumor mitochondria to supply ATP.  相似文献   

8.
Relative specific amino acid dependency is one of the metabolic abnormalities of cancer cells, and restriction of specific amino acids induces apoptosis of prostate cancer cells. This study shows that restriction of tyrosine and phenylalanine (Tyr/Phe), glutamine (Gln), or methionine (Met), modulates Raf and Akt survival pathways and affects the function of mitochondria in DU145 and PC3, in vitro. These three restrictions inhibit energy production (ATP synthesis) and induce generation of reactive oxygen species (ROS). Restriction of Tyr/Phe or Met in DU145 and Met in PC3 reduces mitochondrial membrane potential (DeltaPsim) and induces caspase-dependent and -independent apoptosis. In DU145, Tyr/Phe or Met restriction reduces activity of Akt, mitochondrial distribution of phosphorylated Raf and apoptosis inducing factor (AIF), and increases mitochondrial distribution of Bak. Mitochondrial Bcl-XL is increased in Tyr/Phe-restricted but decreased in Met-restricted cells. Under Tyr/Phe or Met restriction, reduced mitochondrial Raf does not inactivate the pro-apoptotic function of Bak. Tyr/Phe restriction also inhibits Bcl-2 and Met restriction inhibits Bcl-XL in mitochondria. These comprehensive actions damage the integrity of the mitochondria and induce apoptosis of DU145. In PC3, apoptosis induced by Met restriction was not associated with alterations in intracellular distribution of Raf, Bcl-2 family proteins, or AIF. All of the amino acid restrictions inhibited Akt activity in this cell line. We conclude that specific amino acid restriction differentially interferes with homeostasis/balance between the Raf and Akt survival pathways and with the interaction of Raf and Bcl-2 family proteins in mitochondria to induce apoptosis of DU145 and PC3 cells.  相似文献   

9.
Molecular mechanisms of glutamine action   总被引:13,自引:0,他引:13  
Glutamine is the most abundant free amino acid in the body and is known to play a regulatory role in several cell specific processes including metabolism (e.g., oxidative fuel, gluconeogenic precursor, and lipogenic precursor), cell integrity (apoptosis, cell proliferation), protein synthesis, and degradation, contractile protein mass, redox potential, respiratory burst, insulin resistance, insulin secretion, and extracellular matrix (ECM) synthesis. Glutamine has been shown to regulate the expression of many genes related to metabolism, signal transduction, cell defense and repair, and to activate intracellular signaling pathways. Thus, the function of glutamine goes beyond that of a simple metabolic fuel or protein precursor as previously assumed. In this review, we have attempted to identify some of the common mechanisms underlying the regulation of glutamine dependent cellular functions.  相似文献   

10.
Glutamine is considered a nonessential amino acid; however, it becomes conditionally essential during critical illness when consumption exceeds production. Glutamine may modulate the heat shock/stress response, an important adaptive cellular response for survival. Glutamine increases heat induction of heat shock protein (Hsp) 25 in both intestinal epithelial cells (IEC-18) and mesenchymal NIH/3T3 cells, an effect that is neither glucose nor serum dependent. Neither arginine, histidine, proline, leucine, asparagine, nor tyrosine acts as physiological substitutes for glutamine for heat induction of Hsp25. The lack of effect of these amino acids was not caused by deficient transport, although some amino acids, including glutamate (a major direct metabolite of glutamine), were transported poorly by IEC-18 cells. Glutamate uptake could be augmented in a concentration- and time-dependent manner by increasing either media concentration and/or duration of exposure. Under these conditions, glutamate promoted heat induction of Hsp25, albeit not as efficiently as glutamine. Further evidence for the role of glutamine conversion to glutamate was obtained with the glutaminase inhibitor 6-diazo-5-oxo-L-norleucine (DON), which inhibited the effect of glutamine on heat-induced Hsp25. DON inhibited phosphate-dependent glutaminase by 75% after 3 h, decreasing cell glutamate. Increased glutamine/glutamate conversion to glutathione was not involved, since the glutathione synthesis inhibitor, buthionine sulfoximine, did not block glutamine’s effect on heat induction of Hsp25. A large drop in ATP levels did not appear to account for the diminished Hsp25 induction during glutamine deficiency. In summary, glutamine is an important amino acid, and its requirement for heat-induced Hsp25 supports a role for glutamine supplementation to optimize cellular responses to pathophysiological stress. IEC-18; NIH/3T3; glutaminase; 6-diazo-5-oxo-L-norleucine; glutathione  相似文献   

11.
Wang HS  Wasa M  Okada A 《Life sciences》2002,71(2):127-137
Insulin-like growth factor I (IGF-I) and IGF-II stimulate cancer cell proliferation via interaction with the type I IGF receptor (IGF-IR). We put forward the hypothesis that IGF-IR mediates cancer cell growth by regulating amino acid transport, both when sufficient nutrients are present and when key nutrients such as glutamine are in limited supply. We examined the effects of alphaIR3, the monoclonal antibody recognizing IGF-IR, on cell growth and amino acid transport across the cell membrane in a human neuroblastoma cell line, SK-N-SH. In the presence of alphaIR3 (2 micro/ml), cell proliferation was significantly attenuated in both control (2 mM glutamine) and glutamine-deprived (0 mM glutamine) groups. Glutamine deprivation resulted in significantly increased glutamate (system X(AG)(-)), MeAIB (system A), and leucine (system L) transport, which was blocked by alphaIR3. Glutamine (system ASC) and MeAIB transport was significantly decreased by alphaIR3 in the control group. Addition of alphaIR3 significantly decreased DNA and protein biosynthesis in both groups. Glutamine deprivation increased the IGF-IR protein on the cell surface. Our results suggest that activation of IGF-IR promotes neuroblastoma cell proliferation by regulating trans-membrane amino acid transport.  相似文献   

12.
Glutamine transport into rat brain synaptic and non-synaptic mitochondria has been monitored by the uptake of [3H]glutamine and by mitochondrial swelling. The concentration of glutamate in brain mitochondria is calculated to be high, 5–10 mM, indicating that phosphate activated glutaminase localized inside the mitochondria is likely to be dormant and the glutamine taken up not hydrolyzed. The uptake of [3H]glutamine is largely stereospecific. It is inhibited by glutamate, asparagine, aspartate, 2-oxoglutarate and succinate. Glutamate inhibits this uptake into synaptic and non-synaptic mitochondria by 95 and 85%, respectively. The inhibition by glutamate, asparagine, aspartate and succinate can be explained by binding to an inhibitory site whereas the inhibition by 2-oxoglutarate is counteracted by aminooxyacetic acid, which indicates that it is dependent on transamination. The glutamine-induced swelling, a measure of a very low affinity uptake, is inhibited by glutamate at a glutamine concentration of 100 mM, but this inhibition is abolished when the glutamine concentration is raised to 200 mM. This suggests that the very low affinity glutamine uptake is competitively inhibited by glutamate. Furthermore, glutamine-induced swelling is inhibited by 2-oxoglutarate, succinate and malate, similarly to that of the [3H]glutamine uptake. The properties of the mitochondrial glutamine transport are not identical with those of a recently purified renal glutamine carrier.  相似文献   

13.
The amino acid concentrations in the phototrophic bacterium Rhodospirillum rubrum were measured during growth under nif-repressing and nif-derepressing conditions. The effects of ammonium, glutamine, darkness, phenazine methosulfate, and the inhibitors methionine sulfoximine and azaserine on amino acid levels of cells were tested. The changes were compared to changes in whole-cell nitrogenase activity and ADP-ribosylation of dinitrogenase reductase. Glutamate was the dominant amino acid under every growth condition. Glutamine levels were equivalent when cells were grown on high-ammonia (nif-repressing) medium or glutamate (nif-derepressing) medium. Thus, glutamine is not the solitary agent that controls nif expression. No other amino acid correlated with nif expression. Glutamine concentrations rose sharply when either glutamate-grown or N-starved cells were treated with ammonia, glutamine, or azaserine. Glutamine levels showed little change upon treatment of the cells with darkness or ammonium plus methionine sulfoximine. Treatment with phenazine methosulfate resulted in a decrease in glutamine concentration. The glutamine concentration varied independently of dinitrogenase reductase ADP-ribosylation, and it is concluded that an increase in glutamine concentration is neither necessary nor sufficient to initiate the modification of dinitrogenase reductase. No other amino acid exhibited changes in concentration that correlated consistently with modification. Glutamine synthetase activity and nitrogenase activity were not coregulated under all conditions, and thus the two regulatory cascades perceive different signal(s) under at least some conditions.  相似文献   

14.
Glutamine is a multifaceted amino acid used for hepatic urea synthesis, renal ammoniagenesis, gluconeogenesis in both liver and kidney, and as a major respiratory fuel for many cells. Decreased glutamine concentrations are found during catabolic stress and are related to susceptibility to infections. Besides, glutamine is not only an important energy source in mitochondria, but is also a precursor of the brain neurotransmitter glutamate, which is likewise used for biosynthesis of the cellular antioxidant glutathione. Reactive oxygen species, such as superoxide anions and hydrogen peroxide, function as intracellular second messengers activating, among others, apoptosis, whereas glutamine is an apoptosis suppressor. In fact, it could contribute to block apoptosis induced by exogenous agents or by intracellular stimuli. In conclusion, this article shows evidences for the important role of glutamine in the regulation of the cellular redox balance, including brain oxidative metabolism, apoptosis and tumour cell proliferation.  相似文献   

15.
Endothelial metabolism is a key regulator of angiogenesis. Glutamine metabolism in endothelial cells (ECs) has been poorly studied. We used genetic modifications and 13C tracing approaches to define glutamine metabolism in these cells. Glutamine supplies the majority of carbons in the tricyclic acid (TCA) cycle of ECs and contributes to lipid biosynthesis via reductive carboxylation. EC‐specific deletion in mice of glutaminase, the initial enzyme in glutamine catabolism, markedly blunts angiogenesis. In cell culture, glutamine deprivation or inhibition of glutaminase prevents EC proliferation, but does not prevent cell migration, which relies instead on aerobic glycolysis. Without glutamine catabolism, there is near complete loss of TCA intermediates, with no compensation from glucose‐derived anaplerosis. Mechanistically, addition of exogenous alpha‐ketoglutarate replenishes TCA intermediates and rescues cellular growth, but simultaneously unveils a requirement for Rac1‐dependent macropinocytosis to provide non‐essential amino acids, including asparagine. Together, these data outline the dependence of ECs on glutamine for cataplerotic processes; the need for glutamine as a nitrogen source for generation of biomass; and the distinct roles of glucose and glutamine in EC biology.  相似文献   

16.
Abstract: Certain halogenated hydrocarbons, e.g., dichlo-roacetylene, are nephrotoxic to experimental animals and neurotoxic to humans; cysteine-S-conjugate β-lyases may play a role in the nephrotoxicity. We now show that with dichlorovinylcysteine as substrate the only detectable cysteine-S-conjugate β-lyase in rat brain homogenates is identical to glutamine transaminase K. The predominant (mitochondrial) form of glutamine transaminase K in rat brain was shown to be immunologically distinct from the predominant (cytosolic) form of the enzyme in rat kidney. Glutamine transaminase K and ω-amidase (constituents of the glutaminase II pathway) activities were shown to be widespread throughout the rat brain. However, the highest specific activities of these enzymes were found in the choroid plexus. The high activity of glutamine transaminase K in choroid plexus was also demonstrated by means of an immunohistochemical staining procedure. Glutamine transaminase K has a broad specificity toward amino acid and α-keto acid substrates. The ω-amidase also has a broad specificity; presumably, however, the natural substrates are α-ketoglutaramate and α-ketosuccinamate, the α-keto acid analogues of glutamine and aspara-gine, respectively. The high activities of both glutamine transaminase K and ω-amidase in the choroid plexus suggest that the two enzymes are linked metabolically and perhaps are coordinately expressed in that organ. The data suggest that the natural substrate of glutamine transaminase K in rat brain is indeed glutamine and that the metabolism of glutamine through the glutaminase II pathway (i.e., l -glutamine and α-keto acid α-ketoglutarate and l -amino acid + ammonia) is an important function of the choroid plexus. Moreover, the present findings also suggest that any explanation of the neurotoxicity of halogenated xenobiotics must take into account the role of glutamine transaminase K and its presence in the choroid plexus.  相似文献   

17.
pH control of hepatic glutamine degradation. Role of transport   总被引:2,自引:0,他引:2  
Glutamine uptake is decreased in isolated perfused rat liver when the extracellular pH is lowered. This is also observed in the presence of ammonia concentrations nearly 20-fold above that required for half-maximal stimulation of glutaminase, indicating that the effect is not explained by a submaximal ammonium activation of the enzyme. In livers perfused with a physiological glutamine concentration (0.6 mM), the tissue glutamine but not glutamate content is strongly dependent on the extracellular pH and increases from 2.9 mumol/g to 4.7 mumol/g liver when the extracellular pH is increased from 7.3 to 7.5. Subfractionation of the livers revealed that the mitochondrial glutamine concentration increases from about 15 mM to 50 mM, when the extracellular pH is raised from 7.3 to 7.7, whereas the cytosolic glutamine concentration increases only slightly. Simultaneously the cytosolic and mitochondrial pH values are largely unaffected, being 7.25 and 7.7 respectively. Thus, the pH gradient between mitochondria and cytosol remains unchanged when the extracellular pH varies. Amiloride (2 mM) inhibits glutamine uptake by the liver and abolishes the extra/intracellular pH gradient. With amiloride present, tissue glutamine levels are no longer dependent on extracellular pH and are only about 2 mumol/g liver. It is concluded that pH control of glutaminase flux is also mediated by variations of the mitochondrial glutamine concentration pointing to a regulatory role of the glutamine carrier in the mitochondrial membrane for hepatic glutamine breakdown.  相似文献   

18.
A cancer cell comprising largely of carbon, hydrogen, oxygen, phosphorus, nitrogen and sulfur requires not only glucose, which is avidly transported and converted to lactate by aerobic glycolysis or the Warburg effect, but also glutamine as a major substrate. Glutamine and essential amino acids, such as methionine, provide energy through the TCA cycle as well as nitrogen, sulfur and carbon skeletons for growing and proliferating cancer cells. The interplay between utilization of glutamine and glucose is likely to depend on the genetic make-up of a cancer cell. While the MYC oncogene induces both aerobic glycolysis and glutaminolysis, activated b-catenin induces glutamine synthesis in hepatocellular carcinoma. Cancer cells that have elevated glutamine synthetase can use glutamate and ammonia to synthesize glutamine and are hence not addicted to glutamine. As such, cancer cells have many degrees of freedom for re-programming cell metabolism, which with better understanding will result in novel therapeutic approaches.  相似文献   

19.
Glutamine, the most abundant amino acid in the bloodstream, is the preferred fuel source for enterocytes and plays a vital role in the maintenance of mucosal growth. The molecular mechanisms regulating the effects of glutamine on intestinal cell growth and survival are poorly understood. Here, we show that addition of glutamine (1 mmol/l) enhanced rat intestinal epithelial (RIE)-1 cell growth; conversely, glutamine deprivation increased apoptosis as noted by increased DNA fragmentation and caspase-3 activity. To delineate signaling pathways involved in the effects of glutamine on intestinal cells, we assessed activation of extracellular signal-related kinase (ERK), protein kinase D (PKD), and phosphatidylinositol 3-kinase (PI3K)/Akt, which are important pathways in cell growth and survival. Addition of glutamine activated ERK and PKD in RIE-1 cells after a period of glutamine starvation; inhibition of ERK, but not PKD, increased cell apoptosis. Conversely, glutamine starvation alone increased phosphorylated Akt; inhibition of Akt enhanced RIE-1 cell DNA fragmentation. The role of ERK was further delineated using RIE-1 cells stably transfected with an inducible Ras. Apoptosis was significantly increased following ERK inhibition, despite Ras activation. Taken together, these results identify a critical role for the ERK signaling pathways in glutamine-mediated intestinal homeostasis. Furthermore, activation of PI3K/Akt during periods of glutamine deprivation likely occurs as a protective mechanism to limit apoptosis associated with cellular stress. Importantly, our findings provide novel mechanistic insights into the antiapoptotic effects of glutamine in the intestine.  相似文献   

20.
Summary The amino acid requirements of strain L-M mouse cells grown in a chemically defined medium (2×Eagle) containing only the 13 essential amino acids (EAA) were investigated. Medium and acid hydrolysate samples were analyzed for amino acid content by the method of ion exchange chromatography. The extent of utilization of the EAA differed;e.g. after 120 hr of cell growth without medium change, glutamine was exhausted from the medium; methionine, leucine, isoleucine, cystine, arginine, and valine were depleted 60 to 80%; other EAA were used to lesser extents. Although the EAA were used in excess of their requirements for protein synthesis, a correlation could generally be made between utilization and protein amino acid composition. Glutamine appeared to be, a growth-limiting factor. Use of U-14C-labeled glutamine indicated that over one-half of the metabolized glutamine was converted to carbon dioxide, 17% to cell material, and 15% was extracted from the amino acid pools. Nonessential amino acids (NEAA), viz. alanine, aspartic acid, glutamic acid, glycine, proline, and serine, were released into the medium during growth, and some were reutilized. Exogenous provision of these did not improve cell growth. In contrast to the other NEAA, only serine showed net utilization when provided exogenously. When glutamic acid largely replaced the glutamine in the medium, it exerted a sparing effect on the glutamine requirement for protein synthesis. Suggestions are given for the improvement of Eagle medium for cell growth. Supported by Research Grants CA 03720 and CA 11802 from the National Institutes of Health. Predoctoral, fellow supported, by Grant F01-GM-42156-02 from the National Institutes of Health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号