首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Multistep phosphorelay (MSP) signaling mediates responses to a variety of important stimuli in plants. In Arabidopsis MSP, the signal is transferred from sensor histidine kinase (HK) via histidine phosphotransfer proteins (AHP1–AHP5) to nuclear response regulators. In contrast to ancestral two‐component signaling in bacteria, protein interactions in plant MSP are supposed to be rather nonspecific. Here, we show that the C‐terminal receiver domain of HK CKI1 (CKI1RD) is responsible for the recognition of CKI1 downstream signaling partners, and specifically interacts with AHP2, AHP3 and AHP5 with different affinities. We studied the effects of Mg2+, the co‐factor necessary for signal transduction via MSP, and phosphorylation‐mimicking BeF3? on CKI1RD in solution, and determined the crystal structure of free CKI1RD and CKI1RD in a complex with Mg2+. We found that the structure of CKI1RD shares similarities with the only known structure of plant HK, ETR1RD, with the main differences being in loop L3. Magnesium binding induces the rearrangement of some residues around the active site of CKI1RD, as was determined by both X‐ray crystallography and NMR spectroscopy. Collectively, these results provide initial insights into the nature of molecular mechanisms determining the specificity of MSP signaling and MSP catalysis in plants.  相似文献   

2.
The global fold of human cannabinoid type 2 (CB2) receptor in the agonist‐bound active state in lipid bilayers was investigated by solid‐state 13C‐ and 15N magic‐angle spinning (MAS) NMR, in combination with chemical‐shift prediction from a structural model of the receptor obtained by microsecond‐long molecular dynamics (MD) simulations. Uniformly 13C‐ and 15N‐labeled CB2 receptor was expressed in milligram quantities by bacterial fermentation, purified, and functionally reconstituted into liposomes. 13C MAS NMR spectra were recorded without sensitivity enhancement for direct comparison of Cα, Cβ, and C?O bands of superimposed resonances with predictions from protein structures generated by MD. The experimental NMR spectra matched the calculated spectra reasonably well indicating agreement of the global fold of the protein between experiment and simulations. In particular, the 13C chemical shift distribution of Cα resonances was shown to be very sensitive to both the primary amino acid sequence and the secondary structure of CB2. Thus the shape of the Cα band can be used as an indicator of CB2 global fold. The prediction from MD simulations indicated that upon receptor activation a rather limited number of amino acid residues, mainly located in the extracellular Loop 2 and the second half of intracellular Loop 3, change their chemical shifts significantly (≥1.5 ppm for carbons and ≥5.0 ppm for nitrogens). Simulated two‐dimensional 13Cα(i)? 13C?O(i) and 13C?O(i)? 15NH(i + 1) dipolar‐interaction correlation spectra provide guidance for selective amino acid labeling and signal assignment schemes to study the molecular mechanism of activation of CB2 by solid‐state MAS NMR. Proteins 2014; 82:452–465. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
Crystal structures of Bacillus stearothermophilus adenylate kinase with bound Ap5A, Mn2+ Ap5A, and Mg2+ Ap5A have been determined by X-ray crystallography to resolutions of 1.6 Å, 1.85 Å, and 1.96 Å, respectively. The protein's lid domain is partially open, being both rotated and translated away from bound Ap5A. The flexibility of the lid domain in the ternary state and its ability to transfer force directly to the the active site is discussed in light of our proposed entropic mechanism for catalytic turnover. The bound Zn2+ atom is demonstrably structural in nature, with no contacts other than its ligating cysteine residues within 5 Å. The B. stearothermophilus adenylate kinase lid appears to be a truncated zinc finger domain, lacking the DNA binding finger, which we have termed a zinc knuckle domain. In the Mg2+ Ap5A and Mn2+ Ap5A structures, Mg2+ and Mn2+ demonstrate six coordinate octahedral geometry. The interactions of the Mg2+-coordinated water molecules with the protein and Ap5A phosphate chain demonstrate their involvement in catalyzing phosphate transfer. The protein selects for β-γ (preferred by Mg2+) rather than α-γ (preferred by Mn2+) metal ion coordination by forcing the ATP phosphate chain to have an extended conformation. Proteins 32:276–288, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
We introduce a Python-based program that utilizes the large database of 13C and 15N chemical shifts in the Biological Magnetic Resonance Bank to rapidly predict the amino acid type and secondary structure from correlated chemical shifts. The program, called PACSYlite Unified Query (PLUQ), is designed to help assign peaks obtained from 2D 13C–13C, 15N–13C, or 3D 15N–13C–13C magic-angle-spinning correlation spectra. We show secondary-structure specific 2D 13C–13C correlation maps of all twenty amino acids, constructed from a chemical shift database of 262,209 residues. The maps reveal interesting conformation-dependent chemical shift distributions and facilitate searching of correlation peaks during amino-acid type assignment. Based on these correlations, PLUQ outputs the most likely amino acid types and the associated secondary structures from inputs of experimental chemical shifts. We test the assignment accuracy using four high-quality protein structures. Based on only the Cα and Cβ chemical shifts, the highest-ranked PLUQ assignments were 40–60 % correct in both the amino-acid type and the secondary structure. For three input chemical shifts (CO–Cα–Cβ or N–Cα–Cβ), the first-ranked assignments were correct for 60 % of the residues, while within the top three predictions, the correct assignments were found for 80 % of the residues. PLUQ and the chemical shift maps are expected to be useful at the first stage of sequential assignment, for combination with automated sequential assignment programs, and for highly disordered proteins for which secondary structure analysis is the main goal of structure determination.  相似文献   

5.
Glycogen synthase kinase 3β (GSK3β) is a ubiquitous serine/threonine kinase that plays a pivotal role in many biological processes. GSK3β catalyzes the transfer of γ‐phosphate of ATP to the unique substrate Ser/Thr residues with the assistance of two natural activating cofactors Mg2+. Interestingly, the biological observation reveals that a non‐native Ca2+ ion can inhibit the GSK3β catalytic activity. Here, the inhibitory mechanism of GSK3β by the displacement of native Mg2+ at site 1 by Ca2+ was investigated by means of 80 ns comparative molecular dynamics (MD) simulations of the GSK3β···Mg2+‐2/ATP/ Mg2+‐1 and GSK3β···Mg2+‐2/ATP/Ca2+‐1 systems. MD simulation results revealed that using the AMBER point charge model force field for Mg2+ was more appropriate in the reproduction of the active site architectural characteristics of GSK3β than using the magnesium‐cationic dummy atom model force field. Compared with the native Mg2+ bound system, the misalignment of the critical triphosphate moiety of ATP, the erroneous coordination environments around the Mg2+ ion at site 2, and the rupture of the key hydrogen bond between the invariant Lys85 and the ATP Oβ2 atom in the Ca2+ substituted system were observed in the MD simulation due to the Ca2+ ion in active site in order to achieve its preferred sevenfold coordination geometry, which adequately abolish the enzymatic activity. The obtained results are valuable in understanding the possible mechanism by why Ca2+ inhibits the GSK3β activity and also provide insights into the mechanism of Ca2+ inhibition in other structurally related protein kinases. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Enolase in the presence of its physiological cofactor Mg2+ is inhibited by fluoride and phosphate ions in a strongly cooperative manner (Nowak, T, Maurer, P. Biochemistry 20:6901, 1981). The structure of the quaternary complex yeast enolase–Mg2+–F?–Pi has been determined by X-ray diffraction and refined to an R = 16.9% for those data with F/σ(F) ≥ 3 to 2.6 Å resolution with a good geometry of the model. The movable loops of Pro-35-Ala-45, Val-153-Phe-lo9, and Asp-255-Asn-266 are in the closed conformation found previously in the precatalytic substrate–enzyme complex. Calculations of molecular electrostatic potential show that this conformation stabilizes binding of negatively charged ligands at the Mg2+ ion more strongly than the open conformation observed in the native enolase. This closed conformation is complementary to the transition state, which also has a negatively charged ion, hydroxide, at Mg2+. The synergism of inhibition by F? and Pi most probably is due to the requirement of Pi, for the closed conformation. It is possible that other Mg2+-dependent enzymes that have OH? ions bound to the metalion in the transition state also will be inhibited by fluoride ions. © Wiley-Liss, Inc.  相似文献   

7.
The 31P NMR pressure response of guanine nucleotides bound to proteins has been studied in the past for characterizing the pressure perturbation of conformational equilibria. The pressure response of the 31P NMR chemical shifts of the phosphate groups of GMP, GDP, and GTP as well as the commonly used GTP analogs GppNHp, GppCH2p and GTPγS was measured in the absence and presence of Mg2+-ions within a pressure range up to 200 MPa. The pressure dependence of chemical shifts is clearly non-linear. For all nucleotides a negative first order pressure coefficient B 1 was determined indicating an upfield shift of the resonances with pressure. With exception of the α-phosphate group of Mg2+·GMP and Mg2+·GppNHp the second order pressure coefficients are positive. To describe the data of Mg2+·GppCH2p and GTPγS a Taylor expansion of 3rd order is required. For distinguishing pH effects from pressure effects a complete pH titration set is presented for GMP, as well as GDP and GTP in absence and presence of Mg2+ ions using indirect referencing to DSS under identical experimental conditions. By a comparison between high pressure 31P NMR data on free Mg2+-GDP and Mg2+-GDP in complex with the proto-oncogene Ras we demonstrate that pressure induced changes in chemical shift are clearly different between both forms.  相似文献   

8.
The comprehensive structure determination of isotopically labeled proteins by solid-state NMR requires sequence-specific assignment of 13C and 15 N spectra. We describe several 2D and 3D MAS correlation techniques for resonance assignment and apply them, at 7.0 Tesla, to 13C and 15N labeled ubiquitin to examine the extent of resonance assignments in the solid state. Both interresidue and intraresidue assignments of the 13C and 15N resonances are addressed. The interresidue assignment was carried out by an N(CO)CA technique, which yields Ni-Ci–1 connectivities in protein backbones via two steps of dipolar-mediated coherence transfer. The intraresidue connectivities were obtained from a new 3D NCACB technique, which utilizes the well resolved C chemical shift to distinguish the different amino acids. Additional amino acid type assignment was provided by a 13C spin diffusion experiment, which exhibits 13C spin pairs as off-diagonal intensities in the 2D spectrum. To better resolve carbons with similar chemical shifts, we also performed a dipolar-mediated INADEQUATE experiment. By cross-referencing these spectra and exploiting the selective and extensive 13 C labeling approach, we assigned 25% of the amino acids in ubiquitin sequence-specifically and 47% of the residues to the amino acid types. The sensitivity and resolution of these experiments are evaluated, especially in the context of the selective and extensive 13C labeling approach.  相似文献   

9.
The crystal structure of the 2-(α-hydroxethyl) thiamin pyrophosphate (LH2) was solved by X-ray diffraction. Crystallographic data: space group F2dd, a=7.922(4) Å, b=33.11(2) Å, c=36.232(10) Å, V=9503(9) Å3, z=16. Metal complexes of the general formula K2{[M(LH)Cl2]2} (M=Zn2+, Cd2+) were isolated from methanolic solutions and characterized by elemental analysis, IR, Raman, and 13C CP MAS NMR spectra. They were also characterized by 13C NMR, 31P NMR, 113Cd NMR, ES-MS, and 1H NMR ROESY spectra in D2O solutions. The data provide evidence for the bonding of the metals to the N(1′) atom of the pyrimidine ring and to the pyrophosphate group. The free ligand and the metal-coordinated ligand adopt the S conformation. Since thiamin cofactor, substrate, and metal ions are present in our system, the extracted results directly refer to thiamin catalysis and possible functional implications are correlated and discussed.  相似文献   

10.
Abstract

The long range structure of DNA restriction fragments has been analysed by electro-optical measurements. The overall rotation time constants observed in a low salt buffer with monovalent ions is shown to decrease upon addition of Mg2+ or spermine. Since the circular dichroism and also the limiting value of the linear dichroism remain almost constant under these conditions, the effect is attributed to a change of the long range structure. According to a weakly bending rod model, the persistence length decreases from about 600 Å in the absence of Mg2+ or spermine to about 350 Å in the presence of these ions. The persistence length measured in the presence of Mg2+ is almost independent of temperature in the range of 10 to 40 °C. The nature of DNA bending is analysed by measurements of bending amplitudes and time constants from dichroism decay curves. The observed absence of changes in the bending amplitudes upon addition of Mg2+ or spermine, even though addition induces changes of the persistence length by a factor of 2, is hardly consistent with simple thermal bending. The combined results, including the remarkably small temperature dependence of persistence length and bending amplitude, can be explained by the existence of two bending effects: inherent curvature of DNA dominates at low temperature, whereas thermal bending prevails at high temperature. Analysis of bending amplitudes from dichroism decay curves according to an arc model provides an approximate measure for the degree of bending in restriction fragments. The model is consistent with the observed chain length dependence of bending amplitudes and provides an approximate curvature corresponding to a radius of ab out400Å. Thus the curvature observed in restriction fragments is similar to that observed for high molecular DNA condensed into toroids by addition of ions like spermine.

Particularly strong bending of DNA is induced by [CO(NH3)6]3+, indicated by an apparent persistence length of 200 Å and an increased bending amplitude together with a reduced limit value of the linear dichroism. This effect is attributed to the high charge density of this ion and potential site binding.  相似文献   

11.
An approach towards accurate NMR measurements of deuterium isotope effects on the chemical shifts of all backbone nuclei in proteins (15N, 13Cα, 13CO, 1Hα) and 13Cβ nuclei arising from 1H-to-D substitutions at amide nitrogen positions is described. Isolation of molecular species with a defined protonation/deuteration pattern at successive backbone nitrogen positions in the polypeptide chain allows quantifying all deuterium isotope shifts of these nuclei from the first to the fourth order. Some of the deuterium isotope shifts measured in the proteins ubiquitin and GB1 can be interpreted in terms of backbone geometry via empirical relationships describing their dependence on (φ; ψ) backbone dihedral angles. Because of their relatively large variability and notable dependence on the protein secondary structure, the two- and three-bond 13Cα isotope shifts, 2ΔCα(NiD) and 3ΔCα(Ni+1D), and three-bond 13Cβ isotope shifts, 3ΔCβ(NiD), are useful reporters of the local geometry of the protein backbone.  相似文献   

12.
Tropolone, a simple analog of colchicine, interacts with Mg2+ with the formation of a 1:1 complex and an apparent equilibrium binding constant Kb of 1.4 · 104 M?1 in neutral aqueous solution at 25°C. The tropolone-Mg2+ complex, but not tropolone, is fluorescent. Since tubulin binds Mg2+ (Frigon, R.P. and Timasheff, S.N. (1975) Biochemistry 14, 4567–4573), previous reports of tropolone interaction with tubulin in Mg2+-containing buffers must be critically re-examined. Fluorescence and difference absorption spectroscopy experiments performed at essentially constant Mg2+ activity indicate that tubulin does bind tropolone, but the optical effects are too weak to use in quantitative studies.  相似文献   

13.
Isoelectric focusing revealed three enolase isoforms in pig brain, which were designated as αα- (pI = 6.5), αγ- (pI = 5.6), and γγ-enolase (pI = 5.2). The pI of purified γγ-enolase was also 5.2. The γγ-enolase isoform of enolase was purified from pig brain by a purification protocol involving heating to 55°C for 3 min, acetone precipitation, ammonium sulfate precipitation (40%–80%), DEAE Sephadex ion-exchange chromatography (pH 6.2), and Sephadex G200 gel filtration. The final specific activity was 82 units/mg protein. As with other vertebrate enolases, γγ-enolase from pig proved to be a dimer with a native mass of 85 kDa and a subunit mass of 45 kDa. The pH optimum for the reaction in the glycolytic direction is 7.2. The K m values for 2-PGA, PEP, and Mg2+ were determined to be 0.05, 0.25, and 0.50 mM, respectively, similar to K m values of other vertebrate enolases. The amino acid composition of pig γγ-enolase, as determined by amino acid analysis, shows strong similarity to the compositions of γγ-enolases from rat, human, and mouse, as determined from their amino acid sequences. Despite the differences seen with some residues, and considering the ways that the compositions were obtained, it is assumed that pig γγ-enolase is more similar than the composition data would indicate. Moreover, it is likely that the sequences of pig γγ-enolase and the other γγ-enolases are almost identical. Li+ proved to be a noncompetitive inhibitor with either 2-PGA or Mg2+ as the variable substrate. This enolase crystallized in the monoclinic space group P2, or P21. An R symm <5% was obtained for data between 50 and 3.65 Å, but was a disappointing 30% for data between 3.65 and 3.10 Å, indicating crystal disorder.  相似文献   

14.
Abstract

The NMR study on the interactions of 2′-dG with Mg2+, Zn2+ and Hg2+ ions in D2O solution has shown that binding of softer metal ions to N7 shifts N <!—graphic—> S pseudorotational equilibrium slightly towards N-type sugar conformations. There are no detectable changes for the conformational equilibria across C4′-C5′ bond, whereas the population of the syn conformers is slightly increased.  相似文献   

15.
Tryptophan 5-monooxygenase in rat brainstem cytosol was activated about twofold by incubation with 0.5 mm ATP and 5 mm MgCl2. The activation required micromolar concentrations of Ca2+ but was not dependent on either cyclic AMP or cyclic GMP. Rat brain cytosol was shown to possess an endogenous protein kinase which was markedly stimulated by the addition of Ca2+ using endogenous protein substrates. Following activation by ATP and Mg2+ in the presence of Ca2+, tryptophan 5-monooxygenase was reversibly deactivated to the original level by incubation at 30 °C after removal of Ca2+ by adding ethylene glycol bis(β-aminoethyl ether)N,N′-tetraacetic acid and was then reactivated by incubation at 30 °C after subsequent addition of Ca2+ and ATP. The deactivation was markedly inhibited by the omission of Mg2+ or by the addition of NaF.  相似文献   

16.
A triple-resonance pulse scheme is described which records15N, NH correlations of residues that immediately follow amethyl-containing amino acid. The experiment makes use of a15N, 13C and fractionally deuterated proteinsample and selects for CH2D methyl types. The experiment isthus useful in the early stages of the sequential assignment process as wellas for the confirmation of backbone 15N, NH chemical shiftassignments at later stages of data analysis. A simple modification of thesequence also allows the measurement of methyl side-chain dynamics. This isparticularly useful for studying side-chain dynamic properties in partiallyunfolded and unfolded proteins where the resolution of aliphatic carbon andproton chemical shifts is limited compared to that of amide nitrogens.  相似文献   

17.
The (Na++K+)-activated, Mg2+-dependent ATPase from rabbit kidney outer medulla was prepared in a partially inactivated, soluble from depleted of endogenous phospholipids, using deoxycholate. This preparation was reactivated 10 to 50-fold by sonicated liposomes of phosphatidylserine, but not by non-sonicated phosphatidylserine liposomes or sonicated phosphatidylcholine liposomes. The reconstituted enzyme resembled native membrane preparations of (Na++K+)-ATPase in its pH optimum being around 7.0 showing optimal activity at Mg2+: ATP mol ratios of approximately 1 and a Km value for ATP of 0.4 mM.Arrhenius plots of this reactivated activity at a constant pH of 7.0 and an Mg2+: ATP mol ratio of 1:1 showed a discontinuity (sharp change of slope) at 17 °C, With activation energy (Ea) values of 13–15 kcal/mol above this temperature and 30–35 kcal below it. A further discontinuity was also found at 8.0 °C and the Ea below this was very high (> 100 kcal/mol).Incresed Mg2+ concentrations at Mg2+: ATP ratios in excess of 1:1 inhibited the (Na++K+)-ATPase activity and also abolished the discontinuities in the Arrhenius plots.The addition of cholesterol to phosphatidylserine at a 1:1 mol ratio partially inhibited (Na++K+)-ATPase reactivation. Arrhenius plots under these conditions showed a single discontinuity at 20°C and Ea values of 22 and 68kcal/mol above and below this temperature respectively. The ouabain-insensitive Mg2+-ATPase normally showed a linear Arrhenius plot with an Ea of 8 kcal/mol. The cholesterol-phosphatidylserine mixed liposomes stimulated the Mg2+-ATPase activity, which now also showed a discontinuity at 20 °C with, however, an increased value of 14 kcal/mol above this temperature and 6 kcal/mol below. Kinetic studies showed that cholesterol had no significant effect on the Km for ATP.Since both of cholesterol and Mg2+ are know to alter the effects of temperature on the fluidity of phospholipids the above result are discussed in this context.  相似文献   

18.
We characterized the effects of intracellular Mg2+ (Mg2+i) on potassium currents mediated by the Kv1.5 and Kv2.1 channels expressed in Xenopus oocytes. Increase in Mg2+i caused a voltage-dependent block of the current amplitude, apparent acceleration of the current kinetics (explained by a corresponding shift in the steady-state activation) and leftward shifts in activation and inactivation dependencies for both channels. The voltage-dependent block was more potent for Kv2.1 [dissociation constant at 0 mV, Kd(0), was ~70 mM and the electric distance of the Mg2+ binding site, , was 0.2] than for the Kv1.5 channel [Kd(0)~40 mM and =0.1]. Similar shifts in the voltage-dependent parameters for both channels were described by the Gouy-Chapman formalism with the negative charge density of 1 e/100 Å2. Additionally, Mg2+i selectively reduced a non-inactivating current and increased the accumulation of inactivation of the Kv1.5, but not the Kv2.1 channel. A potential functional role of the differential effects of Mg2+i on the Kv channels is discussed.  相似文献   

19.
A new computer program, called SHIFTX2, is described which is capable of rapidly and accurately calculating diamagnetic 1H, 13C and 15N chemical shifts from protein coordinate data. Compared to its predecessor (SHIFTX) and to other existing protein chemical shift prediction programs, SHIFTX2 is substantially more accurate (up to 26% better by correlation coefficient with an RMS error that is up to 3.3× smaller) than the next best performing program. It also provides significantly more coverage (up to 10% more), is significantly faster (up to 8.5×) and capable of calculating a wider variety of backbone and side chain chemical shifts (up to 6×) than many other shift predictors. In particular, SHIFTX2 is able to attain correlation coefficients between experimentally observed and predicted backbone chemical shifts of 0.9800 (15N), 0.9959 (13Cα), 0.9992 (13Cβ), 0.9676 (13C′), 0.9714 (1HN), 0.9744 (1Hα) and RMS errors of 1.1169, 0.4412, 0.5163, 0.5330, 0.1711, and 0.1231 ppm, respectively. The correlation between SHIFTX2’s predicted and observed side chain chemical shifts is 0.9787 (13C) and 0.9482 (1H) with RMS errors of 0.9754 and 0.1723 ppm, respectively. SHIFTX2 is able to achieve such a high level of accuracy by using a large, high quality database of training proteins (>190), by utilizing advanced machine learning techniques, by incorporating many more features (χ2 and χ3 angles, solvent accessibility, H-bond geometry, pH, temperature), and by combining sequence-based with structure-based chemical shift prediction techniques. With this substantial improvement in accuracy we believe that SHIFTX2 will open the door to many long-anticipated applications of chemical shift prediction to protein structure determination, refinement and validation. SHIFTX2 is available both as a standalone program and as a web server ().  相似文献   

20.
The three-dimensional crystal structures of the single mutant M17G and the triple mutant F14G-S15G-M17G of the response regulator protein CheY have been determined to 2.3 and 1.9 Å, respectively. Both mutants bind the essential Mg2+cation as determined by the changes in stability, but binding does not cause the intrinsic fluorescence quenching of W58 observed in the wild-type protein. The loop β4-α4 appears to be very flexible in both mutants and helix α4, which starts at N94 in the native Mg2+-CheY and at K91 in the native apo-CheY, starts in both mutants at residue K92. The side-chain of K109 appears to be more mobile because of the space freed by the M17G mutation. In the triple mutant the main chain of K109 and adjacent residues (loop β5-α5) is displaced almost by 2Å affecting the main chain at residues T87 to E89 (C terminus of β4). The triple mutant structure has a Mg2+bound at the active site, but although the Mg2+coordination is similar to that of the native Mg2+-CheY, the structural consequences of the metal binding are quite different. It seems that the mutations have disrupted the mechanism of movement transmission observed in the native protein. We suggest that the side-chain of K109, packed between V86, A88 and M17 in the native protein, slides forwards and backwards upon activation and deactivation dragging the main chain at the loop β5-α5 and triggering larger movements at the functional surface of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号