首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 893 毫秒
1.
Wang X  Lee SR  Arai K  Lee SR  Tsuji K  Rebeck GW  Lo EH 《Nature medicine》2003,9(10):1313-1317
Although thrombolysis with tissue plasminogen activator (tPA) is a stroke therapy approved by the US Food and Drug Administration, its efficacy may be limited by neurotoxic side effects. Recently, proteolytic damage involving matrix metalloproteinases (MMPs) have been implicated. In experimental embolic stroke models, MMP inhibitors decreased cerebral hemorrhage and injury after treatment with tPA. MMPs comprise a family of zinc endopeptidases that can modify several components of the extracellular matrix. In particular, the gelatinases MMP-2 and MMP-9 can degrade neurovascular matrix integrity. MMP-9 promotes neuronal death by disrupting cell-matrix interactions, and MMP-9 knockout mice have reduced blood-brain barrier leakage and infarction after cerebral ischemia. Hence it is possible that tPA upregulates MMPs in the brain, and that subsequent matrix degradation causes brain injury. Here we show that tPA upregulates MMP-9 in cell culture and in vivo. MMP-9 levels were lower in tPA knockouts compared with wild-type mice after focal cerebral ischemia. In human cerebral microvascular endothelial cells, MMP-9 was upregulated when recombinant tPA was added. RNA interference (RNAi) suggested that this response was mediated by the low-density lipoprotein receptor-related protein (LRP), which avidly binds tPA and possesses signaling properties. Targeting the tPA-LRP signaling pathway in brain may offer new approaches for decreasing neurotoxicity and improving stroke therapy.  相似文献   

2.
Matrix metalloproteinase-9 (MMP-9) and NADPH oxidase contribute to blood-brain barrier (BBB) disruption after ischemic stroke. We have previously shown that normobaric hyperoxia (NBO) treatment reduces MMP-9 and oxygen free radical generation in ischemic brain. In this study, we tested the hypothesis that NBO protects the BBB through inhibiting NADPH oxidase-mediated MMP-9 induction in transient focal cerebral ischemia. Male Sprague-Dawley rats (n = 69) were given NBO (95% O2) or normoxia (21% O2) during 90-min filament occlusion of the middle cerebral artery. Cerebral microvessels were isolated for analyzing MMP-9 and NADPH oxidase. BBB damage was non-invasively quantified with magnetic resonance imaging. In normoxic rats, both NADPH oxidase catalytic subunit gp91(phox) and MMP-9 expression were up-regulated in ischemic hemispheric microvessels after 90-min middle cerebral artery occlusion with 22.5 h reperfusion. Inhibition of NADPH oxidase with apocynin reduced the MMP-9 increase, indicating a causal link between NADPH oxidase-derived superoxide and MMP-9 induction. NBO treatment inhibited gp91(phox) expression, NADPH oxidase activity, and MMP-9 induction, which led to significantly less BBB damage and brain edema in the ischemic brain. These results suggest that gp91(phox) containing NADPH oxidase plays an important role in MMP-9 induction in ischemic BBB microvasculature, and that NBO treatment may attenuate MMP-9 induction and brain edema through inhibiting NADPH oxidase after transient cerebral ischemia.  相似文献   

3.
Blood‐brain barrier (BBB) integrity injury within the thrombolytic time window is becoming a critical target to reduce haemorrhage transformation (HT). We have previously reported that BBB damage was initially damaged in non‐infarcted striatum after acute ischaemia stroke. However, the underlying mechanism is not clear. Since acute ischaemic stroke could induce a significant increase of dopamine release in striatum, in current study, our aim is to investigate the role of dopamine receptor signal pathway in BBB integrity injury after acute ischaemia using rat middle cerebral artery occlusion model. Our data showed that 2‐h ischaemia induced a significant increase of endogenous tissue plasminogen activator (tPA) in BBB injury area and intra‐striatum infusion of tPA inhibitor neuroserpin, significantly alleviated 2‐h ischaemia‐induced BBB injury. In addition, intra‐striatum infusion of D1 receptor antagonist SCH23390 significantly decreased ischaemia‐induced upregulation of endogenous tPA, accompanied by decrease of BBB injury and occludin degradation. More important, inhibition of hypoxia‐inducible factor‐1 alpha with inhibitor YC‐1 significantly decreased 2‐h ischaemia‐induced endogenous tPA upregulation and BBB injury. Taken together, our data demonstrate that acute ischaemia disrupted BBB through activation of endogenous tPA via HIF‐1α upregulation, thus representing a new therapeutic target for protecting BBB after acute ischaemic stroke.  相似文献   

4.
We have previously reported that angiotensin receptor blockade reduces reperfusion hemorrhage in a suture occlusion model of stroke, despite increasing matrix metalloproteinase (MMP-9) activity. We hypothesized that candesartan will also decrease hemorrhage associated with delayed (6 h) tissue plasminogen activator (tPA) administration after embolic stroke, widening the therapeutic time window of tPA. Adult male Wistar rats were subjected to embolic middle cerebral artery occlusion (eMCAO) and treated with either candesartan (1 mg/kg) alone early at 3 h, delayed tPA (10 mg/kg) alone at 6 h, the combination of candesartan and tPA, or vehicle control. Rats were sacrificed at 24 and 48 h post-eMCAO and brains perfused for evaluation of neurological deficits, cerebral hemorrhage in terms of hemoglobin content, occurrence rate of hemorrhage, infarct size, tissue MMP activity and protein expression. The combination therapy of candesartan and tPA after eMCAO reduced the brain hemorrhage, and improved neurological outcome compared with rats treated with tPA alone. Further, candesartan in combination with tPA increased activity of MMP-9 but decreased MMP-3, nuclear factor kappa-B and tumor necrosis factor-α expression and enhanced activation of endothelial nitric oxide synthase. An activation of MMP-9 alone is insufficient to cause increased hemorrhage in embolic stroke. Combination therapy with acute candesartan plus tPA may be beneficial in ameliorating tPA-induced hemorrhage after embolic stroke.  相似文献   

5.
Inflammatory damage plays an important role in cerebral ischemic pathogenesis and represents a new target for treatment of stroke. Shikonin has gained attention for its prominent anti-inflammatory property, but up to now little is known about shikonin treatment in acute ischemic stroke. The aim of this study was to evaluate the potential neuroprotective role of shikonin in cerebral ischemic injury, and investigate whether shikonin modulated inflammatory responses after stroke. Focal cerebral ischemia in male ICR mice was induced by transient middle cerebral artery occlusion. Shikonin (10 and 25 mg/kg) was administered by gavage once a day for 3 days before surgery and another dosage after operation. Neurological deficit, infarct volume, brain edema, blood–brain barrier (BBB) dysfunction, and inflammatory mediators were evaluated at 24 and 72 h after stroke. Compared with vehicle group, 25 mg/kg shikonin significantly improved neurological deficit, decreased infarct volume and edema both at 24 and 72 h after transient ischemic stroke, our data also showed that shikonin inhibited the pro-inflammatory mediators, including TLR4, TNF-α, NF-κB, and phosphorylation of p38MAPK in ischemic cortex. In addition, shikonin effectively alleviated brain leakage of Evans blue, up-regulated claudin-5 expression, and inhibited the over-expressed MMP-9 in ischemic brain. These results suggested that shikonin effectively protected brain against ischemic damage by regulating inflammatory responses and ameliorating BBB permeability.  相似文献   

6.
Focal cerebral ischemia results in an increased expression of matrix metalloproteinase-9 (MMP-9), which induces vasogenic brain edema via disrupting the blood–brain barrier (BBB) integrity. Recent studies from our laboratory showed that baicalin reduces ischemic brain damage by inhibiting inflammatory reaction and neuronal apoptosis in a rat model of focal cerebral ischemia. In the present study, we first explored the effect of baicalin on the neuronal damage, brain edema and BBB permeability, then further investigated its potential mechanisms. Sprague–Dawley rats underwent permanent middle cerebral artery occlusion (MCAO). Baicalin was administrated by intraperitoneally injected twice at 2 and 12 h after the onset of MCAO. Neuronal damage, brain edema and BBB permeability were measured 24 h following MCAO. Expression of MMP-9 protein and mRNA were determined by western blot and RT–PCR, respectively. Expression of tight junction protein (TJP) occludin was detected by western blot. Neuronal damage, brain edema and BBB permeability were significantly reduced by baicalin administration following focal cerebral ischemia. Elevated expression of MMP-9 protein and mRNA were significantly down-regulated by baicalin administration. In addition, MCAO caused the decreased expression of occludin, which was significantly up-regulated by baicalin administration. Our study suggested that baicalin reduces MCAO-induced neuronal damage, brain edema and BBB permeability, which might be associated with the inhibition of MMP-9 expression and MMP-9-mediated occludin degradation.  相似文献   

7.
Early blood–brain barrier (BBB) disruption resulting from excessive neurovascular proteolysis by matrix metalloproteinases (MMPs) is closely associated with hemorrhagic transformation events in ischemic stroke. We have shown that normobaric hyperoxia (NBO) treatment reduces MMP-9 increase in the ischemic brain. The aim of this study was to determine whether NBO could attenuate MMP-9-mediated early BBB disruption following ischemic stroke. Rats were exposed to NBO (95% O2) or normoxia (30% O2) during 90-min middle cerebral artery occlusion, followed by 3-hour reperfusion. NBO-treated rats showed a significant reduction in Evan's blue extravasation in the ischemic hemisphere compared with normoxic rats. Topographically, Evan's blue leakage was mainly seen in the subcortical regions including the striatum, which was accompanied by increased gelatinolytic activity and reduced immunostaining for tight-junction protein, occludin. Increased gelatinolytic activities and occludin protein loss were also observed in isolated ischemic microvessels. Gel gelatin zymography identified that MMP-9 was the main enzymatic source in the cerebral microvessels. Incubation of brain slices or isolated microvessels with purified MMP-9 revealed specific degradation of occludin. Inhibition of MMP-9 by NBO or MMP-inhibitor, BB1101, significantly reduced occludin protein loss in ischemic microvessels. These results suggest that NBO attenuates early BBB disruption, and inhibition of MMP-9-mediated occludin degradation is an important mechanism for this protection.  相似文献   

8.
Gao D  Zhang X  Jiang X  Peng Y  Huang W  Cheng G  Song L 《Life sciences》2006,78(22):2564-2570
Stroke is one of the leading causes of mortality; however, its treatment remains obscure and largely empirical. Since matrix metalloproteinase 9 (MMP-9) has been postulated to be the major contributor of neuronal injury during reperfusion, inhibition of MMP-9 could be a potential approach in maintaining the viability of neurons. Trans-resveratrol (resveratrol), a polyphenolic compound has recently been shown to have neuroprotective activity against cerebral ischemia. Therefore, the aim of the present study was to evaluate the effect of resveratrol on MMP-9 induced by cerebral ischemia-reperfusion in vivo. Male Balb/C mice were treated with resveratrol for 7 days (50 mg/kg, gavage). Thereafter, middle cerebral artery occlusion (MCAo) was performed for 2 h with the help of intraluminal thread. Drug-treated mice showed improvement in necrotic changes in cortex and basal ganglia. Detection of MMP-9 activity and gene expression was performed at various time points after MCAo. The elevated levels of MMP-9 were significantly attenuated in the resveratrol-treated mice as compared to the vehicle MCAo mice. The study suggests that resveratrol has protective effects against acute ischemic stroke, which could be attributed to its property against MMP-9. Thus, resveratrol may be a potential agent for the treatment of neuronal injury associated with stroke.  相似文献   

9.
Besides its role as a thrombolytic agent, tissue plasminogen activator (tPA) triggers harmful effects in the brain parenchyma after stroke, such as inflammation, excitotoxicity and basal lamina degradation. Neuroserpin, a natural inhibitor of tPA, has shown neuroprotective effects in animal models of brain infarct. However, the molecular mechanisms of neuroserpin-mediated neuroprotection after brain ischemia remain to be well characterized. Then, our aim was to investigate such mechanisms in primary mixed cortical cell cultures after oxygen and glucose deprivation (OGD). Primary rat mixed cortical cultures containing both astrocytes and neurons were subjected to OGD for 150min and subsequently treated with either tPA (5μg/mL), neuroserpin (0.125, 0.25, 0.5 or 1μM), and tPA together with neuroserpin at the mentioned doses. Twenty-four hours after treatment, LDH release, caspase-3 activity, MCP-1, MIP-2, active MMP-9, GRO/KC and COX-2 were measured. Statistical differences were analyzed using Student's t-test or one-way ANOVA as appropriate. Treatment with tPA after OGD increased LDH release, active MMP-9, MCP-1 and MIP-2 (all p≤0.05), but not caspase-3, GRO/KC or COX-2 compared to control. Treatment with neuroserpin after OGD decreased LDH release and active MMP-9 (all p≤0.05). It had no effect on caspase-3 activity, or on MCP-1, MIP-2, GRO/KC or COX-2 expression compared to control. Administration of tPA together with neuroserpin decreased LDH release, active MMP-9 and MIP-2 (all p≤0.05) and showed no effect on MCP-1, GRO/KC or COX-2 compared to control. Our results suggest that neuroprotective activity of neuroserpin involves attenuation on tPA-mediated mechanisms of inflammation and BBB disruption after brain ischemia.  相似文献   

10.
Matrix metalloproteinase-9 (MMP-9) has been implicated in the breakdown of the blood-brain barrier during cerebral ischemia. As a result, inhibition of MMP-9 may have utility as a therapeutic intervention in stroke. Towards this end, we have synthesized a series of 1-hydroxy-2-pyridinones that have excellent in vitro potency in inhibiting MMP-9 in addition to MMP-2. Representative compounds also demonstrate good efficacy in the mouse transient mid-cerebral artery occlusion (tMCAO) model of cerebral ischemia.  相似文献   

11.
Although propofol has been reported to offer neuroprotection against cerebral ischemia injury, its impact on cerebral edema following ischemia is not clear. The objective of this investigation is to evaluate the effects of propofol post-treatment on blood–brain barrier (BBB) integrity and cerebral edema after transient cerebral ischemia and its mechanism of action, focusing on modulation of aquaporins (AQPs), matrix metalloproteinases (MMPs), and hypoxia inducible factor (HIF)-1α. Cerebral ischemia was induced in male Sprague–Dawley rats (n = 78) by occlusion of the right middle cerebral artery for 1 h. For post-treatment with propofol, 1 mg kg?1 min?1 of propofol was administered for 1 h from the start of reperfusion. Nineteen rats undergoing sham surgery were also included in the investigation. Edema and BBB integrity were assessed by quantification of cerebral water content and extravasation of Evans blue, respectively, following 24 h of reperfusion. In addition, the expression of AQP-1, AQP-4, MMP-2, and MMP-9 was determined 24 h after reperfusion and the expression of HIF-1α was determined 8 h after reperfusion. Propofol post-treatment significantly reduced cerebral edema (P < 0.05) and BBB disruption (P < 0.05) compared with the saline-treated control. The expression of AQP-1, AQP-4, MMP-2, and MMP-9 at 24 h and of HIF-1α at 8 h following ischemia/reperfusion was significantly suppressed in the propofol post-treatment group (P < 0.05). Propofol post-treatment attenuated cerebral edema after transient cerebral ischemia, in association with reduced expression of AQP-1, AQP-4, MMP-2, and MMP-9. The decreased expression of AQPs and MMPs after propofol post-treatment might result from suppression of HIF-1α expression.  相似文献   

12.
Elevated activities of matrix metalloproteinases (MMPs) following ischemic stroke have been shown to mediate ischemic injury as well as neurovascular remodeling. The extracellular MMP inducer (EMMPRIN) is a 58-kDa cell surface glycoprotein, which has been known to play a key regulatory role for MMP activities. The roles of EMMPRIN in stroke injury are not clearly understood. In this study, we investigated changes of EMMPRIN in a mouse model of permanent focal cerebral ischemia, and examined potential association between EMMPRIN and MMP-9 expression. Adult male CD-1 mice were subjected to permanent focal ischemia by intraluminal occlusion of the left middle cerebral artery (MCAO) under anesthesia. EMMPRIN expression was markedly upregulated in the peri-infarct area at 2-7 days after ischemia compared to the contralateral non-ischemic hemisphere by Western blot analysis. Immunofluorescent double staining demonstrated that EMMPRIN signals co-localized with vwF-positive endothelial cells and GFAP-positive peri-vascular astrocytes. In contrast, EMMPRIN signal did not co-localize with NeuN-positive neurons, or MPO-positive neutrophils. Dual fluorescent staining revealed that EMMPRIN co-localized with MMP-9. Our data also demonstrated that increased EMMPRIN expression correlated with increased MMP-9 levels in a temporal manner. In summary, we report for the first time that EMMPRIN expression was significantly increased in a mouse model of permanent focal cerebral ischemia. The spatial and temporal association between increased EMMPRIN expression and elevated MMP-9 levels suggest that EMMPRIN may modulate MMP-9 activity, and participate in neurovascular remodeling after ischemic stroke.  相似文献   

13.
14.
15.
Increased blood-brain barrier (BBB) Na-K-Cl cotransporter activity appears to contribute to cerebral edema formation during ischemic stroke. We have shown previously that inhibition of BBB Na-K-Cl cotransporter activity reduces edema and infarct in the rat middle cerebral artery occlusion (MCAO) model of ischemic stroke. We have also shown that the BBB cotransporter is stimulated by the ischemic factors hypoxia, aglycemia, and arginine vasopressin (AVP), although the mechanisms responsible are not well understood. AMP-activated protein kinase (AMPK), a key mediator of cell responses to stress, can be activated by a variety of stresses, including ischemia, hypoxia, and aglycemia. Previous studies have shown that the AMPK inhibitor Compound C significantly reduces infarct in mouse MCAO. The present study was conducted to evaluate the possibility that AMPK participates in ischemic factor-induced stimulation of the BBB Na-K-Cl cotransporter. Cerebral microvascular endothelial cells (CMEC) were assessed for Na-K-Cl cotransporter activity as bumetanide-sensitive (86)Rb influx. AMPK activity was assessed by Western blot analysis and immunofluorescence methods using antibodies that detect total versus phosphorylated (activated) AMPK. We found that hypoxia (7% and 2% O(2)), aglycemia, AVP, and oxygen-glucose deprivation (5- to 120-min exposures) increase activation of AMPK. We also found that Compound C inhibition of AMPK reduces hypoxia-, aglycemia-, and AVP-induced stimulation of CMEC Na-K-Cl cotransporter activity. Confocal immunofluorescence of perfusion-fixed rat brain slices revealed the presence of AMPK, both total and phosphorylated kinase, in BBB in situ of both control and ischemic brain. These findings suggest that ischemic factor stimulation of the BBB Na-K-Cl cotransporter involves activation of AMPK.  相似文献   

16.
Although thrombolytic effects of tissue plasminogen activator (tPA) are beneficial, its neurotoxicity is problematic. Here, we report that tPA potentiates apoptosis in ischemic human brain endothelium and in mouse cortical neurons treated with N-methyl-D-aspartate (NMDA) by shifting the apoptotic pathways from caspase-9 to caspase-8, which directly activates caspase-3 without amplification through the Bid-mediated mitochondrial pathway. In vivo, tPA-induced cerebral ischemic injury in mice was reduced by intracerebroventricular administration of caspase-8 inhibitor, but not by caspase-9 inhibitor, in contrast to controls in which caspase-9 inhibitor, but not caspase-8 inhibitor, was protective. Activated protein C (APC), a serine protease with anticoagulant, anti-inflammatory and antiapoptotic activities, which is neuroprotective during transient ischemia and promotes activation of antiapoptotic mechanisms in brain cells by acting directly on endothelium and neurons, blocked tPA vascular and neuronal toxicities in vitro and in vivo. APC inhibited tPA-induced caspase-8 activation of caspase-3 in endothelium and caspase-3-dependent nuclear translocation of apoptosis-inducing factor in NMDA-treated neurons and reduced tPA-mediated cerebral ischemic injury in mice. Data suggest that tPA shifts the apoptotic signal in stressed brain cells from the intrinsic to the extrinsic pathway which requires caspase-8. APC blocks tPA's neurovascular toxicity and may add substantially to the effectiveness of tPA therapy for stroke.  相似文献   

17.
Methylophiopogonanone A (MO-A), an active homoisoflavonoid of the Chinese herb Ophiopogon japonicus which has been shown to have protective effects on cerebral ischemia/reperfusion (I/R) injury, has been demonstrated to have anti-inflammatory and anti-oxidative properties. However, little is known about its role in cerebral I/R injury. Therefore, in this study, by using a middle cerebral artery occlusion (MCAO) and reperfusion rat model, the effect of MO-A on cerebral I/R injury was examined. The results showed that MO-A treatment reduced infarct volume and brain edema, improved neurological deficit scores, reversed animal body weight decreases, and increased animal survival time in the stroke groups. Western blotting showed that MO-A suppressed MMP-9, but restored the expression of claudin-3 and claudin-5. Furthermore, transmission electron microscopy were monitored to determine the blood–brain barrier (BBB) alterations in vitro. The results showed that MO-A markedly attenuated BBB damage in vitro. Additionally, MO-A inhibited ROS production in ECs and MMP-9 release in differentiated THP-1 cells in vitro, and suppressed ICAM-1 and VCAM-1 expression in ECs and leukocyte/EC adhesion. In conclusion, our data indicate that MO-A has therapeutic potential against cerebral I/R injury through its ability to attenuate BBB disruption by regulating the expression of MMP-9 and tight junction proteins.  相似文献   

18.
Results of recent studies reveal vascular and neuroprotective effects of matrix metalloproteinase-9 (MMP-9) inhibition and MMP-9 gene deletion in experimental stroke. However, the cellular source of MMP-9 produced in the ischemic brain and the mechanistic basis of MMP-9-mediated brain injury require elucidation. In the present study, we used MMP-9-/- mice and chimeric knockouts lacking either MMP-9 in leukocytes or in resident brain cells to test the hypothesis that MMP-9 released from leukocytes recruited to the brain during postischemic reperfusion contributes to this injury phenotype. We also tested the hypothesis that MMP-9 promotes leukocyte recruitment to the ischemic brain and thus is proinflammatory. The extent of blood-brain barrier (BBB) breakdown, the neurological deficit, and the volume of infarction resulting from transient focal stroke were abrogated to a similar extent in MMP-9-/- mice and in chimeras lacking leukocytic MMP-9 but not in chimeras with MMP-9-containing leukocytes. Zymography and Western blot analysis from these chimeras confirmed that the elevated MMP-9 expression in the brain at 24 h of reperfusion is derived largely from leukocytes. MMP-9-/- mice exhibited a reduction in leukocyte-endothelial adherence and a reduction in the number of neutrophils plugging capillaries and infiltrating the ischemic brain during reperfusion; microvessel immunopositivity for collagen IV was also preserved in these animals. These latter results document proinflammatory actions of MMP-9 in the ischemic brain. Overall, our findings implicate leukocytes, most likely neutrophils, as a key cellular source of MMP-9, which, in turn, promotes leukocyte recruitment, causes BBB breakdown secondary to microvascular basal lamina proteolysis, and ultimately contributes to neuronal injury after transient focal stroke.  相似文献   

19.
There is controversy over whether matrix metalloproteinases (MMPs) are activated during the early therapeutic window following ischemic stroke. Ex vivo, an increase was reported as early as 4 hours, whereas in vivo, no increase was found until 24 hours postischemia. We used fluorescence diffuse optical tomography to image MMP activity following experimental cerebral ischemia; increased MMP activity was observed in the ischemic area as early as 3 to 6 hours after ischemic onset and correlated with the volume of ischemic cerebral tissue. Therefore, MMP activation is an immediate early response to cerebral ischemia concurrent with the therapeutic window.  相似文献   

20.
Yan J  Zhou B  Taheri S  Shi H 《PloS one》2011,6(11):e27798
Hypoxia-inducible factor 1 (HIF-1) is a master regulator of cellular adaptation to hypoxia and has been suggested as a potent therapeutic target in cerebral ischemia. Here we show in an ischemic stroke model of rats that inhibiting HIF-1 and its downstream genes by 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1) significantly increases mortality and enlarges infarct volume evaluated by MRI and histological staining. Interestingly, the HIF-1 inhibition remarkably ameliorates ischemia-induced blood-brain barrier (BBB) disruption determined by Evans blue leakage although it does not affect brain edema. The result demonstrates that HIF-1 inhibition has differential effects on ischemic outcomes and BBB permeability. It indicates that HIF-1 may have different functions in different brain cells. Further analyses show that ischemia upregulates HIF-1 and its downstream genes erythropoietin (EPO), vascular endothelial growth factor (VEGF), and glucose transporter (Glut) in neurons and brain endothelial cells and that YC-1 inhibits their expression. We postulate that HIF-1-induced VEGF increases BBB permeability while certain other proteins coded by HIF-1's downstream genes such as epo and glut provide neuroprotection in an ischemic brain. The results indicate that YC-1 lacks the potential as a cerebral ischemic treatment although it confers certain protection to the cerebral vascular system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号