首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Side chain amide protons of asparagine and glutamine residues in random-coil peptides are characterized by large chemical shift differences and can be stereospecifically assigned on the basis of their chemical shift values only. The bimodal chemical shift distributions stored in the biological magnetic resonance data bank (BMRB) do not allow such an assignment. However, an analysis of the BMRB shows, that a substantial part of all stored stereospecific assignments is not correct. We show here that in most cases stereospecific assignment can also be done for folded proteins using an unbiased artificial chemical shift data base (UACSB). For a separation of the chemical shifts of the two amide resonance lines with differences ≥0.40 ppm for asparagine and differences ≥0.42 ppm for glutamine, the downfield shifted resonance lines can be assigned to Hδ21 and Hε21, respectively, at a confidence level >95%. A classifier derived from UASCB can also be used to correct the BMRB data. The program tool AssignmentChecker implemented in AUREMOL calculates the Bayesian probability for a given stereospecific assignment and automatically corrects the assignments for a given list of chemical shifts.  相似文献   

3.
Aquaporin Z is the first identified prokaryotic water channel in Escherichia coli with a high water permeability and strict substrate selectivity. Here we report nearly complete (94% of amino acid residues) 13C and 15N chemical shift assignments of AqpZ reconstituted in the lipid bilayers using a set of 2D and 3D magic angle spinning solid-state NMR spectra. Secondary structure of AqpZ predicted from chemical shift assignments is generally similar to that of X-ray structure with a number of differences in loop and near-loop regions. The BMRB accession number of the assignments is 27244.  相似文献   

4.
Poor chemical shift referencing, especially for 13C in protein Nuclear Magnetic Resonance (NMR) experiments, fundamentally limits and even prevents effective study of biomacromolecules via NMR, including protein structure determination and analysis of protein dynamics. To solve this problem, we constructed a Bayesian probabilistic framework that circumvents the limitations of previous reference correction methods that required protein resonance assignment and/or three-dimensional protein structure. Our algorithm named Bayesian Model Optimized Reference Correction (BaMORC) can detect and correct 13C chemical shift referencing errors before the protein resonance assignment step of analysis and without three-dimensional structure. By combining the BaMORC methodology with a new intra-peaklist grouping algorithm, we created a combined method called Unassigned BaMORC that utilizes only unassigned experimental peak lists and the amino acid sequence. Unassigned BaMORC kept all experimental three-dimensional HN(CO)CACB-type peak lists tested within ±?0.4 ppm of the correct 13C reference value. On a much larger unassigned chemical shift test set, the base method kept 13C chemical shift referencing errors to within ±?0.45 ppm at a 90% confidence interval. With chemical shift assignments, Assigned BaMORC can detect and correct 13C chemical shift referencing errors to within ±?0.22 at a 90% confidence interval. Therefore, Unassigned BaMORC can correct 13C chemical shift referencing errors when it will have the most impact, right before protein resonance assignment and other downstream analyses are started. After assignment, chemical shift reference correction can be further refined with Assigned BaMORC. These new methods will allow non-NMR experts to detect and correct 13C referencing error at critical early data analysis steps, lowering the bar of NMR expertise required for effective protein NMR analysis.  相似文献   

5.
Magic-angle-spinning solid-state 13C NMR spectroscopy is useful for structural analysis of non-crystalline proteins. However, the signal assignments and structural analysis are often hampered by the signal overlaps primarily due to minor structural heterogeneities, especially for uniformly-13C,15N labeled samples. To overcome this problem, we present a method for assigning 13C chemical shifts and secondary structures from unresolved two-dimensional 13C–13C MAS NMR spectra by spectral fitting, named reconstruction of spectra using protein local structures (RESPLS). The spectral fitting was conducted using databases of protein fragmented structures related to 13Cα, 13Cβ, and 13C′ chemical shifts and cross-peak intensities. The experimental 13C–13C inter- and intra-residue correlation spectra of uniformly isotope-labeled ubiquitin in the lyophilized state had a few broad peaks. The fitting analysis for these spectra provided sequence-specific Cα, Cβ, and C′ chemical shifts with an accuracy of about 1.5 ppm, which enabled the assignment of the secondary structures with an accuracy of 79 %. The structural heterogeneity of the lyophilized ubiquitin is revealed from the results. Test of RESPLS analysis for simulated spectra of five different types of proteins indicated that the method allowed the secondary structure determination with accuracy of about 80 % for the 50–200 residue proteins. These results demonstrate that the RESPLS approach expands the applicability of the NMR to non-crystalline proteins exhibiting unresolved 13C NMR spectra, such as lyophilized proteins, amyloids, membrane proteins and proteins in living cells.  相似文献   

6.
Human uracil N-glycosylase isoform 2—UNG2 consists of an N-terminal intrinsically disordered regulatory domain (UNG2 residues 1–92, 9.3 kDa) and a C-terminal structured catalytic domain (UNG2 residues 93–313, 25.1 kDa). Here, we report the backbone 1H, 13C, and 15N chemical shift assignment as well as secondary structure analysis of the N-and C-terminal domains of UNG2 representing the full-length UNG2 protein.  相似文献   

7.
An analysis of the 1H nuclear magnetic resonance chemical shift assignments and secondary structure designations for over 70 proteins has revealed some very strong and unexpected relationships. Similar studies, performed on smaller databases, for 13C and 15N chemical shifts reveal equally strong correlations to protein secondary structure. Among the more interesting results to emerge from this work is the finding that all 20 naturally occurring amino acids experience a mean alpha-1H upfield shift of 0.39 parts per million (from the random coil value) when placed in a helical configuration. In a like manner, the alpha-1H chemical shift is found to move downfield by an average of 0.37 parts per million when the residue is placed in a beta-strand or extended configuration. Similar changes are also found for amide 1H, carbonyl 13C, alpha-13C and amide 15N chemical shifts. Other relationships between chemical shift and protein conformation are also uncovered; in particular, a correlation between helix dipole effects and amide proton chemical shifts as well as a relationship between alpha-proton chemical shifts and main-chain flexibility. Additionally, useful relationships between alpha-proton chemical shifts and backbone dihedral angles as well as correlations between amide proton chemical shifts and hydrogen bond effects are demonstrated.  相似文献   

8.
Summary The feasibility of assigning the backbone 15N and 13C NMR chemical shifts in multidimensional magic angle spinning NMR spectra of uniformly isotopically labeled proteins and peptides in unoriented solid samples is assessed by means of numerical simulations. The goal of these simulations is to examine how the upper limit on the size of a peptide for which unique assignments can be made depends on the spectral resolution, i.e., the NMR line widths. Sets of simulated three-dimensional chemical shift correlation spectra for artificial peptides of varying length are constructed from published liquid-state NMR chemical shift data for ubiquitin, a well-characterized soluble protein. Resonance assignments consistent with these spectra to within the assumed spectral resolution are found by a numerical search algorithm. The dependence of the number of consistent assignments on the assumed spectral resolution and on the length of the peptide is reported. If only three-dimensional chemical shift correlation data for backbone 15N and 13C nuclei are used, and no residue-specific chemical shift information, information from amino acid side-chain signals, and proton chemical shift information are available, a spectral resolution of 1 ppm or less is generally required for a unique assignment of backbone chemical shifts for a peptide of 30 amino acid residues.  相似文献   

9.
Chemical shifts reflect the structural environment of a certain nucleus and can be used to extract structural and dynamic information. Proper calibration is indispensable to extract such information from chemical shifts. Whereas a variety of procedures exist to verify the chemical shift calibration for proteins, no such procedure is available for RNAs to date. We present here a procedure to analyze and correct the calibration of 13C NMR data of RNAs. Our procedure uses five 13C chemical shifts as a reference, each of them found in a narrow shift range in most datasets deposited in the Biological Magnetic Resonance Bank. In 49 datasets we could evaluate the 13C calibration and detect errors or inconsistencies in RNA 13C chemical shifts based on these chemical shift reference values. More than half of the datasets (27 out of those 49) were found to be improperly referenced or contained inconsistencies. This large inconsistency rate possibly explains that no clear structure–13C chemical shift relationship has emerged for RNA so far. We were able to recalibrate or correct 17 datasets resulting in 39 usable 13C datasets. 6 new datasets from our lab were used to verify our method increasing the database to 45 usable datasets. We can now search for structure–chemical shift relationships with this improved list of 13C chemical shift data. This is demonstrated by a clear relationship between ribose 13C shifts and the sugar pucker, which can be used to predict a C2′- or C3′-endo conformation of the ribose with high accuracy. The improved quality of the chemical shift data allows statistical analysis with the potential to facilitate assignment procedures, and the extraction of restraints for structure calculations of RNA.  相似文献   

10.
RefDB: a database of uniformly referenced protein chemical shifts   总被引:8,自引:8,他引:0  
RefDB is a secondary database of reference-corrected protein chemical shifts derived from the BioMagResBank (BMRB). The database was assembled by using a recently developed program (SHIFTX) to predict protein 1H, 13C and 15N chemical shifts from X-ray or NMR coordinate data of previously assigned proteins. The predicted shifts were then compared with the corresponding observed shifts and a variety of statistical evaluations performed. In this way, potential mis-assignments, typographical errors and chemical referencing errors could be identified and, in many cases, corrected. This approach allows for an unbiased, instrument-independent solution to the problem of retrospectively re-referencing published protein chemical shifts. Results from this study indicate that nearly 25% of BMRB entries with 13C protein assignments and 27% of BMRB entries with 15N protein assignments required significant chemical shift reference readjustments. Additionally, nearly 40% of protein entries deposited in the BioMagResBank appear to have at least one assignment error. From this study it evident that protein NMR spectroscopists are increasingly adhering to recommended IUPAC 13C and 15N chemical shift referencing conventions, however, approximately 20% of newly deposited protein entries in the BMRB are still being incorrectly referenced. This is cause for some concern. However, the utilization of RefDB and its companion programs may help mitigate this ongoing problem. RefDB is updated weekly and the database, along with its associated software, is freely available at http://redpoll.pharmacy.ualberta.ca and the BMRB website.  相似文献   

11.
The three-dimensional structure determination of RNAs by NMR spectroscopy relies on chemical shift assignment, which still constitutes a bottleneck. In order to develop more efficient assignment strategies, we analysed relationships between sequence and 1H and 13C chemical shifts. Statistics of resonances from regularly Watson–Crick base-paired RNA revealed highly characteristic chemical shift clusters. We developed two approaches using these statistics for chemical shift assignment of double-stranded RNA (dsRNA): a manual approach that yields starting points for resonance assignment and simplifies decision trees and an automated approach based on the recently introduced automated resonance assignment algorithm FLYA. Both strategies require only unlabeled RNAs and three 2D spectra for assigning the H2/C2, H5/C5, H6/C6, H8/C8 and H1′/C1′ chemical shifts. The manual approach proved to be efficient and robust when applied to the experimental data of RNAs with a size between 20 nt and 42 nt. The more advanced automated assignment approach was successfully applied to four stem-loop RNAs and a 42 nt siRNA, assigning 92–100% of the resonances from dsRNA regions correctly. This is the first automated approach for chemical shift assignment of non-exchangeable protons of RNA and their corresponding 13C resonances, which provides an important step toward automated structure determination of RNAs.  相似文献   

12.
Reliable automated NOE assignment and structure calculation on the basis of a largely complete, assigned input chemical shift list and a list of unassigned NOESY cross peaks has recently become feasible for routine NMR protein structure calculation and has been shown to yield results that are equivalent to those of the conventional, manual approach. However, these algorithms rely on the availability of a virtually complete list of the chemical shifts. This paper investigates the influence of incomplete chemical shift assignments on the reliability of NMR structures obtained with automated NOESY cross peak assignment. The program CYANA was used for combined automated NOESY assignment with the CANDID algorithm and structure calculations with torsion angle dynamics at various degrees of completeness of the chemical shift assignment which was simulated by random omission of entries in the experimental 1H chemical shift lists that had been used for the earlier, conventional structure determinations of two proteins. Sets of structure calculations were performed choosing the omitted chemical shifts randomly among all assigned hydrogen atoms, or among aromatic hydrogen atoms. For comparison, automated NOESY assignment and structure calculations were performed with the complete experimental chemical shift but under random omission of NOESY cross peaks. When heteronuclear-resolved three-dimensional NOESY spectra are available the current CANDID algorithm yields in the absence of up to about 10% of the experimental 1H chemical shifts reliable NOE assignments and three-dimensional structures that deviate by less than 2 Å from the reference structure obtained using all experimental chemical shift assignments. In contrast, the algorithm can accommodate the omission of up to 50% of the cross peaks in heteronuclear- resolved NOESY spectra without producing structures with a RMSD of more than 2 Å to the reference structure. When only homonuclear NOESY spectra are available, the algorithm is slightly more susceptible to missing data and can tolerate the absence of up to about 7% of the experimental 1H chemical shifts or of up to 30% of the NOESY peaks.Abbreviations: BmPBPA – Bombyx mori pheromone binding protein form A; CYANA – combined assignment and dynamics algorithm for NMR applications; NMR – nuclear magnetic resonance; NOE – nuclear Overhauser effect; NOESY – NOE spectroscopy; RMSD – root-mean-square deviation; WmKT – Williopsis mrakii killer toxin  相似文献   

13.
The comprehensive structure determination of isotopically labeled proteins by solid-state NMR requires sequence-specific assignment of 13C and 15 N spectra. We describe several 2D and 3D MAS correlation techniques for resonance assignment and apply them, at 7.0 Tesla, to 13C and 15N labeled ubiquitin to examine the extent of resonance assignments in the solid state. Both interresidue and intraresidue assignments of the 13C and 15N resonances are addressed. The interresidue assignment was carried out by an N(CO)CA technique, which yields Ni-Ci–1 connectivities in protein backbones via two steps of dipolar-mediated coherence transfer. The intraresidue connectivities were obtained from a new 3D NCACB technique, which utilizes the well resolved C chemical shift to distinguish the different amino acids. Additional amino acid type assignment was provided by a 13C spin diffusion experiment, which exhibits 13C spin pairs as off-diagonal intensities in the 2D spectrum. To better resolve carbons with similar chemical shifts, we also performed a dipolar-mediated INADEQUATE experiment. By cross-referencing these spectra and exploiting the selective and extensive 13 C labeling approach, we assigned 25% of the amino acids in ubiquitin sequence-specifically and 47% of the residues to the amino acid types. The sensitivity and resolution of these experiments are evaluated, especially in the context of the selective and extensive 13C labeling approach.  相似文献   

14.
Several static structural models exist for γδ resolvase, a self-coded DNA recombinase of the γδ transposon. While these reports are invaluable to formulation of a mechanistic hypothesis for DNA strand exchange, several questions remain. Foremost among them concerns the protomer structural dynamics within the protein/DNA synaptosome. Solution NMR chemical shift assignments have been made for truncated variants of the natural wild-type dimer, which is inactive without the full synaptosome structure, and a mutationally activated tetramer. Of the 134 residues, backbone 1H, 15N, and 13Cα assignments are made for 121–124 residues in the dimer, but only 76–80 residues of the tetramer. These assignment differences are interpreted by comparison to X-ray diffraction models of the recombinase dimer and tetramer. Inspection of intramolecular and intermolecular structural variation between these models suggests a correspondence between sequence regions at subunit interfaces unique to tetramer, and the regions that can be sequentially assigned in the dimer but not the tetramer. The loss of sequential context for assignment is suggestive of stochastic fluctuation between structural states involving protomer–protomer interactions exclusive to the activated tetrameric state, and may be indicative of dynamics which pertain to the recombinase mechanism.  相似文献   

15.
Statistical analysis reveals that the set of differences between the secondary shifts of the α- and β-carbons for residues i of a protein (Δδ13Cαi- Δδ13Cβi) provides the means to detect and correct referencing errors for 1H and 13C nuclei within a given dataset. In a correctly referenced protein dataset, linear regression plots of Δδ13Cαi,Δδ13Cβi, or Δδ1Hαi vs. (Δδ13Cαi- Δδ13Cβi) pass through the origin from two directions, the helix-to-coil and strand-to-coil directions. Thus, linear analysis of chemical shifts (LACS) can be used to detect referencing errors and to recalibrate the 1H and 13C chemical shift scales if needed. The analysis requires only that the signals be identified with distinct residue types (intra-residue spin systems). LACS allows errors in calibration to be detected and corrected in advance of sequence-specific assignments and secondary structure determinations. Signals that do not fit the linear model (outliers) deserve scrutiny since they could represent errors in identifying signals with a particular residue, or interesting features such as a cis-peptide bond. LACS provides the basis for the automated detection of such features and for testing reassignment hypotheses. Early detection and correction of errors in referencing and spin system identifications can improve the speed and accuracy of chemical shift assignments and secondary structure determinations. We have used LACS to create a database of offset-corrected chemical shifts corresponding to nearly 1800 BMRB entries: 300 with and 1500 without corresponding three-dimensional (3D) structures. This database can serve as a resource for future analysis of the effects of amino acid sequence and protein secondary and tertiary structure on NMR chemical shifts.Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1007/s10858-005-1717-0  相似文献   

16.
The metastable state silk I structures of Bombyx mori silk fibroin in the solid state were studied on the basis of 15N- and 13C-nmr chemical shifts of Ala, Ser, and Gly residues. The 15N cross-polarization magic angle spinning (CP/MAS) nmr spectra of the precipitated fraction after chymotrypsin hydrolysis of B. mori silk fibroin with the silk I and silk II forms were measured to determine the 15N chemical shifts of Gly, Ala, and Ser residues. For comparison, 15N CP/MAS nmr chemical shifts of Ala were measured for [15N] Ala Philosamia cynthia ricini silk fibroin with antiparallel β-sheet and α-helix forms. The 13C CP/MAS nmr chemical shifts of Ala, Ser, and Gly residues of B. mori silk fibroin with the silk I and silk II forms, as well as 13C CP/MAS nmr chemical shifts of Ala residue of P. c. ricini silk fibroin with β-sheet and α-helix forms, are used for the examination of the silk I structure. Both silk I and α-helix peaks are shifted to a lower field than silk II (β-sheet) for the Cα carbons of the Ala residues, while both Cβ carbon peaks are shifted to higher field. However, the silk I peak of the 15N nucleus of the Ala residue is shifted to lower field than the silk II peak, but the α-helix peak is shifted to high field. Thus, the difference in the structure between the silk I and α-helix is reflected in a different manner between the 13C and 15N chemical shifts. The Cα and Cβ chemical shift contour plots for Ala and Ser residues, and the Cα plot for the Gly residue, were prepared from the Protein Data Bank data obtained for 12 proteins and used for discussing the silk I structure quantitatively from the conformation-dependent chemical shifts. The plots reported by Le and Oldfield for 15N chemical shifts were also used for the purpose. All these chemical shift data support Fossey's model (Ala: ϕ = −80°, φ = 150°, Gly: ϕ = −150°, φ = 80°) and do not support Lotz and Keith's model (Ala: ϕ = −104.6°, φ = 112.2°, Gly: ϕ = 79.8°, φ = 49.7° or Ala: ϕ = −124.5°, φ = 88.2°, Gly: ϕ = −49.8°, φ = −76.1°) as the silk I structure. © 1997 John Wiley & Sons, Inc.  相似文献   

17.
The linear analysis of chemical shifts (LACS) has provided a robust method for identifying and correcting 13C chemical shift referencing problems in data from protein NMR spectroscopy. Unlike other approaches, LACS does not require prior knowledge of the three-dimensional structure or inference of the secondary structure of the protein. It also does not require extensive assignment of the NMR data. We report here a way of extending the LACS approach to 15N NMR data from proteins, so as to enable the detection and correction of inconsistencies in chemical shift referencing for this nucleus. The approach is based on our finding that the secondary 15N chemical shift of the backbone nitrogen atom of residue i is strongly correlated with the secondary chemical shift difference (experimental minus random coil) between the alpha and beta carbons of residue i − 1. Thus once alpha and beta 13C chemical shifts are available (their difference is referencing error-free), the 15N referencing can be validated, and an appropriate offset correction can be derived. This approach can be implemented prior to a structure determination and can be used to analyze potential referencing problems in database data not associated with three-dimensional structure. Application of the LACS algorithm to the current BMRB protein chemical shift database, revealed that nearly 35% of the BMRB entries have δ 15N values mis-referenced by over 0.7 ppm and over 25% of them have δ 1HN values mis-referenced by over 0.12 ppm. One implication of the findings reported here is that a backbone 15N chemical shift provides a better indicator of the conformation of the preceding residue than of the residue itself. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Inconsistent 13C and 15N chemical shift referencing is a continuing problem associated with protein chemical shift assignments deposited in BioMagResBank (BMRB). Here we describe a simple and robust approach that can quantitatively determine the 13C and 15N referencing offsets solely from chemical shift assignment data and independently of 3D coordinate data. This novel structure-independent approach permitted the assessment and determination of 13C and 15N reference offsets for all protein entries deposited in the BMRB. Tests on 452 proteins with known 3D structures show that this structure-independent approach yields 13C and 15N referencing offsets that exhibit excellent agreement with those calculated on the basis of 3D structures. Furthermore, this protocol appears to improve the accuracy of chemical shift-derived secondary structural identification, and has been formally incorporated into a computer program called PSSI (http//www.pronmr.com).Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1007/s10858-004-7441-3  相似文献   

19.
The Bas-Congo virus (BASV) is the first rhabdovirus associated with a human outbreak of acute hemorrhagic fever. The single-stranded, negative-sense RNA genome of BASV contains the five core genes present in all rhabdoviral genomes plus an additional three genes, annotated U1, U2, and U3, with weak (<21%) sequence similarity only to a handful of genes observed in a few other rhabdoviral genomes. The function of the rhabdoviral U proteins is unknown, but, they are hypothesized to play a role in viral infection or replication. To better understand this unique family of proteins, a construct containing residues 27–203 of the 216-residue U1 protein (BASV-U1*) was prepared. By collecting data in 0.5 M urea it was possible to eliminate transient association enough to enable the assignment of most of the observable 1HN, 1Hα, 15N, 13Cα, 13Cβ, and 13C´ chemical shifts for BASV-U1* that will provide a foundation to study its solution properties. The analyses of these chemical shifts along with 15N-edited NOESY data enabled the identification of the elements of secondary structure present in BASV-U1*.  相似文献   

20.
Connexin37 (Cx37) is a gap junction protein involved in cell-to-cell communication in the vasculature and other tissues. Cx37 suppresses proliferation of vascular cells involved in tissue development and repair in vivo, as well as tumor cells. Global deletion of Cx37 in mice leads to enhanced vasculogenesis in development, as well as collateralgenesis and angiogenesis in response to injury, which together support improved tissue remodeling and recovery following ischemic injury. Here we report the 1H, 15N, and 13C resonance assignments for an important regulatory domain of Cx37, the carboxyl terminus (CT; C233-V333). The predicted secondary structure of the Cx37CT domain based on the chemical shifts is that of an intrinsically disordered protein. In the 1H–15N HSQC, N-terminal residues S254-Y259 displayed a second weaker peak and residues E261-Y266 had significant line broadening. These residues are flanked by prolines (P250, P258, P260, and P268), suggesting proline cis–trans isomerization. Overall, these assignments will be useful for identifying the binding sites for intra- and inter-molecular interactions that affect Cx37 channel activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号