首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
The B800–850 antenna complex of Rhodopseudomonas sphaeroides was studied by comparing the spectral properties of several different types of complexes, isolated from chromatophores by means of the detergents lithium dodecyl sulfate (LDS) or lauryl dimethylamine N-oxide (LDAO). Fluorescence polarization spectra of the BChl 800 emission at 4 K indicated that rapid energy transfer between at least two BChl 800 molecules occurs with a rate constant of energy transfer kET > 3 · 1012 s?1. The maximal dipole-dipole distance between the two BChl 800 molecules was calculated to be 18–19 Å. The porphyrin rings of the BChl 800 molecules are oriented parallel to each other, while their Qy transition moments are mutually perpendicular. The energy-transfer efficiency from carotenoid to bacteriochlorophyll measured in different complexes showed that two functionally different carotenoids are present associated with, respectively, BChl 800 and BChl 850. Fluorescence polarization and linear dichroism spectra revealed that these carotenoids have different absorption spectra and a different orientation with respect to the membrane. The carotenoid associated with BChl 800 absorbs some nanometers more to the red and its orientation is approximately parallel to the membrane, while the carotenoid associated with BChl 850 is oriented more or less perpendicular to the membrane. The fluorescence polarization of BChl 850 was the same for the different complexes. This indicates that the observed polarization of the fluorescence is determined by the smallest complex obtained which contains 8–10 BChl 850 molecules. The B800–850 complex isolated with LDAO thus must consist of a highly ordered array of smaller structures. On basis of these results a minimal model is proposed for the basic unit consisting of four BChl 850 and two BChl 800 and three carotenoid molecules.  相似文献   

2.
3.
Two types of peripheral light-harvesting complexes LH2 (B800–850) from photosynthetic purple bacterium Allochromatium minutissimum were studied. First type containing carotenoids was prepared from wild type cells. The other one was obtained from carotenoid depleted cells grown with diphenylamine. We have shown that under laser femtosecond excitation within absorption 1200–1500 nm wavelength range the two-photon excitation of LH2 complexes takes place. This can be observed as fluorescence of bacteriochlorophyll (BChl) spectral form B850 (BChl molecules of circular aggregate with strong exciton interaction in 850 nm spectral domain). LH2 fluorescence excitation spectra under two-photon excitation are the same for carotenoid-containing and carotenoidless preparations. In both cases the broad band with peak near 1350 (675) nm (FWHM ~ 240 (120) nm) was found. It is concluded that the broad band with peak near 1350 (675) nm in two-photon excitation spectra of LH2 complexes from Allochromatium minutissimum cannot be interpreted as two-photon excitation band of the optically forbidden S0 → S1 transition of carotenoids (rhodopin). Possible nature of this band is discussed.  相似文献   

4.
5.
6.
7.
运用枯草芽孢杆菌中的麦芽糖诱导型启动子调控元件,构建得到麦芽糖诱导海藻糖合成酶的安全表达系统,使其制备的海藻糖能够广泛应用于食品医疗行业。以来源于恶臭假单胞杆菌KT2440(Pseudomonas putida KT2440)的海藻糖合成酶基因Tre S为报告基因,以cre序列定点突变(CG碱基突变为AT碱基)优化后的麦芽糖诱导型的枯草芽孢杆菌操纵元启动子Pglv为调控元件、大肠杆菌-枯草芽孢杆菌穿梭质粒PHT01为载体骨架,通过Bam H I和Aat II限制酶酶切替换,构建得到高效表达载体Pglv-PHT01-Tre S,将质粒电转化到B.subtilis WB800n并验证其表达效果。成功构建了海藻糖合成酶高效表达质粒Pglv-PHT01-Tre S,并实现了该重组质粒在B.subtilis WB800n中的表达。利用基础发酵培养基优化发酵条件验证结果表明,菌体生长到发酵液吸光值OD600达到1.2时加入终质量分数4.5%的麦芽糖,37℃诱导18 h后胞内的海藻糖合成酶的粗酶活力达到18.9 U/m L。为了提高海藻糖合成酶的表达量,还构建了通过单交叉互换方法敲除了α-淀粉酶基因amy E的重组菌株B.subtilis WB800n(Δamy E),减少了胞外α-淀粉酶对麦芽糖的降解成葡萄糖,提高了麦芽糖的诱导表达效果以及减少葡萄糖的反馈抑制,表达质粒在麦芽糖诱导条件下在该重组菌中海藻糖合成酶酶活提高到了29.2 U/m L。首次成功实现了麦芽糖诱导海藻糖合酶在枯草芽孢杆菌中的高效表达,为获得制备安全高效的海藻糖合成酶表达系统奠定了基础。  相似文献   

8.
In peripheral nerves, P0 glycoprotein accounts for more than 20% of myelin protein content. P0 is synthesized by Schwann cells, processed in the endoplasmic reticulum (ER) and enters the secretory pathway. However, the mutant P0 with S63 deleted (P0S63del) accumulates in the ER lumen and induces a demyelinating neuropathy in Charcot–Marie–Tooth disease type 1B (CMT1B)–S63del mice. Accumulation of P0S63del in the ER triggers a persistent unfolded protein response. Protein kinase RNA-like endoplasmic reticulum kinase (PERK) is an ER stress sensor that phosphorylates eukaryotic initiation factor 2 alpha (eIF2alpha) in order to attenuate protein synthesis. We have shown that increasing phosphophorylated-eIF2alpha (P-eIF2alpha) is a potent therapeutic strategy, improving myelination and motor function in S63del mice. Here, we explore the converse experiment: Perk haploinsufficiency reduces P-eIF2alpha in S63del nerves as expected, but surprisingly, ameliorates, rather than worsens S63del neuropathy. Motor performance and myelin abnormalities improved in S63del//Perk+/− compared with S63del mice. These data suggest that mechanisms other than protein translation might be involved in CMT1B/S63del neuropathy. In addition, Perk deficiency in other cells may contribute to demyelination in a non–Schwann-cell autonomous manner.  相似文献   

9.
The absorbance, polarized absorbance and linear dichroism spectra of single crystals of the B800–850 light-harvesting complex from Rhodopseudomonas acidophila strain 10050 taken at room (298 K) and low (85 K) temperatures are presented. The spectra are compared and contrasted with random phase solution spectra from the same complex. The single crystal spectra display a spectral narrowing at low temperatures in the BChl Qx (550–650 nm) and carotenoid (450–550 nm) regions similar to that observed from the random phase solution. The single crystal absorption spectra in the BChl Qy (750–900 nm) region are broader than the solution spectra and remain broad as the temperature is lowered. It is suggested that this broadening is the result of specific exciton interactions between the BChl chromophore Qy transition dipoles and is a molecular feature which occurs only in the crystalline complex.  相似文献   

10.
Peptides presented by human leukocyte antigen (HLA) molecules on the cell surface play a crucial role in adaptive immunology, mediating the communication between T cells and antigen presenting cells. Knowledge of these peptides is of pivotal importance in fundamental studies of T cell action and in cellular immunotherapy and transplantation. In this paper we present the in-depth identification and relative quantification of 14,500 peptide ligands constituting the HLA ligandome of B cells. This large number of identified ligands provides general insight into the presented peptide repertoire and antigen presentation. Our uniquely large set of HLA ligands allowed us to characterize in detail the peptides constituting the ligandome in terms of relative abundance, peptide length distribution, physicochemical properties, binding affinity to the HLA molecule, and presence of post-translational modifications. The presented B-lymphocyte ligandome is shown to be a rich source of information by the presence of minor histocompatibility antigens, virus-derived epitopes, and post-translationally modified HLA ligands, and it can be a good starting point for solving a wealth of specific immunological questions. These HLA ligands can form the basis for reversed immunology approaches to identify T cell epitopes based not on in silico predictions but on the bona fide eluted HLA ligandome.Peptides presented by human leukocyte antigen (HLA)1 molecules on the cell surface play a crucial role in immunology and mediate the communication between T cells and antigen presenting cells. Knowledge of these peptides is of pivotal importance in fundamental studies of T cell action, the design of T-cell-mediated therapies such as tumor immunotherapy (1), and the treatment of hematological malignancies through a combination of hematopoietic stem cell transplantation and donor lymphocyte infusion (2). In addition, T cells can play an important role in organ rejection following transplantation.The presented HLA class I ligands are the products of the intracellular processing machinery, with its continuous cycle of protein synthesis and degradation (3). Much is known about the proteins involved in antigen processing, but high fidelity ligand/epitope predictions are at present not possible. The discovery of additional involved enzymes (3, 4) and the exciting discovery of peptide splicing (5) have shown that antigen processing is even more complex than was previously thought. Moreover, gene expression studies have shown many nonstandard, unexpected protein products, including the production of antigens derived from aberrant protein fragments as a result of expression in alternative reading frames (6). Several studies report the identification of HLA ligands (710). Many results have been collected and discussed in a recent review on the large-scale analysis of HLA class I ligands (11). Collectively, these reports illustrate the need for in-depth elucidation of the HLA ligandome.Elucidation of T cell epitopes has traditionally been achieved with the use of a forward immunological approach, as pioneered by Hunt and coworkers (12, 13). In this approach, the cognate peptide of T cells with the appropriate activity profile is elucidated via repeated rounds of chromatographic separation in combination with T cell recognition assays. Because T cells are not always available from the start, reverse immunological approaches (1417) have been developed to predict T cell epitopes through a combination of bioinformatics and in vitro proteasome digests. Predicted epitopes are synthesized and tested for their capability to activate T cells. The main disadvantage of this approach is that less than 0.1% of the peptides that survive intracellular processing are presented on HLA class I molecules (3).Therefore, we developed a large-scale peptidomics approach that is a reverse immunology approach based not on algorithms but on the bona fide eluted ligandome, which means that the identified peptides are known to have survived processing and are bona fide HLA ligands. Once the ligandome has been identified as comprehensively as possible, T cells can subsequently be selected on the basis of the immunological question at hand, as will be illustrated in a separate paper.2 The development of MHC exchange tetramers for finding relevant T cell epitopes is instrumental to this approach (18, 19).To improve ligandome coverage, we applied and compared three off-line first dimension separation techniques, followed by on-line nano-HPLC-tandem MS.The tandem mass spectra were interrogated by being matched against the International Protein Index (IPI) human database (20). In a second step, post-translation modifications (phosphorylation, cysteinylation) were allowed in the database search. In a third step, the tandem mass spectra were matched against a newly in-house developed database for the optimal identification of polymorphic ligands to find potential minor histocompatibility antigens (21). This led to the identification of ∼14,000 HLA class I ligands, the majority of which also were relatively quantitated. Next, we analyzed the peptides constituting our ligandome in as much detail as possible to confirm the correct identification of the vast majority of the ligands. We achieved this through a combination of several physicochemical and biological checks and comparison with existing ligand and epitope databases.Finally, as an additional quality check, we illustrated the functional relevance of the ligandome through the identification of both previously known and new minor histocompatibility antigens, virus-derived epitopes, and post-translationally modified HLA ligands (phosphorylated ligands and cysteinylated ligands) (2224). This is the largest ligandome reported to date, and it allows general insight into the presented peptide repertoire. This study supports the building of the “immunopeptidome” as has recently been suggested (25). A proteomics approach can be used as a starting point for contributions to immunology by providing a peptidome landscape in many immunological studies, both fundamental and applied.  相似文献   

11.
In the last 4 years, breakthroughs were made in the field of P450 2B (CYP2B) structure–function through determination of one ligand-free and two inhibitor-bound X-ray crystal structures of CYP2B4, which revealed many of the structural features required for binding ligands of different size and shape. Large conformational changes of several plastic regions of CYP2B4 can dramatically reshape the active site of the enzyme to fit the size and shape of the bound ligand without perturbing the overall P450 fold. Solution biophysical studies using isothermal titration calorimetry (ITC) have revealed the large difference in the thermodynamic parameters of CYP2B4 in binding inhibitors of different ring chemistry and side chains. Other studies have revealed that the effects of site-specific mutations on steady-state kinetic parameters and mechanism-based inactivation are often substrate dependent. These findings agree with the structural data that the enzymes adopt different conformations to bind various ligands. Thus, the substrate specificity of an individual enzyme is determined not only by active site residues but also non-active site residues that modulate conformational changes that are important for substrate access and rearrangement of the active site to accommodate the bound substrate.  相似文献   

12.
The reduced clearance of amyloid-β peptide (Aβ) from the brain partly accounts for the neurotoxic accumulation of Aβ in Alzheimer''s disease (AD). Recently, it has been suggested that P-glycoprotein (P-gp), which is an efflux transporter expressed on the luminal membrane of the brain capillary endothelium, is capable of transporting Aβ out of the brain. Although evidence has shown that restoring P-gp reduces brain Aβ in a mouse model of AD, the molecular mechanisms underlying the decrease in P-gp expression in AD is largely unknown. We found that Aβ1–42 reduced P-gp expression in the murine brain endothelial cell line bEnd.3, which was consistent with our in vivo data that P-gp expression was significantly reduced, especially near amyloid plaques in the brains of five familial AD mutations (5XFAD) mice that are used as an animal model for AD. A neutralizing antibody against the receptor for advanced glycation end products (RAGE) and an inhibitor of nuclear factor-kappa B (NF-κB) signaling prevented the decrease in Aβ1–42-induced P-gp expression, suggesting that Aβ reduced P-gp expression through NF-κB signaling by interacting with RAGE. In addition, we observed that the P-gp reduction by Aβ was rescued in bEnd.3 cells receiving inductive signals or factors from astrocytes making contacts with endothelial cells (ECs). These results support that alterations of astrocyte–EC contacts were closely associated with P-gp expression. This suggestion was further supported by the observation of a loss of astrocyte polarity in the brains of 5XFAD mice. Taken together, we found that P-gp downregulation by Aβ was mediated through RAGE–NF-κB signaling pathway in ECs and that the contact between astrocytes and ECs was an important factor in the regulation of P-gp expression.Alzheimer''s disease (AD) is a neurodegenerative disorder that is characterized by a progressive loss of cognitive function leading to dementia. The major pathological hallmark of AD is the deposition of neurotoxic amyloid-β peptide (Aβ) within the brain.1 The amyloid hypothesis proposes that the accumulation of Aβ is caused by an imbalance between Aβ production and clearance.2 Although genetic alterations increase the production of Aβ in rare familial AD, reduced Aβ clearance from the brain likely accounts for sporadic AD, which is much more common.3 The mechanisms that are involved in clearing Aβ from the brain include enzymatic degradation, perivascular drainage, and the most significant, active transport across the blood–brain barrier (BBB).4The BBB regulates molecular exchanges at the interface between the blood and the brain.5 It plays a critical role in maintaining the brain microenvironment.6 The BBB, which is formed by cerebral endothelial cells (ECs) and which, interacts with astrocytes, neurons, pericytes, and the extracellular matrix, is organized into a neurovascular unit.7, 8 Although the relationship between BBB breakdown and AD pathology is unclear,9 it has been proposed that the BBB loses its Aβ clearing capability, thus increasing amyloid deposition in the outer capillary membrane and resulting in the distortion of the neurovascular unit with neuronal loss.10Recently, it has been suggested that P-glycoprotein (P-gp), which is an ATP-driven efflux transporter that is highly expressed in the luminal membrane of the brain capillary endothelium, is also involved in the clearance of Aβ from the brain.11 P-gp, which is able to transport various kinds of substrates, has been shown to play an important role in clearing toxic substances in the brain and protecting it from harmful molecules in the circulation.12 Along with other BBB properties, P-gp expression is induced when ECs are in contact with astrocytes in vitro and in vivo.13, 14 ECs respond to inductive signals or factors from astrocytes that encircle the capillary endothelium.13Several lines of evidence have shown that P-gp plays an important role in Aβ clearance. It has been shown in vitro that P-gp mediates the transport of Aβ and that blocking P-gp function reduces the clearance of Aβ.15, 16 In addition, cerebral Aβ deposition in elderly non-demented individuals has been demonstrated to be inversely correlated with brain capillary P-gp expression.17 Furthermore, in P-gp knockout mice, Aβ deposition is increased by the reduced efflux of Aβ,18 while it has been shown that restoring P-gp at the BBB reduces brain Aβ in a mouse model of AD.19 However, the molecular mechanisms underlying the decrease in P-gp expression that is observed in AD have not been identified. We found that Aβ decreased P-gp expression by increasing nuclear factor-kappa B (NF-κB) through an interaction with the receptor for advanced glycation end products (RAGE). Moreover, we observed that the P-gp reduction by Aβ was rescued by inductive signals or factors from astrocytes that made contact with ECs in bEnd.3 cells. These results suggested that alterations in astrocyte–EC contact in AD likely decrease P-gp expression by Aβ. Together, we identified a mechanism by which the Aβ–RAGE interaction mediated the downregulation of P-gp in the BBB by increasing NF-κB signaling in AD and that astrocyte–EC contact played a critical role in maintaining P-gp expression.  相似文献   

13.
Kalata B1 is a plant protein with remarkable thermal, chemical and enzymatic stability. Its potential applications could be centered on the possibility of using its cyclic structure and cystine knot motif as a scaffold for the design of stable pharmaceuticals. To discover potent dengue NS2B–NS3 protease inhibitors, we have prepared various kalata B1 analogues by varying the amino acid sequence. Mass spectrometric and biochemical investigations of these analogues revealed a cyclopeptide whose two fully oxidized forms are substrate-competitive inhibitors of the dengue viral NS2B–NS3 protease. Both oxidized forms showed potent inhibition with Ki of 1.39 ± 0.35 and 3.03 ± 0.75 μM, respectively.  相似文献   

14.
The structure of desheptapeptide (B24–B30) insulin (DHPI) in a new crystal form (form B) has been determined and refined to 0.2 nm resolution. The crystals were obtained under the same crystallization condition as previously reported crystal form (form A). The overall structures of the two crystal forms are similar but obvious differences can be observed in crystal packing and local conformation. The crystal structures of the two forms show that the two independent molecules in an asymmetric unit from a DHPI dimer, and the dimer formation buries more than 18.20 and 16.95 nm2 of solvent accessible surfaces for form A and form B DHPI, respectively, the largest among insulin and insulin analogs ever reported. Close examination at crystal packing shows that the dimer-forming surface of DHPI, namely Surface II, is normally present in the association of insulin and insulin analogs in their crystal structures. The results demonstrate that Surface II is crucially important for the formation of two crystal forms under the same crystallization condition.  相似文献   

15.
Moderately warm constant ambient temperatures tend to oppose light signals in the control of plant architecture. By contrast, here we show that brief heat shocks enhance the inhibition of hypocotyl growth induced by light perceived by phytochrome B in deetiolating Arabidopsis thaliana seedlings. In darkness, daily heat shocks transiently increased the expression of PSEUDO-RESPONSE REGULATOR7 (PRR7) and PRR9 and markedly enhanced the amplitude of the rhythms of LATE ELONGATED HYPOCOTYL (LHY) and CIRCADIAN CLOCK ASSOCIATED1 (CCA1) expression. In turn, these rhythms gated the hypocotyl response to red light, in part by changing the expression of PHYTOCHROME INTERACTING FACTOR4 (PIF4) and PIF5. After light exposure, heat shocks also reduced the nuclear abundance of CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) and increased the abundance of its target ELONGATED HYPOCOTYL5 (HY5). The synergism between light and heat shocks was deficient in the prr7 prr9, lhy cca1, pif4 pif5, cop1, and hy5 mutants. The evening element (binding site of LHY and CCA1) and G-box promoter motifs (binding site of PIFs and HY5) were overrepresented among genes with expression controlled by both heat shock and red light. The heat shocks experienced by buried seedlings approaching the surface of the soil prepare the seedlings for the impending exposure to light by rhythmically lowering LHY, CCA1, PIF4, and PIF5 expression and by enhancing HY5 stability.  相似文献   

16.
Three new limonoids, ceramicines B–D (13), have been isolated from the bark of Chisocheton ceramicus. Structures and stereochemistry of 13 were fully elucidated and characterized by 2D NMR analysis. Ceramicines exhibited a moderate antiplasmodial activity.  相似文献   

17.
Six new guaiane sesquiterpenoids, rupestonic acids B–G (16), have been isolated from the whole plants of Artemisia rupestris together with six known compounds (712). The structures of the new isolates (16) were elucidated on the basis of extensive 1D and 2D NMR analysis, and the absolute configurations were established by electronic circular dichroism (ECD) in combination with density functional theory calculations. In in vitro bioassays, compounds 2 and 6 exhibited significant inhibitory effects on LPS-stimulated NO production in BV-2 microglial cells with IC50 values of 2.6 and 2.2 μM, respectively.  相似文献   

18.
Lamins, the major structural components of the nuclear lamina (NL) found beneath the nuclear envelope, are known to interact with most of the nuclear peripheral chromatin in metazoan cells. Although NL–chromatin associations correlate with a repressive chromatin state, the role of lamins in tethering chromatin to NL and how such tether influences gene expression have remained challenging to decipher. Studies suggest that NL proteins regulate chromatin in a context-dependent manner. Therefore understanding the context of chromatin states based on genomic features, including chromatin–NL interactions, is important to the study of lamins and other NL proteins. By modeling genome organization based on combinatorial patterns of chromatin association with lamin B1, core histone modification, and core and linker histone occupancy, we report six distinct large chromatin landscapes, referred to as histone lamin landscapes (HiLands)-red (R), -orange (O), -yellow (Y), -green (G), -blue (B), and -purple (P), in mouse embryonic stem cells (mESCs). This HiLands model demarcates the previously mapped lamin-associated chromatin domains (LADs) into two HiLands, HiLands-B and HiLands-P, which are similar to facultative and constitutive heterochromatins, respectively. Deletion of B-type lamins in mESCs caused a reduced interaction between regions of HiLands-B and NL as measured by emerin–chromatin interaction. Our findings reveal the importance of analyzing specific chromatin types when studying the function of NL proteins in chromatin tether and regulation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号