首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract The effect of lucerne flea, Sminthurus viridis , on plant growth (stem length and leaf number) and damage (percentage of leaves damaged and the percentage reduction in leaf area in the top, mid and lower thirds of stems) was considered at 2-weekly intervals in three consecutive lucerne growth cycles, each with a different mode of attack. The data were analysed to progressively determine relationships leading to a proposal for plant-based thresholds for lucerne flea control. Lucerne flea affected each factor measured, with damage considered more appropriate for making control decisions than plant growth. Damage increased from the base of plants upwards and its effect on yield was carried over into subsequent growth cycles. Damage was significantly related to lucerne flea numbers ( P  < 0.001) in two growth cycles and was higher when large nymphs or adults were dominant in one of these cycles. Yield was closely and best related to the percentage of the total number of leaves damaged ( R 2 = 81.3%). The percentage of leaves damaged was also related to loss of final yield estimated at 2 ( R 2 = 81.3%), 4 ( R 2 = 78.9%) and 6 ( R 2 = 66.6%) weeks into the first growth cycle only. Direct damage in the other two cycles did not result in yield loss. The percentage of leaves damaged (± confidence intervals) equating to 5% increments in yield loss were estimated at 2, 4 and 6 weeks into the first growth cycle. These are proposed as damage or treatment thresholds for testing.  相似文献   

2.
The effects of a typhoon on Japanese warm temperate rainforests   总被引:4,自引:2,他引:2  
A powerful typhoon (Typhoon No. 13) affected stands of primary warm temperate rainforest in Yakushima, southern Japan, in 1993. Censuses in three sites 1–5 months after the typhoon showed low levels of mortality resulting from the typhoon (0.4–3.0% of stems). Stems killed by the typhoon were generally larger than surviving stems. Among surviving stems there were generally low levels of damage (e.g. 0.5–1.3% of surviving stems lost crowns) and not all damage was widespread (e.g. defoliation was apparent only in one of three sites). The sizes of uprooted stems, stems that lost crowns and relatively undamaged stems were not different. Different species appeared to be damaged in different ways at different sites. Damage was most evident in higher altitude seaward sites but gap formation was more frequent in lower altitude sites near valley floors. After the typhoon the resultant gap area occupied 9.4% of one site and 8.6% of another, which is greater than that before the typhoon. Fresh sprouts were found on 17.35% of 2161 stems after the typhoon, including many apparently undamaged stems as well as those that were damaged. Species which sprouted most frequently were those that regenerate by seed least frequently in these forests; these species may maintain their relative abundance in part by sprouting. Most tree species in these forests may be relatively resistant to typhoons and there may be more opportunities for their regeneration following gap formation caused by the typhoon.  相似文献   

3.
In Central Europe, fungicides to control leaf spot disease in sugar beet caused by Cercospora beticola are applied based on thresholds of disease incidence (DI, per cent of infected plants). As variety‐specific fungicide application was not analyzed to date, the epidemiology of C. beticola and its effect on white sugar yield (WSY) in varieties with different susceptibility were investigated at seven sites in Germany and Austria in 2004 and 2005. All varieties reached the summary thresholds 5 / 15 / 45% DI in all environments. Fitting a logistic growth curve to DI revealed significant differences among varieties. At high disease pressure, susceptible varieties reached a considerably higher disease severity (DS, per cent of infected leaf area) at harvest and a larger area under disease progress curve (AUDPC) than resistant varieties. Fitting a logistic growth curve to DS showed an increasing differentiation among varieties with time. The growth rate estimated based on the logistic growth curve was the only variable that performed equally well in differentiating varieties under low and high disease pressure. With increasing disease pressure, varieties differed considerably in WSY, but differences between susceptible and resistant varieties were significant only in some environments. The disease‐loss relation between AUDPC and relative WSY was variety‐specific. Resistant varieties had an approximately identical WSY with and without infection and compensated for negative infection effects even at higher AUDPC. Therefore, at high disease pressure, resistant varieties had a higher relative yield compared to susceptible ones. However, our results indicate that there is no need to develop variety‐specific thresholds, but resistant varieties reach the established thresholds later than susceptible ones. Consequently, the time of fungicide application can be delayed in resistant varieties. This will help to reduce the use of fungicides to the bare essentials as requested for the integrated crop protection management.  相似文献   

4.
Abstract Cyclones cause profound immediate impacts on tropical rainforest trees, including defoliation, limb loss, snapping of stems and uprooting. Some studies have shown that plant functional traits such as tree size, buttress roots and wood density are correlated with these forms of cyclone damage. On 20 March 2006, Severe Tropical Cyclone Larry crossed the north Queensland coast and proceeded inland across the Atherton Tablelands, impacting the critically endangered Mabi Type 5b rainforest. We investigated the effects of Cyclone Larry on common tree species by categorizing damage to trees as uprooted, snapped, limbs damaged (light, moderate, severe) or upright and estimating levels of defoliation. Damage was then related to functional traits including tree size, presence of buttress roots, wood density, and leaf size and strength. Levels of damage differed between species. Tree size (diameter at breast height) and the presence of buttress roots were not related to damage levels. Wood density was significantly negatively correlated to proportion of trees with snapped stems and significantly positively correlated with the proportion of trees upright with no or light limb damage. Levels of defoliation were significantly related to leaf strength (specific leaf area – SLA) and to leaf width, but not other components of leaf size (area or length) or petiole length. Species with high wood density and low SLA (e.g. Argyrodendron spp.) were found to have high cyclone resistance, the ability to resist damage, while species with low wood density and high SLA (e.g. Dendrocnide photinophylla) exhibited low resistance. However, traits related to low resistance are also those linked to rapid growth and high cyclone resilience, the ability to recover from damage, so it is unlikely that the Mabi forest will experience long‐term changes in floristic composition following Cyclone Larry.  相似文献   

5.
In 1998, we measured the effects of Hurricane Georges after it passed over long‐term research sites in Puerto Rican dry forest. Our primary objectives were to quantify hurricane effects on forest structure, to compare effects in a large tract of forest versus a series of nearby forest fragments, to evaluate short‐term response to hurricane disturbance in terms of mortality and sprouting, and to assess the ability of hurricanes to maintain forest structure. We sampled damage from 33 plots (1.3 ha) across a 3000‐ha tract of forest as well as in 19 fragments. For stems with 2.5‐cm minimum diameter, 1004 stems/ha (12.4%) suffered structural damage, while 69 percent of the undamaged stems were at least 50 percent defoliated. Basal area lost to structural damage equaled 4.0 m2/ha (22%) in south‐facing native forests. Structural damage and defoliation increased with stem diameter and were more common in certain dry forest species. South‐facing forests and those on ridgetops incurred more damage than north‐facing forests or those comprised primarily of introduced species. Stem mortality was only 2 percent of all stems after 9 mo. Structural damage did not necessarily result in stem mortality. Hurricane‐induced mortality was not associated with stem height or diameter, but was ten times greater than background mortality. Basal sprouting was proportional to the amount of structural damage incurred in a stand. Forest fragments experienced the same patterns of hurricane effects as the reference forest. The low, dense structure of Caribbean dry forest can be maintained by hurricane damage to larger stems and induction of basal sprouting to generate multistemmed trees.  相似文献   

6.
Aim Tropical dry forests in the Caribbean have an uniquely short, shrubby structure with a high proportion of multiple‐stemmed trees compared to dry forests elsewhere in the Neotropics. Previous studies have shown that this structure can arise without the loss of main stems from cutting, grazing, or other human intervention. The Caribbean has a high frequency of hurricanes, so wind may also influence forest stature. Furthermore, these forests also tend to grow on soils with low amounts of available phosphorus, which may also influence structure. The objective of this study was to assess the role of high winds in structuring dry forest, and to determine whether soil nutrient pools influence forest response following hurricane disturbance. Location Guánica Forest, Puerto Rico. Methods Over 2000 stems in five plots were sampled for hurricane effects within 1 week after Hurricane Georges impacted field sites in 1998. Sprout initiation, growth, and mortality were analysed for 1407 stems for 2 years after the hurricane. Soil nutrient pools were measured at the base of 456 stems to assess association between nutrients and sprout dynamics. Results Direct effects of the hurricane were minimal, with stem mortality at < 2% and structural damage to stems at 13%, although damage was biased toward stems of larger diameter. Sprouting response was high – over 10 times as many trees had sprouts after the hurricane as before. The number of sprouts on a stem also increased significantly. Sprouting was common on stems that only suffered defoliation or had no visible effects from the hurricane. Sprout survival after 2 years was also high (> 86%). Soil nutrient pools had little effect on forest response as a whole, but phosphorus supply did influence sprout dynamics on four of the more common tree species. Main conclusions Hurricanes are able to influence Caribbean tropical dry forest structure by reducing average stem diameter and basal area and generating significant sprouting responses. New sprouts, with ongoing survival, will maintain the high frequency of multi‐stemmed trees found in this region. Sprouting is not limited to damaged stems, indicating that trees are responding to other aspects of high winds, such as short‐term gravitational displacement or sway. Soil nutrients play a secondary role in sprouting dynamics of a subset of species. The short, shrubby forest structure common to the Caribbean can arise naturally as a response to hurricane winds.  相似文献   

7.
The stems of the ant-plant, Endospermum labios Schodde, serve as colonization sites for the ant, Camponotus quadriceps F. Smith. They are also subject to damage by insect borers. We sampled young E. labios trees in distutbed forest to compare evidence of stem boring insect and stem miner damage in plants with and without colonies of C. quadriceps. Dissections of a subsample of plants showed that dipteran stem borers and stem miner damage were significantly more common in plants lacking C, quadriceps colonies than in plants with established colonies. Evidence from these dissections and from field counts of meristem damage caused by emerging borers suggested that coleopteran stem borers were also more abundant when ants were not present. In addition to the incidence of stem boring insects and ant colonies, we examined relative levels of leaf pubescence by measuring trichome density and leaf size for E. labios trees. We found that trichome density was significantly greater in trees with evidence of prior shoot damage (presumably from stem borer emergence at the meristem) but was not significantly related to the presence or absence of an ant colony. This prompted us to compare trichome density on leaves of nearby small trees and of different branches of the same tree, pairing a stem/branch that appeared damaged with one that appeared healthy. Trichome densities on leaves from damaged stems and branches were significantly greater than were trichome densities on healthy branches and stems. Based on these empirical data, we present several possible explanations for the patterns of association between ants, stem borers, and pubescence. Although feeding preference tests with a common folivore showed no effect of trichome densities on leaves, we suggest further study on how trichomes may affect ovipositing stem borers.  相似文献   

8.
Forest Tree Persistence, Elephants, and Stem Scars   总被引:1,自引:0,他引:1  
Sixteen percent of tree stems 10 cm diameter or greater recorded in seven 1 ha plots in Rabongo Forest, Uganda had stem damage attributable to elephants (Loxodonta africana). We propose four strategies that may help tree species persist under these conditions: repellence, resistance, tolerance and avoidance. We sought and found evidence for each strategy. Large, shade‐tolerant Cynometra alexandri dominated basal area (often >50%) and showed severe scarring. Nearly 80 percent of stems were small pioneer species. Scarring frequency and intensity increased with stem size. Stem‐size distributions declined steeply, implying a high mortality to growth rate ratio. Tree species with spiny stems or with known toxic bark defenses were unscarred. Epiphytic figs escaped damage while at small sizes. Mid‐successional tree species were scarce and appeared sensitive to elephants. Savanna species were seldom scarred. Taking stem size‐effects into account by using a per‐stem logistic modeling approach, scarring became more probable with slower growth and with increasing species abundance, and also varied with location. Pioneer and shade‐bearer guilds showed a deficit of intermediate‐sized stems. Evidence that selective elephant damage is responsible for monodominant C. alexandri forests remains equivocal; however, elephants do influence tree diversity, forest structure, and the wider landscape.  相似文献   

9.
Five varieties of willow were planted in a randomised block design at the Northern Ireland Horticulture and Plant Breeding Station, Loughgall, County Armagh in 1997. Three treatments were applied: control (no treatment), manual defoliation and routine control (spraying) of willow beetles. The defoliation was carried out at 75% for the first 2 years and thereafter 25% up to the first harvest in January 2001. During the second production cycle, no manual defoliation was applied in order to observe the ability of the different varieties to recover from earlier damage. The variety 78112 exhibited the highest yield loss in the first cycle as a result of defoliation (~70%), while the vigorous variety Tora suffered least yield loss (35–43%). In the recovery phase (second production cycle 2001–2003), all the varieties showed little improvement in yields in plots that had been defoliated previously, indicating a long‐term legacy of yield loss as a result of defoliation. The possible reasons for this inability to recover are discussed.  相似文献   

10.
The incorporation of plant tolerance after damage as a new alternative to cope with herbivory, as opposed to resistance, opened new avenues for our understanding of coevolution between plants and herbivores. Although genetic variation on tolerance to defoliation has been detected in some species, few studies have been undertaken with nonagricultural species. In this study, we explore in the annual weed Datura stramonium the existence of genetic variation for tolerance and fitness costs of tolerance. To determine which fitness-related trait was responsible for possible differences in tolerance, growth rate, total flower and fruit production, and the number of seeds per fruit were recorded. Inbred line replicates of D. stramonium from a population of Mexico City were exposed to four defoliation levels (0%, 10%, 30%, and 70%). Our results from a greenhouse experiment using controlled genetic material (inbred lines) indicated that significant genetic variation for tolerance was detected across defoliation environments. Defoliation reduced plant fitness from 15% to 25% in the highest levels of defoliation. Differences on tolerance among inbred lines were accounted by a differential reduction in the proportion of matured fruits across defoliation levels (up to 20%). Within defoliation levels, significant genetic variation in plant fitness suggests that tolerance could be selected. The correlation between fitness values of inbred lines in two environments (with and without damage) was positive (rg = 0.77), but not significant, suggesting absence of fitness costs for tolerance. The finding of genetic variation on tolerance might be either due to differences among inbred lines in their capability to overcome foliar damage through compensation or due to costs incurred by inducing secondary metabolites. Our results indicate the potential for norms of reaction to be selected under a gradient of herbivory pressure and highlights the importance of dissecting induced from compensatory responses when searching for potential causes of genetic variation on tolerance.  相似文献   

11.
Resource availability may limit plant tolerance of herbivory. To predict the effect of differential resource availability on plant tolerance, the limiting resource model (LRM) considers which resource limits plant fitness and which resource is mostly affected by herbivore damage. We tested the effect of experimental drought on tolerance of leaf damage in Ipomoea purpurea, which is naturally exposed to both leaf damage and summer drought. To seek mechanistic explanations, we also measured several morphological, allocation and gas exchange traits. In this case, LRM predicts that tolerance would be the same in both water treatments. Plants were assigned to a combination of two water treatments (control and low water) and two damage treatments (50% defoliation and undamaged). Plants showed tolerance of leaf damage, i.e., a similar number of fruits were produced by damaged and undamaged plants, only in control water. Whereas experimental drought affected all plant traits, leaf damage caused plants to show a greater leaf trichome density and reduced shoot biomass, but only in low water. It is suggested that the reduced fitness (number of fruits) of damaged plants in low water was mediated by the differential reduction of shoot biomass, because the number of fruits per shoot biomass was similar in damaged and undamaged plants. Alternative but less likely explanations include the opposing direction of functional responses to drought and defoliation, and resource costs of the damage-induced leaf trichome density. Our results somewhat challenge the LRM predictions, but further research including field experiments is needed to validate some of the preliminary conclusions drawn.  相似文献   

12.
The red sunflower seed weevil, Smicronyx fulvus LeConte (Coleoptera: Curculionidae), is a primary seed-feeding pest of cultivated sunflowers, Helianthus annuus L., in North America. Host plant resistance is one tool available to complement insecticide-based management of S. fulvus. Artificial infestations of 30 adult weevils per head were used to determine whether variation for susceptibility to S. fulvus exists in previously released inbred lines, and how a new weevil-resistant line, HA 488, compares with other putative sources of resistance. Correcting for the number of seeds per head, 13 older inbred lines showed variation in per cent seed damage from 20% to 38%, with two lines (HA 412 HO, HA 821) being more damaged than most of the tested lines. Among four putative resistance sources, HA 488 was significantly less damaged (5%) than two previously identified open-pollinated varieties (PI 170424, PI 253417, with 13%–14% seed damage), while the source of the resistance in HA 488, PI 431542, was statistically intermediate (12%). The resistance available in HA 488 is a marked improvement, potentially reducing damage per weevil by two thirds or more, but additional work on genetic markers for resistance, economic thresholds and basic weevil biology (e.g. degree-day models for adult emergence) is needed to support implementation of integrated pest management for this key sunflower pest.  相似文献   

13.
Effects of leaf beetle damage on stem wood production in coppicing willow   总被引:1,自引:0,他引:1  
1 The effect of defoliation by larvae of the leaf beetle Phratora vulgatissima on current‐year stem wood production of resprouting Salix viminalis was investigated for two years. Adjacent subplots with varying levels of defoliation within one large willow plantation in south Sweden were studied in the two years. 2 High defoliation levels reduced stem wood production by an average of 32 and 39% in the two years, respectively. 3 Medium defoliation levels reduced stem wood production by 16% in one year. In the other year, the stem wood production of medium‐defoliated stools did not differ significantly from stools exposed to low defoliation, i.e. there was full compensatory growth. 4 The main difference between the year with compensatory growth and the one without was that overall productivity was higher in the year with compensation. This finding forms the basis for a mechanistic model by which compensation could be accomplished. We propose that the major contribution to full compensation comes from an increased growth among intermediate‐sized shoots of medium‐defoliated stools relative to the corresponding shoots in stools exposed to low defoliation.  相似文献   

14.
Cereal leaf beetle, Oulema melanopus (L.), invaded northern Alabama and Georgia more than a decade ago and since has become an economic pest of winter wheat and other cereal crops in the southeastern United States. A series of trials was conducted beginning in 1995 to determine optimal rate and timing of applications of selected foliar insecticides for managing cereal leaf beetle in soft red winter wheat. These trials, cage studies with larvae, and a manual defoliation experiment were used to provide information on cereal leafbeetle yield loss relationships and to develop economic decision rules for cereal leaf beetle in soft red winter wheat. Malathion, methomyl, carbaryl, and spinosad effectively controlled larval infestations when treatments were applied after most eggs had hatched. Encapsulated endotoxin of Bacillus thuringiensis, methyl parathion, and disulfoton applied at the lowest labeled rates were not effective treatments. Organophosphate insecticides generally were not effective when applied before most eggs had hatched. The most effective treatments were the low rates of lambda cyhalothrin when applied early while adults were still laying eggs and before or near 50% egg hatch. These early applications applied at or before spike emergence virtually eliminated cereal leaf beetle injury. The manual defoliation study demonstrated that defoliation before spike emergence has greater impact on grain yield and yield components than defoliation after spike emergence. Furthermore, flag leaf defoliation causes more damage than injury to lower leaves. Grain test weight and kernel weight were not affected by larval injury in most trials. Regression of larval numbers and yield losses calculated a yield loss of 12.65% or 459 kg/ha per larva per stem, which at current application costs suggested an economic threshold of 0.4 larvae per stem during the spike emergence to anthesis stages.  相似文献   

15.
Plants' pattern of compensatory growth is often used to intuitively estimate their grazing tolerance. However, this tolerance is sometimes measured by the overall grazing tolerance index (overall GTI), which assumes that tolerance is a multivariate linear function of various underlying mechanisms. Because the interaction among mechanisms is not independent, the grazing tolerance expression based on overall GTI may be inconsistent with that based on compensatory growth. Through a manipulative field experiment from 2007 to 2012, we measured the responses of 12 traits of Elymus nutans to clipping under different resource availabilities in an alpine meadow and explored the compensatory aboveground biomass and the overall GTI to assess the possible differences between the two expressions of tolerance. Our results showed that these two expressions of tolerance were completely opposite. The expression based on overall GTI was over‐compensatory and did not vary with clipping and resource availability, while the expression based on compensatory aboveground biomass was under‐compensatory and altered to over‐compensation after fertilization. The over‐expression of highly variable traits with extremely high negative mean GTI to defoliation damage, the influence of random errors contained in traits considered, and the doubling weight of functional redundant traits greatly inflated the overall GTI, which leads to the inconsistency of the two tolerance expressions. This inconsistency is also associated with the different determining mechanisms of the two tolerance expressions. Our data suggest that plants' grazing tolerance is not a multivariate linear function of traits or mechanisms that determine grazing tolerance; the overall GTI is only a measure of traits' variability to defoliation damage. Our findings highlight that the tolerance of E. nutans mainly depends on the response of traits with lower variability to defoliation, and the overall GTI is not an ideal predictor for describing a single‐species tolerance to grazing.  相似文献   

16.
In August 1994 verticilliosis-like symptoms were noticed in a maturing crop of sunflower at IACR-Rothamsted. Wilting plants with chlorotic areas on some leaves, and dark areas of microsclerotia at the base of stems, were first observed on 11 August. As the plants matured, dark stripes were also observed on the stems. Many stems became brittle and later collapsed. Infected xylem showed a brown discolouration, later turning to black, and microsclerotia developed. Verticillium dahliae was isolated from all parts of the plant.
In general, once symptoms were present, the incidence of verticilliosis-affected plants increased, and the disease developed, more rapidly in early maturing varieties than in the later maturing types. At harvest, incidence ranged between 24.5% and 89.8%, depending on variety. Early maturing varieties appeared to be more susceptible than later maturing types.
Isolates of V. dahliae were cultured in the laboratory. Sunflower plants were artificially inoculated with these isolates and developed verticilliosis symptoms when grown under controlled environmental conditions.  相似文献   

17.
Woody plant seedling establishment is constrained by herbivory in many semi‐arid savannas. We clipped shoots and cotyledons of three woody species 5‐day (=‘early’) or 28‐day (= ‘late’) post‐emergence to simulate herbivory. Seedlings had shoot apex, one or two cotyledon(s) removed, or were retained intact. Survival rates were ≥80%, ≥40% and ≥20% for Acacia nilotica, Acacia nigrescens and Faidherbia albida respectively. F. albida mobilized stored cotyledon reserves faster and consequently shed the cotyledons earlier than the two Acacia species. Cotyledons were shed off as late as 70 days post‐emergence with 5‐day shedding earlier than 28‐day and cotyledon life‐span decreasing with intensity of defoliation. Shoot apex removal 28‐day resulted in higher compensatory growth than 5‐day in all three species. Cotyledon removal had no effect on shoot length, while shoot apex removal reduced shoot length. In F. albida root growth was stimulated by shoot apex removal. We conclude that potential tolerance to herbivory in terms of seedling survival was of the order A. nilotica > A. nigrescens > F. albida, timing of shoot apex and cotyledon removal influenced seedling growth in terms of biomass and that shoot apex removal stimulated compensatory growth which is critical to seedling survival.  相似文献   

18.
Cereal leaf beetle, Oulema melanopus (L.), has become a serious pest of small grains in the mid-Atlantic region of the United States. Existing thresholds for implementing control measures allowed too much leaf damage and consequent yield loss to occur before recommending treatment. Information on beetle biology and crop response to injury, both prerequisites for developing new management strategies, was lacking for this region. A 3-yr project was initiated to generate an area wide cereal leaf beetle biological and yield impact database for winter wheat, and to evaluate the injury and yield loss potential of different population densities. Over the study period, beetle populations were evaluated at 26 winter wheat field locations in Virginia and North Carolina. Eggs and larvae, classified to instar, were counted twice each week from February to June. Replicated insecticide versus noninsecticide treatments were conducted at each location where leaf defoliation and yield were documented. Results showed that the relationship between 50th percentile egg and fourth-instar population estimates were in strong agreement (y = 0.36x - 0.01; r2 = 0.79). Potentially detrimental larval infestations were forecast before appearance of foliage injury from egg populations present during the stem elongation to flag leaf emergence developmental stages. A significant positive linear relationship between total fourth instar per stem population estimates and percent flag leaf defoliation was detected (y = 20.29x + 1.34; r2 = 0.60). A weaker but still significant relationship between the total fourth-instar population estimates and percent yield loss was found (y = 11.74x + 6.51; r2 = 0.26), indicating that factors in addition to flag leaf injury, primarily by fourth instars, also contributed to reduced yields.  相似文献   

19.
Variation in in situ growth performance of the mountain birch as indicated by the widths of annual rings was analysed and related mainly to temperature and herbivory using ring width series from five heath forest sites in the Lake Torneträsk area, northern Sweden. Climate explained 48–64% of the variation in age-corrected mean ring width series. In general, the effect of current year July followed by June temperature was most important at all sites. A warm May resulted in wider rings due to an earlier budburst. Short-term (inter-annual) responses to increased temperature were in most cases not reflected into long-term responses (decades). A large proportion of the variation in stem mean ring width was due to variation among stems within trees (81%) in these polycormic trees, while variation among sites was marginal (0.4%). Within trees, main stems grew faster and were more responsive to climate variation than subordinate stems. No effect of insect herbivory on ring width was found at low defoliation levels (≤12%). At a defoliation level of ca 84% a one-year reduction in stem growth was observed while the growth reduction (ca 50% reduction in ring width) lasted for 4 yr after ca 93% defoliation. After outbreaks resulting in complete defoliation and some stem mortality, ring widths of surviving stems mainly responded with increased growth. Basal sprouts, emerging just after a severe insect outbreak with a high mortality of old stems, grew faster than sprouts occurring during other periods. It is concluded that the mountain birch is well adapted to recover from Epirrita outbreaks; the ability to produce basal sprouts, that can benefit from an existing root system for fast initial growth, is one important mechanism for this.  相似文献   

20.
采用盆栽试验,设置不同盐胁迫浓度,通过萌发至幼苗期的出苗速度、植株形态和生物量等指标对200个花生品种(系)进行耐盐性评价.结果表明: 随盐胁迫浓度的增加,花生出苗时间延长,对植株形态建成抑制加重,物质积累减少.鉴定花生品种耐盐性强弱的适宜盐胁迫浓度为0.30%~0.45%.采用隶属函数值法将10个指标归结为平均隶属函数值,根据不同胁迫浓度下各指标与平均隶属函数值之间的相关性大小,植株鲜质量、地上部鲜质量、地下部鲜质量、地下部干质量、株高和主茎高均较大,可作为首选指标,植株干质量、地上部干质量、主根长和出苗速率均较小,可作为辅助指标综合判断品种的耐盐能力.200个品种(系)在不同盐胁迫浓度下均可分成高度耐盐型、耐盐型、盐敏感型和高度盐敏感型4组.随盐胁迫强度加大,耐盐品种数量下降,而盐敏感品种数量上升.部分品种在低、中、高盐胁迫强度下表现出统一性(均耐盐或均敏感);部分品种存在差异性,即低胁迫强度下表现耐盐性而在高胁迫强度下表现盐敏感性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号