首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutamine synthetase and glutaminase activities in various hepatoma cells   总被引:4,自引:0,他引:4  
Glutamine synthetase and glutaminase activities in a series of hepatoma cells of human and rat origins were determined for comparison with normal liver tissues. Marked decrease in glutamine synthetase activity was observed in the tumor cells. Phosphate-dependent and phosphate-independent glutaminase activities were increased compared with those from normal liver tissues. Well coupled mitochondria were isolated from HuH 13 line of human hepatoma cells and human liver. Oxypolarographic tests showed that glutamine oxidation was prominent in the tumor mitochondria, while mitochondria from the liver showed a feeble glutamine oxidation. Glutamine oxidation was inhibited by prior incubation of the mitochondria with DON (6-diazo-5-oxo-L-norleucine), which inhibited mitochondrial glutaminase. These results indicate that the product of glutamine hydrolysis, glutamate, is catabolized in the tumor mitochondria to supply ATP.  相似文献   

2.
Inactivation of rat renal phosphate-dependent glutaminase by 6-diazo-5-oxo-L-norleucine occurs only under conditions where the enzyme is catalytically active. The glutaminase activity and the rate of inactivation by the diazoketone exhibit very similar phosphate concentration-dependent activation profiles. Because of this phosphate dependency, it was not possible to differentiate an apparent protection by glutamine from the strong inhibition of inactivation caused by glutamate. The ability of glutamate to protect the glutaminase against inactivation is reversed by increasing concentrations of phosphate.The observed characteristics of inactivation by 6-diazo-5-oxo-L-norleucine differ considerably from those reported for the inactivation by L-2-amino-4-oxo-5-chloropentanoic acid. In addition, the presence of o-carbamoyl-L-serine was found to stimulate inactivation by 6-diazo-5-oxo-L-norleucine, but to protect the glutaminase against inactivation by the chloroketone. Preinactivation of the glutaminase by the diazoketone only slightly reduced the stoichiometry of binding of [5-14C]chloroketone. These observations suggest that 6-diazo-5-oxo-L-norleucine and L-2-amino-4-oxo-5-chloropentanoic acid interact with different sites on the glutaminase which are specific for binding glutamine and glutamate, respectively.  相似文献   

3.
4.
The rapid catabolism of glutamine by the cultured human lymphoblast line WI-L2 can be inhibited greater than 95% by incubation of cell suspensions with 6-diazo-5-oxo-L-norleucine (DON). The inhibition persists for at least four hours after removal of DON from the cell suspension. The exposure of cells to DON ihibits over 95% of the glutaminase activity measured in lysates in the presence of either phosphate or maleate. Similarly, gamma-glutamyl transpeptidase, assayed with gamma-glutamyl-p-nitroanilide as substrate and glycyglycine as acceptor, is inhibited over 90%. DON-treated and control cells accumulated radioactive material from suspensions containing [14C]-L-glutamine at similar initial rates; the radioactive material accumulated by the DON-treated cells is all recoverable as glutamine while the radioactive material accumulated by untreated cells is principally recovered as glutamate.  相似文献   

5.
We have previously reported that Drosophila Kc cells require glutamine for maximal expression of heat shock proteins in stressed conditions (Sanders and Kon: J. Cell. Physiol. 146:180-190, 1991). The mechanism of this effect has been investigated by comparing the metabolic utilization of glutamine in conditions which support hsp expression with that of glutamate in conditions where up to 100-fold less hsp is synthesized. This comparison showed that free ammonia was generated by cells incubated in the presence of glutamine in 37 degrees C (heat shock) conditions, but not at 25 degrees C, and not in the presence of glutamate in either normal or heat shock conditions. There was no difference in the amount of [14C]O2 generated from either [14C]-labeled amino acid in the tricarboxylic acid cycle, but three- to four-fold more alanine was synthesized in cells incubated in glutamine than in glutamate. Treating the cells with aminotransferase inhibitors to artificially increase NH3 release raised hsp expression in the presence of glutamate to maximal levels characteristic of glutamine. This potentiation correlated with inhibition of alanine aminotransferase. Since only NH3 production correlated with hsp expression in heat shock conditions in the presence of glutamine, and NH3 addition to glutamate also resulted in maximal hsp expression, we measured glutamine production in glutamate plus NH3 and observed net glutamine synthesis. The supposition that glutamine itself is responsible for the regulatory changes supporting maximal hsp expression was supported by the finding that the glutamine analog, 6-diazo-5-oxo-L-norleucine (DON), mimicked the effects of glutamine. We conclude that glutamine imposes regulatory changes which alter nitrogen metabolism and support hsp expression in Kc cells.  相似文献   

6.
Initial rates of glutamine uptake were studied in human lymphoid cell lines whose γ-glutamyl transpeptidase activities vary from 93 to 11,300 units/mg. In general, glutamine was transported at lower rates than other amino acids (met, phe, leu) in all cell lines studied. A cell line with very high transpeptidase activity exhibited an increased rate of glutamine uptake as compared to other amino acids, and a markedly decreased intracellular concentration of glutamine. In all cell lines transported glutamine was extensively (80%) converted to glutamate. Treatment of cells with 6-diazo-5-oxo-L-norleucine (DON) decreased transpeptidase and conversion of transported glutamine to glutamate by about 80%. Inhibition of glutamine transport was less pronounced (0–20%). The findings indicate that transported glutamine does not equilibrate with glutamine in the intracellular pool, but may enter a separate pool in which it is rapidly converted to glutamate.  相似文献   

7.
A membrane-associated form of phosphate-dependent glutaminase was derived from sonicated mitochondria and purified essentially free of gamma-glutamyl transpeptidase activity. Increasing concentrations of phosphate cause a sigmoidal activation of the membrane-bound glutaminase. Phosphate also causes a similar effect on the rate of glutaminase inactivation by the two affinity labels, L-2-amino-4-oxo-5-chloropentanoic acid and 6-diazo-5-oxo-L-norleucine, as observed previously for the solubilized and purified enzyme. Therefore the two forms of glutaminase undergo similar phosphate-induced changes in conformation. A sensitive radioactive assay was developed and used to determine the kinetics of glutamate inhibition of the membrane-associated glutaminase. The Km for glutamine decreases from 36 to 4 mM when the phosphate concentration is increased from 5 to 100 mM. Glutamate is a competitive inhibitor with respect to glutamine at both high and low concentrations of phosphate. However, the Ki for glutamate is increased from 5 to 52 mM with increasing phosphate concentration. Therefore glutamine and glutamate interact with the same site on the glutaminase, but the specificity of the site is determined by the available phosphate concentration.  相似文献   

8.
Phosphate-activated glutaminase is present at high levels in the cerebellar mossy fiber terminals. The role of this enzyme for the production of glutamate from glutamine in the parallel-fiber terminals is unclear. In order to address this, we used light miroscopic immunoperoxidase and electron microscopic immunogold methods to study the localization of glutamate in rat cerbellar slices incubated with physiological K+ (3 mmol/L) and depolarizing K+ (40 mmol/L) concentrations, and during depolarizing conditions with the addition of glutamine and the glutaminase inhibitor 6-diazo-5-oxo-l-norleucine. During K+-induced depolarization glutamate labeling was redistributed from parallel-fiber terminals to glial cells. The nerve terminal content of glutamate was sustained when the slices were supplied with glutamine, which also reduced the accumulation of glutamate in glia. In spite of glutamine supplementation, the depolarized slices treated with 6-diazo-5-oxo-l-norleucine showed depletion of glutamate from parallel-fiber terminals and accumulation in glial cells. We conclude that cerebellar parallel-fiber terminals contain a glutaminase activity enabling them to synthesize glutamate from glutamine. Our results confirm that this is also true for the mossy fiber terminals. In addition, we show that, like for glutamate, the levels of aspartate in parallel-fiber terminals and GABA in Golgi fiber terminals can be maintained during depolarization if glutamine is present. This process is dependent on the activity of a glutaminase, as it can be inhibited by 6-diazo-5-oxo-l-norleucine, suggesting that the glutaminase reaction is important for glutamine to act as a precursor also for aspartate and GABA. The low levels of the kidney type of glutaminase that previously has been shown to be present in the parallel and Golgi fiber terminals could be sufficient to produce the transmitter amino acids. Alternatively, the amino acids could be produced from the liver type of glutaminase, which is not yet localized on the cellular level, or from an unknown glutminase.  相似文献   

9.
Well coupled mitochondria were isolated from transplantable chicken hepatoma induced by MC-29 virus. The mitochondrial phosphate-dependent and phosphate-independent glutaminase activities were increased compared with those from normal chicken liver. Glutamate dehydrogenase was undetectable in the tumor mitochondria. Oxypolarographic tests showed the following: glutamine oxidation was prominent in the tumor mitochondria and was mediated through an NAD-linked reaction, while mitochondria from the liver showed a feeble glutamine oxidation; glutamine oxidation by tumor mitochondria was inhibited either by aminooxyacetate, inhibitor of transaminases, or prior incubation of mitochondria with DON (6-diazo-5-oxonorleucine), which inhibited mitochondrial glutaminases. Bromofuroate, inhibitor of glutamate dehydrogenase, had little or no effect; and glutamate oxidation was also inhibited by aminooxyacetate, while it was not affected by DON. These findings clearly show a high glutamate oxidation activity in the hepatoma and indicate that the product of glutamine hydrolysis, glutamate, is catabolized via transamination in the mitochondria to supply ATP.  相似文献   

10.
The effect of substrate analogues on glutamin-(asparagin-)ase from Pseudomonas aurantiaca-548 has been studied. The enzyme was demonstrated to be highly sensitive to the the action of 6-diazo-5-oxo-L-norleucine and azaserine. L-isomers of glutamine, aspartate, glutamate and several other substrate analogues with free alpha-amino groups protected the enzyme against the inhibitory DON effect. Thus, thorough preliminary selection of appropriate inhibitors, their dosage and treatment duration is needed for the recommendation of combined enzyme-inhibitor application in anti-tumour chemotherapy.  相似文献   

11.
Human asparagine synthetase was examined using a combination of chemical modifiers and specific monoclonal antibodies. The studies were designed to determine the topological relation between the nucleotide binding site and the glutamine binding site of the human asparagine synthetase. The purified recombinant enzyme was chemically modified at the glutamine binding site by 6-diazo-5-oxo-L-norleucine (DON), and at the ATP binding site by 8-azidoadenosine 5'-triphosphate (8-N3ATP). The effects of chemical modification with DON included a loss of glutamine-dependent reactions, but no effect on ATP binding as measured during ammonia-dependent asparagine synthesis. Similarly, modification with 8-N3ATP resulted in a loss of ammonia-dependent asparagine synthesis, but no effect on the glutaminase activity. A series of monoclonal antibodies was also examined in relation to their epitopes and the sites modified by the two covalent chemical modifiers. It was found that several antibodies were prevented from binding by specific chemical modification, and that the antibodies could be classified into groups correlating to their relative binding domains. These results are discussed in terms of relative positions of the glutamine and ATP binding sites on asparagine synthetase.  相似文献   

12.
Yawata I  Takeuchi H  Doi Y  Liang J  Mizuno T  Suzumura A 《Life sciences》2008,82(21-22):1111-1116
We have shown previously, that the most neurotoxic factor from activated microglia is glutamate that is produced by glutaminase utilizing extracellular glutamine as a substrate. Drugs that inhibit glutaminase or gap junction through which the glutamate is released were effective in reducing neurotoxic activity of microglia. In this study, to elucidate whether or not a similar mechanism is operating in macrophages infiltrating into the central nervous system during inflammatory, demyelinating, and ischemic brain diseases, we examined the neurotoxicity induced by macrophages, in comparison with microglia in vitro. LPS- or TNF-alpha-stimulated macrophage-conditioned media induced robust neurotoxicity, which was completely inhibited by the NMDA receptor antagonist MK801. Both the glutaminase inhibitor 6-diazo-5-oxo-l-norleucine (DON), and the gap junction inhibitor carbenoxolone (CBX), effectively suppressed glutamate production and subsequent neurotoxicity by activated macrophages. These results revealed that macrophages produce glutamate via glutaminase from extracelluar glutamine, and release it through gap junctions. This study demonstrated that a similar machinery is operating in macrophages as well, and DON and CBX that prevent microglia-mediated neurotoxicity should be effective for preventing macrophage-mediated neurotoxicity. Thus, these drugs may be effective therapeutic reagents for inflammatory, demyelinating, and ischemic brain diseases.  相似文献   

13.
Several substrate analogs were tested for their ability to inhibit bovine pancreatic asparagine synthetase. Of the substrate analogs tested both 6-diazo-5-oxo-L-norleucine (DON) and 5-chloro-4-oxo-L-norvaline (CONV) were shown to inhibit the enzyme strongly. DON inhibited the glutaminase and glutamine-dependent asparagine synthetase activities and CONV inhibited the ammonia-dependent activity as well. Both of these inhibitors appeared to be relatively tight binding since desalting failed to remove the inhibition. The inactivation of bovine pancreatic asparagine synthetase by DON is accompanied by a shift from a 47,000 molecular weight monomer to a 96,000 molecular weight dimer as observed by HPLC gel filtration chromatography. This DON-induced shift is prevented by the presence of the substrate glutamine. A monoclonal antibody known to inhibit specifically the ammonia-dependent and glutamine-dependent asparagine synthetase activities but not glutaminase (monoclonal antibody 2B4) binds to both the monomer and the dimer forms of untreated enzyme, as well as to the dimer form of the DON-inactivated enzyme. On the other hand, a monoclonal antibody known to inhibit specifically the glutaminase and glutamine-dependent activities and not the ammonia-dependent asparagine synthetase (monoclonal antibody 5A6) binds to both forms of untreated enzyme but cannot bind to the DON-inactivated enzyme. These data are used to describe the relation of regions of the active site of asparagine synthetase in relation to antibody binding sites.  相似文献   

14.
The reaction of gamma-glutamyl transpeptidase from rat kidney with a glutamine analog, 6-diazo-5-oxo-L-norleucine, resulted in irreversible inactivation of the enzyme. The concentration of this reagent giving a half-maximum rate of inactivation was 6 mMat pH 7.5. The inactivation was prevented by the presence of reduced glutathione in a competitive fashion, which indicates the active-site-directed nature of this reagent. The rate of inactivation was greatly accelerated in the presence of maleate, which is known to enhance the glutaminase activity of this enzyme. The presence of maleate increased the maximum velocity of the inactivation, but did not affect the affinity of the enzyme for 6-diazo-5-oxo-L-norleucine. Inactivation of the enzyme with 6-diazo-5-oxo-L-[6=14C]norleucine as well as with 6-diazo-5-oxo-L[1,2,3,4,5-14C]norleucine resulted in a stoichiometric incorporation of radioactivity into the enzyme protein via covalent linkage. The amount of radioactivity incorporated was 1 mol 14C label/248000 g enzyme protein. A native enzyme preparation showing a single protein band on polyacrylamide gel electrophoresis gave four distinct bands upon sodium dodecylsulfate/polyacrylamide gel electrophoresis. Upon sodium dodecylsulfate/polyacrylamide gel electrophoresis of the 14C-labeled enzyme, only the band moving the fastest towards the anode was found to contain radioactivity. This finding indicates that this protein band represents the catalytic component of the enzyme.  相似文献   

15.
We have recently reported that transformation of murine NIH 3T3 cells by v-fos oncogene interfered with Hsp70 and Hsp25 accumulation after heat shock. Here, we have investigated the effect mediated by other oncogenes on the accumulation of these stress proteins. We report that T-antigen transformation of NIH 3T3 cells delayed and reduced the accumulation of Hsp25 after heat shock and decreased the heat-mediated phosphorylation of this protein. This decreased level of Hsp25 correlated with a reduced accumulation of the corresponding mRNA and was related to T-antigen level. In contrast, T-antigen had no effect on the expression of the major stress protein Hsp70 nor did it interfere with the level of Hsp90 or Hsp60. We report also that v-src or Ha-ras oncogenes delayed Hsp25 accumulation after heat shock but that only v-src reduced the heat-induced phosphorylation of this protein. v-src, but not Ha-ras, interfered with Hsp70 expression and none of these oncogenes had an effect on Hsp60 or Hsp90 levels. Taken together, these observations suggest that an altered accumulation of Hsp25 after heat shock is a common characteristic of NIH 3T3 fibroblasts transformed by different oncogenes.  相似文献   

16.
Alkylation of guanosine 5'-monophosphate (GMP) synthetase with the glutamine analogs L-2-amino-4-oxo-5-chloropentanoic acid (chloroketon) and 6-diazo-5-oxonorleucine (DON) inactivated glutamine- and NH3-dependent GMP synthetase. Inactivation exhibited second order kinetics. Complete inactivation was accompanied by covalent attachment of 0.4 to 0.5 equivalent of chloroketon/subunit. Alkylation of GMP synthetase with iodacetamide selectively inactivated glutamine-dependent activity. The NH3-dependent activity was relatively unaffected. Approximately 1 equivalent of carboxamidomethyl group was incorporated per subunit. Carboxymethylcysteine was the only modified amino acid hydrolysis. Prior treatment with chloroketone decreased the capacity for alkylation by iodacetamide, suggesting that both reagents alkylate the same residue. GMP synthetase exhibits glutaminase activity when ATP is replaced by adenosine plus PPi. Iodoacetamide inactivates glutaminase concomitant with glutamine-dependent GMP synthetase. Analysis of pH versus velocity and Km data indicates that the amide of glutamine remains enzyme bound and does not mix with exogenous NH3 in the synthesis of GMP.  相似文献   

17.
Reaction of Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase with 6-diazo-5-oxo-L-norleucine resulted in complete loss of its ability to catalyze glutamine-dependent phosphoribosylamine formation and its glutaminase activity, whereas its ability to catalyze ammonia-dependent phosphoribosylamine formation and to hydrolyze phosphoribosylpyrophosphate was increased. The site of reaction with 6-diazo-5-oxo-L-norleucine was the NH2-terminal cysteine residue. The NH2-terminal sequence of the B. subtilis enzyme was homologous with that of the corresponding amidotransferase from Escherichia coli, for which the NH2-terminal cysteine is also essential for glutamine utilization (Tso, J. Y., Hermodson, M. A., and Zalkin, H. (1982) J. Biol. Chem. 257, 3532-3536). The fact that the metal-free E. coli amidotransferase contains a glutamine-utilizing structure that is very similar to that found in B. subtilis amidotransferase, which contains an essential [4Fe-4S] center, indicates that the iron-sulfur center probably plays no role in glutamine utilization.  相似文献   

18.
Glutaminase plays a critical role in the generation of glutamate, a key excitatory neurotransmitter in the CNS. Excess glutamate release from activated macrophages and microglia correlates with upregulated glutaminase suggesting a pathogenic role for glutaminase. Both glutaminase siRNA and small molecule inhibitors have been shown to decrease excess glutamate and provide neuroprotection in multiple models of disease, including HIV-associated dementia (HAD), multiple sclerosis and ischemia. Consequently, inhibition of glutaminase could be of interest for treatment of these diseases. Bis-2-(5-phenylacetimido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES) and 6-diazo-5-oxo-l-norleucine (DON), two most commonly used glutaminase inhibitors, are either poorly soluble or non-specific. Recently, several new BPTES analogs with improved physicochemical properties were reported. To evaluate these new inhibitors, we established a cell-based microglial activation assay measuring glutamate release. Microglia-mediated glutamate levels were significantly augmented by tumor necrosis factor (TNF)-α, phorbol 12-myristate 13-acetate (PMA) and Toll-like receptor (TLR) ligands coincident with increased glutaminase activity. While several potent glutaminase inhibitors abrogated the increase in glutamate, a structurally related analog devoid of glutaminase activity was unable to block the increase. In the absence of glutamine, glutamate levels were significantly attenuated. These data suggest that the in vitro microglia assay may be a useful tool in developing glutaminase inhibitors of therapeutic interest.  相似文献   

19.
Dysfunction in mononuclear phagocyte (MP, macrophages and microglia) immunity is thought to play a significant role in the pathogenesis of HIV-1 associated dementia (HAD). In particular, elevated extracellular concentrations of the excitatory neurotransmitter glutamate, produced by MP as a consequence of viral infection and immune activation, can induce neuronal injury. To determine the mechanism by which MP-mediated neuronal injury occurs, the concentration and rates of production of extracellular glutamate were measured in human monocyte-derived macrophage (MDM) supernatants by reverse phase high-performance liquid chromatography (RP-HPLC). Measurements were taken of supernatants from MDM infected with multiple HIV-1 strains including ADA and DJV (macrophage tropic, M-tropic), and 89.6 (dual tropic). High levels of glutamate were produced by MDM infected with M-tropic viruses. AZT, an inhibitor of HIV-1 replication, inhibited glutamate generation, demonstrating a linkage between HIV-1 infection and enhanced glutamate production. In our culture system, glutamate production was dependent upon the presence of glutamine and was inhibited by 6-diazo-5-oxo-L-norleucine, a glutaminase inhibitor. Supernatants collected from HIV-1-infected MP generated more glutamate following glutamine addition than supernatants isolated from uninfected MP. These findings implicate the involvement of a glutamate-generating enzyme, such as phosphate-activated mitochondrial glutaminase (PMG) in MP-mediated glutamate production.  相似文献   

20.
Ammonia is a neurotoxin that predominantly affects astrocytes. Disturbed mitochondrial function and oxidative stress, factors implicated in the induction of the mitochondrial permeability transition (MPT), appear to be involved in the mechanism of ammonia neurotoxicity. We have recently shown that ammonia induces the MPT in cultured astrocytes. To elucidate the mechanisms of the MPT, we examined the role of oxidative stress and glutamine, a byproduct of ammonia metabolism. The ammonia-induced MPT was blocked by antioxidants, suggesting a causal role of oxidative stress. Direct application of glutamine (4.5-7.0 mM) to cultured astrocytes increased free radical production and induced the MPT. Treatment of astrocytes with the mitochondrial glutaminase inhibitor, 6-diazo-5-oxo-L-norleucine, completely blocked free radical formation and the MPT, suggesting that high ammonia concentrations in mitochondria resulting from glutamine hydrolysis may be responsible for the effects of glutamine. These studies suggest that oxidative stress and glutamine play major roles in the induction of the MPT associated with ammonia neurotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号