首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 630 毫秒
1.
PurposeQuantitative T2''-mapping detects regional changes of the relation of oxygenated and deoxygenated hemoglobin (Hb) by using their different magnetic properties in gradient echo imaging and might therefore be a surrogate marker of increased oxygen extraction fraction (OEF) in cerebral hypoperfusion. Since elevations of cerebral blood volume (CBV) with consecutive accumulation of Hb might also increase the fraction of deoxygenated Hb and, through this, decrease the T2’-values in these patients we evaluated the relationship between T2’-values and CBV in patients with unilateral high-grade large-artery stenosis.ResultsNo significant elevations in cerebral rCBV were detected within areas with significantly decreased T2’-values. In contrast, rCBV was significantly decreased (p<0.05) in regions with severe perfusion delay and decreased T2’. Furthermore, no significant correlation between T2’- and rCBV-values was found.ConclusionsrCBV is not significantly increased in areas of decreased T2’ and in areas of restricted perfusion in patients with unilateral high-grade stenosis. Therefore, T2’ should only be influenced by changes of oxygen metabolism, regarding our patient collective especially by an increase of the OEF. T2’-mapping is suitable to detect altered oxygen consumption in chronic cerebrovascular disease.  相似文献   

2.
3.
4.
Cerebral Malaria (CM) is associated with a pathogenic T cell response. Mice infected by P. berghei ANKA clone 1.49 (PbA) developing CM (CM+) present an altered PBL TCR repertoire, partly due to recurrently expanded T cell clones, as compared to non-infected and CM- infected mice. To analyse the relationship between repertoire alteration and CM, we performed a kinetic analysis of the TRBV repertoire during the course of the infection until CM-related death in PbA-infected mice. The repertoires of PBL, splenocytes and brain lymphocytes were compared between infected and non-infected mice using a high-throughput CDR3 spectratyping method. We observed a modification of the whole TCR repertoire in the spleen and blood of infected mice, from the fifth and the sixth day post-infection, respectively, while only three TRBV were significantly perturbed in the brain of infected mice. Using multivariate analysis and statistical modelling, we identified a unique TCRβ signature discriminating CM+ from CTR mice, enriched during the course of the infection in the spleen and the blood and predicting CM onset. These results highlight a dynamic modification and compartmentalization of the TCR diversity during the course of PbA infection, and provide a novel method to identify disease-associated TCRβ signature as diagnostic and prognostic biomarkers.  相似文献   

5.
The MAPK/ERK/p38 are signal transduction pathways that couple intracellular responses to the external stimuli. Contrary to ERK protein which is part of the survival route, presence of p38 could have an impact on cell injury. Tolerance induced by ischemic preconditioning (IPC) is a phenomenon of tissue adaptation, which results in increased tolerance to lethal ischemia-reperfusion injury (IRI). Paper describes changes in MAPK protein pathways after brain IPC. Ischemia was induced by 4-vessels occlusion and rats were preconditioned by sub-lethal ischemia. Western blot and immunohistochemistry identified ERK/p38 proteins in injured areas. The highest level of the pERK was detected at 24 h in IPC groups. A contrary pattern of MAPK/p38 activation was observed in this group, where the lowest level of p38 was displayed at 24 h after ischemia. This suggests that the MAPK signal transduction might have a potential role in tissues response subjected to IRI and in the phenomenon of tolerance.  相似文献   

6.
Five to six hundred millions of people, throughout the world, suffer from malaria and more than one million die each year as a consequence, in about 20% of the cases, of cerebral malaria, an important complication of Plasmodium falciparum infection (Holding & Snow, 2001). Despite many studies, the physiopathology of these cerebral occurrences is not understood, especially concerning the intricacy and respective roles of the various mechanisms identified: sequestration of parasitized red cells in microvessels, cytokine secretion, changes in the T lymphocyte repertoire, host genetic factors driving sensitivity pathogenic factors from Plasmodium (Mazier et al., 2000).  相似文献   

7.
8.
One of the most prominent features of the human brain is the fabulous size of the cerebral cortex and its intricate folding. Cortical folding takes place during embryonic development and is important to optimize the functional organization and wiring of the brain, as well as to allow fitting a large cortex in a limited cranial volume. Pathological alterations in size or folding of the human cortex lead to severe intellectual disability and intractable epilepsy. Hence, cortical expansion and folding are viewed as key processes in mammalian brain development and evolution, ultimately leading to increased intellectual performance and, eventually, to the emergence of human cognition. Here, we provide an overview and discuss some of the most significant advances in our understanding of cortical expansion and folding over the last decades. These include discoveries in multiple and diverse disciplines, from cellular and molecular mechanisms regulating cortical development and neurogenesis, genetic mechanisms defining the patterns of cortical folds, the biomechanics of cortical growth and buckling, lessons from human disease, and how genetic evolution steered cortical size and folding during mammalian evolution .  相似文献   

9.
Cerebral malaria claims the lives of over 600,000 African children every year. To better understand the pathogenesis of this devastating disease, we compared the cellular dynamics in the cortical microvasculature between two infection models, Plasmodium berghei ANKA (PbA) infected CBA/CaJ mice, which develop experimental cerebral malaria (ECM), and P. yoelii 17XL (PyXL) infected mice, which succumb to malarial hyperparasitemia without neurological impairment. Using a combination of intravital imaging and flow cytometry, we show that significantly more CD8+ T cells, neutrophils, and macrophages are recruited to postcapillary venules during ECM compared to hyperparasitemia. ECM correlated with ICAM-1 upregulation on macrophages, while vascular endothelia upregulated ICAM-1 during ECM and hyperparasitemia. The arrest of large numbers of leukocytes in postcapillary and larger venules caused microrheological alterations that significantly restricted the venous blood flow. Treatment with FTY720, which inhibits vascular leakage, neurological signs, and death from ECM, prevented the recruitment of a subpopulation of CD45hi CD8+ T cells, ICAM-1+ macrophages, and neutrophils to postcapillary venules. FTY720 had no effect on the ECM-associated expression of the pattern recognition receptor CD14 in postcapillary venules suggesting that endothelial activation is insufficient to cause vascular pathology. Expression of the endothelial tight junction proteins claudin-5, occludin, and ZO-1 in the cerebral cortex and cerebellum of PbA-infected mice with ECM was unaltered compared to FTY720-treated PbA-infected mice or PyXL-infected mice with hyperparasitemia. Thus, blood brain barrier opening does not involve endothelial injury and is likely reversible, consistent with the rapid recovery of many patients with CM. We conclude that the ECM-associated recruitment of large numbers of activated leukocytes, in particular CD8+ T cells and ICAM+ macrophages, causes a severe restriction in the venous blood efflux from the brain, which exacerbates the vasogenic edema and increases the intracranial pressure. Thus, death from ECM could potentially occur as a consequence of intracranial hypertension.  相似文献   

10.
PurposeTo characterize cerebral glucose metabolism associated with different cognitive states in Parkinson’s disease (PD) using 18F-fluorodeoxyglucose (FDG) and Positron Emission Tomography (PET).MethodsThree groups of patients were recruited in this study including PD patients with dementia (PDD; n = 10), with mild cognitive impairment (PD-MCI; n = 20), and with no cognitive impairment (PD-NC; n = 30). The groups were matched for age, sex, education, disease duration, motor disability, levodopa equivalent dose and Geriatric Depression Rating Scale (GDS) score. All subjects underwent a FDG-PET study. Maps of regional metabolism in the three groups were compared using statistical parametric mapping (SPM5).ResultsPD-MCI patients exhibited limited areas of hypometabolism in the frontal, temporal and parahippocampal gyrus compared with the PD-NC patients (p < 0.01). PDD patients had bilateral areas of hypometabolism in the frontal and posterior parietal-occipital lobes compared with PD-MCI patients (p < 0.01), and exhibited greater metabolic reductions in comparison with PD-NC patients (p < 0.01).ConclusionsCompared with PD-NC patients, hypometabolism was much higher in the PDD patients than in PD-MCI patients, mainly in the posterior cortical areas. The result might suggest an association between posterior cortical hypometabolism and more severe cognitive impairment. PD-MCI might be important for early targeted therapeutic intervention and disease modification.  相似文献   

11.
With the aim to develop beneficial tracers for cerebral tumors, we tested two novel 5-iodo-2′-deoxyuridine (IUdR) derivatives, diesterified at the deoxyribose residue. The substances were designed to enhance the uptake into brain tumor tissue and to prolong the availability in the organism. We synthesized carrier added 5-[125I]iodo-3′,5′-di-O-acetyl-2′-deoxyuridine (Ac2[125I]IUdR), 5-[125I]iodo-3′,5′-di-O-pivaloyl-2′-deoxyuridine (Piv2[125I]IUdR) and their respective precursor molecules for the first time. HPLC was used for purification and to determine the specific activities. The iodonucleoside tracer were tested for their stability against human thymidine phosphorylase. DNA integration of each tracer was determined in 2 glioma cell lines (Gl261, CRL2397) and in PC12 cells in vitro. In mice, we measured the relative biodistribution and the tracer uptake in grafted brain tumors. Ac2[125I]IUdR, Piv2[125I]IUdR and [125I]IUdR (control) were prepared with labeling yields of 31–47% and radiochemical purities of >99% (HPLC). Both diesterified iodonucleoside tracers showed a nearly 100% resistance against degradation by thymidine phosphorylase. Ac2[125I]IUdR and Piv2[125I]IUdR were specifically integrated into the DNA of all tested tumor cell lines but to a less extend than the control [125I]IUdR. In mice, 24 h after i.p. injection, brain radioactivity uptakes were in the following order Piv2[125I]IUdR>Ac2[125I]IUdR>[125I]IUdR. For Ac2[125I]IUdR we detected lower amounts of radioactivities in the thyroid and stomach, suggesting a higher stability toward deiodination. In mice bearing unilateral graft-induced brain tumors, the uptake ratios of tumor-bearing to healthy hemisphere were 51, 68 and 6 for [125I]IUdR, Ac2[125I]IUdR and Piv2[125I]IUdR, respectively. Esterifications of both deoxyribosyl hydroxyl groups of the tumor tracer IUdR lead to advantageous properties regarding uptake into brain tumor tissue and metabolic stability.  相似文献   

12.
Epilepsy is one of the most common neurological disorders. Even though antiepileptic drugs can afford a reasonably satisfactory treatment for 80% of diagnosed patients, chronic intractable epilepsy still affects a significant number of people and more effective and less harmful antiepileptic drugs are needed. Previous studies have shown that -decanolactone has dose-dependent sedative effects, including hypnotic, anticonvulsant and hypothermic properties in mice. The present study reports an inhibitory effect of -decanolactone on glutamate binding (96.8% with 5 mM) in rat cortex membranes. The non competitive nature of glutamate binding inhibition as a neurochemical correlate of the anticonvulsant activity of -decanolactone may be a relevant mode of action for further drug development.  相似文献   

13.
Experimental cerebral malaria (ECM) is characterized by a strong immune response, with leukocyte recruitment, blood-brain barrier breakdown and hemorrhage in the central nervous system. Phosphatidylinositol 3-kinase γ (PI3Kγ) is central in signaling diverse cellular functions. Using PI3Kγ-deficient mice (PI3Kγ-/-) and a specific PI3Kγ inhibitor, we investigated the relevance of PI3Kγ for the outcome and the neuroinflammatory process triggered by Plasmodium berghei ANKA (PbA) infection. Infected PI3Kγ-/- mice had greater survival despite similar parasitemia levels in comparison with infected wild type mice. Histopathological analysis demonstrated reduced hemorrhage, leukocyte accumulation and vascular obstruction in the brain of infected PI3Kγ-/- mice. PI3Kγ deficiency also presented lower microglial activation (Iba-1+ reactive microglia) and T cell cytotoxicity (Granzyme B expression) in the brain. Additionally, on day 6 post-infection, CD3+CD8+ T cells were significantly reduced in the brain of infected PI3Kγ-/- mice when compared to infected wild type mice. Furthermore, expression of CD44 in CD8+ T cell population in the brain tissue and levels of phospho-IkB-α in the whole brain were also markedly lower in infected PI3Kγ-/- mice when compared with infected wild type mice. Finally, AS605240, a specific PI3Kγ inhibitor, significantly delayed lethality in infected wild type mice. In brief, our results indicate a pivotal role for PI3Kγ in the pathogenesis of ECM.  相似文献   

14.
We studied the effect of different concentrations of 2-deoxy-d-glucose on the l-[U-14C]leucine, l-[1-14C]leucine and [1-14C]glycine metabolism in slices of cerebral cortex of 10-day-old rats. 2-deoxy-d-glucose since 0.5 mM concentration has inhibited significantly the protein synthesis from l-[U-14C]leucine and from [1-14C]glycine in relation to the medium containing only Krebs Ringer bicarbonate. Potassium 8.0 mM in incubation medium did not stimulate the protein synthesis compared to the medium containing 2.7 mM, and at 50 mM diminishes more than 2.5 times the protein synthesis compared to the other concentration. Only at the concentration of 5.0 mM, 2-deoxy-d-glucose inhibited the CO2 production and lipid synthesis from l-[U-14C] leucine. This compound did not inhibit either CO2 production, or lipid synthesis from [1-14C]glycine. Lactate at 10 mM and glucose 5.0 mM did not revert the inhibitory effect of 2-deoxy-d-glucose on the protein synthesis from l-[U-14C]leucine. 2-deoxy-d-glucose at 2.0 mM did not show any effect either on CO2 production, or on lipid synthesis from l-[U-14C]lactate 10 mM and glucose 5.0 mM.  相似文献   

15.
Abstract

(±)125 I-cyanopindolol (±) I CYP) was used to characterize β-adrenoceptors on rat lung and cerebral cortex membranes. The affinity of (±) ICYP was higher for lung (Kd = 64.3 pM) at 37°C. The association reaction of (±) ICYP was faster with lung (k+1 = 1.52 × 109 M?1.min?1) than with cerebral cortex β-adrenoceptors (k+1 = 1.75 × 108 M?1.min?1). In both tissues, the dissociation reaction followed a biphasic process with a fast (t ½ = 15.4 min and 5.6 min for lung and cerebral cortex respectively) and a slow component (t ½ = 474 min and 255 min for lung and cerebral cortex respectively). The thermodynamic parameters for (±) ICYP - β-adrenoceptors binding have been determined from kinetics and equilibrium studies, for the two tissues, at several temperatures between 0° and 44° C. For lung and cerebral cortex, Arrhenius plots were linear with different energies of activation. Van't Hoff plot was not linear for lung and the standard enthalpy and entropy changes of (±) ICYP - β-adrenoceptors interaction decreased linearly with temperature : the binding occured with a negative heat capacity change (ΔCp° = -368.9 cal. moles?1. K?1) at 25° C. Thermodynamic and kinetic results show that binding of (±) ICYP to lung β-adrenoceptors could involve two successive equilibria with a conformational change of the β-adrenergic receptor.  相似文献   

16.
Increased deposition of amyloid-β peptide (Aβ) at the cerebral endothelial cell (CEC) surface has been implicated in enhancement of transmigration of monocytes across the brain blood barrier (BBB) in Alzheimer''s disease (AD). In this study, quantitative immunofluorescence microscopy (QIM) and atomic force microscopy (AFM) with cantilevers biofunctionalized by sialyl-Lewisx (sLex) were employed to investigate Aβ-altered mechanics of membrane tethers formed by bonding between sLex and p-selectin at the CEC surface, the initial mechanical step governing the transmigration of monocytes. QIM results indicated the ability for Aβ to increase p-selectin expression at the cell surface and promote actin polymerization in both bEND3 cells (immortalized mouse CECs) and human primary CECs. AFM data also showed the ability for Aβ to increase cell stiffness and adhesion probability in bEND3 cells. On the contrary, Aβ lowered the overall force of membrane tether formation (Fmtf), and produced a bimodal population of Fmtf, suggesting subcellular mechanical alterations in membrane tethering. The lower Fmtf population was similar to the results obtained from cells treated with an F-actin-disrupting drug, latrunculin A. Indeed, AFM results also showed that both Aβ and latrunculin A decreased membrane stiffness, suggesting a lower membrane-cytoskeleton adhesion, a factor resulting in lower Fmtf. In addition, these cerebral endothelial alterations induced by Aβ were abrogated by lovastatin, consistent with its anti-inflammatory effects. In sum, these results demonstrated the ability for Aβ to enhance p-selectin expression at the CEC surface and induce cytoskeleton reorganization, which in turn, resulted in changes in membrane-cytoskeleton adhesion and membrane tethering, mechanical factors important in transmigration of monocytes through the BBB.  相似文献   

17.
Dysregulation of apoptosis is involved in a wide spectrum of disease ranging from proliferative to neurodegenerative disorders. The recently discovered X-linked inhibitor of apoptosis protein (XIAP) is among the most potent inhibitors of apoptosis. This protein binds to and inhibits both initiator caspases and effector caspases such as caspase-3. The aim of this study was to investigate the relationships between XIAP-breakdown, caspase activation in the development of delayed infarct upon ischemia. We demonstrated that endogenous XIAP is cleaved at least into two fragments during reperfusion following the ischemic insult. The two fragments produced seem to be related to caspase-3 and μ-calpain activities, which are massively enhanced in tissues challenged by ischemia. Therefore, degradation of XIAP by μ-calpain in our system may decrease the activation threshold of caspase-3 normally held in check by the IAPs and/or lead to auto-activation of other caspases. Special issue in honor of Naren Banik.  相似文献   

18.

Background

Our purpose was to study the association between the intracranial atherosclerosis as measured by cavernous carotid artery calcification (ICAC) observed on head CT and atrophic changes of supra-tentorial brain demonstrated by MRI.

Methods

Institutional review board approval was obtained for this retrospective study incorporating 65 consecutive patients presenting acutely who had both head CT and MRI. Arterial calcifications of the intracranial cavernous carotids (ICAC) were assigned a number (1 to 4) in the bone window images from CT scans. These 4 groups were then combined into high (grades 3 and 4) and low calcium (grades 1 and 2) subgroups. Brain MRI was independently evaluated to identify cortical and central atrophy. Demographics and cardiovascular risk factors were evaluated in subjects with high and low ICAC. Relationship between CT demonstrated ICAC and brain atrophy patterns were evaluated both without and with adjustment for cerebral ischemic scores and cardiovascular risk factors.

Results

Forty-six of the 65 (71%) patients had high ICAC on head CT. Subjects with high ICAC were older, and had higher prevalence of hypertension, diabetes, coronary artery disease (CAD), atrial fibrillation and history of previous stroke (CVA) compared to those with low ICAC. Age demonstrated strong correlation with both supratentorial atrophy patterns. There was no correlation between ICAC and cortical atrophy. There was correlation however between central atrophy and ICAC. This persisted even after adjustment for age.

Conclusion

Age is the most important determinant of atrophic cerebral changes. However, high ICAC demonstrated age independent association with central atrophy.
  相似文献   

19.
Abnormal activation of GSK-3β is associated with psychiatric and neurodegenerative disorders. However, no study has examined the effect of GSK-3β on cerebral ischemia/reperfusion injury. We used oxygen-glucose deprivation/reoxygenation (OGD/R) and middle cerebral artery occlusion (MCAO) as models of ischemia/reperfusion in rats in vitro and in vivo. Our study showed that knockdown of GSK-3β with a GSK-3β siRNA virus improved injury and increased viability of neurons subjected to OGD/R. Levels of total Nrf2, nuclear Nrf2, and Nrf2 downstream proteins sulfiredoxin (Srx1) and thioredoxin (Trx1) increased after transfection with the GSK-3β siRNA virus. GSK-3β siRNA increased SOD activity and decreased MDA levels. Overexpression of GSK-3β with a pcDNA-GSK-3β virus showed opposite results. We also demonstrated that intracerebroventricular injection of GSK-3β siRNA in rats ameliorated neurological deficits, reduced brain infarct volume and water content, and reduced damage to cerebral cortical neurons after MCAO. Changes in total Nrf2, nuclear Nrf2, Srx1, Trx1, SOD, and MDA were similar to those observed in vitro. Our results show for the first time that GSK-3β can influence cerebral ischemia/reperfusion injury. The effects may be due to regulating the Nrf2/ARE pathway and decreasing oxidative stress. These results suggest a potential new drug target for clinical treatment of stroke.  相似文献   

20.
IN spite of continuing research on the treatment of Parkinson's disease1–3, no drug with clear advantages over L-dopa (the L-isomer of 3,4-dihydroxyphenylalanine) has yet been found. The problems of supply of L-dopa and reduction of its side effects4 are therefore still of interest. L-Dopa can be obtained from L-tyrosine by a hydroxylation reaction catalysed by the enzyme tyrosinase (EC 1.10.3.1). Such a reaction using immobilized tyrosinase could form the basis of an industrial method because L-tyrosine is cheap. Alternatively, in view of the fact that L-tyrosine is present in human serum, immobilized tyrosinase suitably implanted in the blood stream might be used to synthesize L-dopa in situ. We have been studying tyrosinase immobilized by covalent attachment to a cellulosic support. In the absence of a readily available mammalian tyrosinase or tyrosine hydroxylase which would be more suitable for clinical purposes we have used a polyphenol oxidase with tyrosinase activity, obtainable from mushrooms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号