首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
蛇床子素是从伞形科植物蛇床中提取的一类具有生物活性的化合物。研究显示,蛇床子素对多种肿瘤细胞具有抑制作用,然而尚未有研究揭示其对胃癌N87细胞的抗肿瘤活性。本文研究了蛇床子素在体外和荷瘤小鼠体内对胃癌N87细胞的抗肿瘤效应,并进一步利用流式细胞术、TUNEL试验及Western印迹检测分析其对细胞周期及细胞凋亡的影响,以探索其作用机制。研究结果表明,蛇床子素有效地抑制了体外培养的N87细胞生长,并呈浓度依赖效应。本文还建立了N87的荷瘤小鼠模型。结果显示,无论是在低剂量(50 mg/kg)或高剂量(100 mg/kg)情况下,蛇床子素均显示了有效的肿瘤生长抑制效果。流式细胞术及Western印迹的结果表明,蛇床子素诱导N87细胞阻滞在G_2/M期。通过流式细胞术、TUNEL测试及Western印迹结果证明,蛇床子素通过激活胱天蛋白酶-3依赖的凋亡通路,最终导致了N87细胞凋亡的发生。综上所述,本研究显示,蛇床子素在胃癌N87细胞中通过促进细胞凋亡而发挥其抗肿瘤活性,这将为其应用于胃癌的临床治疗提供理论参考。  相似文献   

2.
The therapeutic potential of α,β‐thujone, a functional compound found in many medicinal plants of the Cupressaceae, Asteraceae, and Lamiaceae families, has been demonstrated, including in inflammation and cancers. However, its pharmacological functions and mechanisms of action in ovarian cancer remain unclear. We investigated the anticancer properties of α,β‐thujone in ES2 and OV90 human ovarian cancer cells and its effect on sensitization to cisplatin. α,β‐thujone inhibited cancer cell proliferation and induced cell death through caspase‐dependent intrinsic apoptotic pathways. Moreover, α,β‐thujone‐mediated endoplasmic reticulum stress was associated with the loss of mitochondrial functions and altered metabolic landscape of ovarian cancer cells. α,β‐Thujone attenuated blood vessel formation in transgenic zebrafish, implying it has significant antiangiogenic potential. In addition, α,β‐thujone sensitized ovarian cancer cells to cisplatin, causing synergistic pharmacological effects. Collectively, our results suggest that α,β‐thujone has therapeutic potential in human ovarian cancer and functions via regulating multiple intracellular stress‐associated metabolic reprogramming and caspase‐dependent apoptotic pathways.  相似文献   

3.
Dihydroartemisinin (DHA) exhibits anticancer activity in tumor cells but its mechanism of action is unclear. Cisplatin (DDP) is currently the best known chemotherapeutic available for ovarian cancer. However, tumors return de novo with acquired resistance over time. Mammalian target of rapamycin (mTOR) is an important kinase that regulates cell apoptosis and autophagy, and its dysregulation has been observed in chemoresistant human cancers. Here, we show that compared with control ovarian cancer cells (SKOV3), mTOR phosphorylation was abnormally activated in cisplatin-resistant ovarian cancer cells (SKOV3/DDP) following cisplatin monotherapy. Treatment with cisplatin combined with DHA could enhance cisplatin-induced proliferation inhibition in SKOV3/DDP cells. This mechanism is at least partially due to DHA deactivation of mTOR kinase and promotion of apoptosis. Although autophagy was also induced by DHA, the reduced cell death was not found by suppressing autophagic flux by Bafilomycin A1 (BAF). Taken together, we conclude that inhibition of cisplatin-induced mTOR activation is one of the main mechanisms by which DHA dramatically promotes its anticancer effect in cisplatin-resistant ovarian cancer cells.  相似文献   

4.
Cao Q  Lu X  Feng YJ 《Cell research》2006,16(7):671-677
Although glycogen synthase kinase-3 (GSK-3) might act as a tumor suppressor since its inhibition is expected to mimic the activation of Wnt-signaling pathway, GSK-3β may contribute to NF-κB activation in cancer cells leading to increased cancer cell proliferation and survival. Here we report that GSK-3β activity was involved in the proliferation of human ovarian cancer cell both in vitro and in vivo. Inhibition of GSK-3 activity by pharmacological inhibitors suppressed proliferation of the ovarian cancer cells. Overexpressing constitutively active form of GSK-3β induced entry into the S phase, increased cyclin D1 expression and facilitated the proliferation of ovarian cancer cells. Furthermore, GSK-3 inhibition prevented the formation of the tumor in nude mice generated by the inoculation of human ovarian cancer cells. Our findings thus suggest that GSK-3β activity is important for the proliferation of ovarian cancer cells, implicating this kinase as a potential therapeutic target in ovarian cancer.  相似文献   

5.
Ivermectin is a broad-spectrum antiparasitic drug that has recently been demonstrated to exhibit potent anticancer activity against colon cancer, ovarian cancer, melanoma and leukemia. However, the molecular mechanism underlying this anticancer effect remains poorly understood. We recently found that ivermectin markedly inhibits the growth of breast cancer cells by stimulating cytostatic macroautophagy/autophagy in vitro and in vivo. Ivermectin inhibits the AKT-MTOR signaling pathway by promoting ubiquitination-mediated degradation of PAK1 (p21 [RAC1] activated kinase 1), leading to increased autophagic flux. Together, our work unravels the molecular mechanism underpinning ivermectin-induced cytostatic autophagy in breast cancer, and characterizes ivermectin as a potential therapeutic option for breast cancer treatment.  相似文献   

6.
7.
8.
The identification of anticancer active ingredients and their molecular targets in traditional Chinese medicine is a great challenge in modern pharmacology research. Evodiamine is one of the bioactive components isolated from the fruit of Wu-Zhu-Yu and displays significant pharmacological activities, especially anti-inflammatory, antimicrobial, regulate metabolic syndrome and neuroprotective activity. Evodiamine has attracted great interest recently for its potential anticancer activities, and has also been found to inhibit the proliferation of various cancer cells and arrest cell cycle and cell migration. In recent years, evodiamine has been found to have potential toxic effects, mainly manifested as hepatotoxicity and cardiotoxicity. However, the pharmacological and toxicological mechanism of evodiamine is not clear. In this review, we summarized the anticancer effects of evodiamine and its target molecules in vitro and in vivo, focusing on key molecules such as HIF-1α, NF-κB and STAT3, and proposed that epigenetic modifications (DNA methylation, histone acetylation and microRNA) mediate the regulation of key molecules, which are still being explored and excavate into clinical practice.  相似文献   

9.
Irofulven (6-hydroxymethylacylfulvene, HMAF, MGI 114) is one of a new class of anticancer agents that are semisynthetic derivatives of the mushroom toxin illudin S. Preclinical studies and clinical trials have demonstrated that irofulven is effective against several tumor types. Mechanisms of action studies indicate that irofulven induces DNA damage, MAPK activation, and apoptosis. In this study we found that in ovarian cancer cells, CHK2 kinase is activated by irofulven while CHK1 kinase is not activated even when treated at higher concentrations of the drug. By using GM00847 human fibroblast expressing tetracycline-controlled, FLAG-tagged kinase-dead ATR (ATR.kd), it was demonstrated that ATR kinase does not play a major role in irofulven-induced CHK2 activation. Results from human fibroblasts proficient or deficient in ATM function (GM00637 and GM05849) indicated that CHK2 activation by irofulven is mediated by the upstream ATM kinase. Phosphorylation of ATM on Ser(1981), which is critical for kinase activation, was observed in ovarian cancer cell lines treated with irofulven. RNA interference results confirmed that CHK2 activation was inhibited after introducing siRNA for ATM. Finally, experiments done with human colon cancer cell line HCT116 and its isogenic CHK2 knockout derivative; and experiments done by expressing kinase-dead CHK2 in an ovarian cancer cell line demonstrated that CHK2 activation contributes to irofulven-induced S phase arrest. In addition, it was shown that NBS1, SMC1, and p53 were phosphorylated in an ATM-dependent manner, and p53 phosphorylation on serine 20 is dependent on CHK2 after irofulven treatment. In summary, we found that the anticancer agent, irofulven, activates the ATM-CHK2 DNA damage-signaling pathway, and CHK2 activation contributes to S phase cell cycle arrest induced by irofulven.  相似文献   

10.
Dihydroartemisinin (DHA) is an active metabolite of artemisinin and its derivatives (ARTs), and it is an effective clinical drug widely used to treat malaria. Recently, the anticancer activity of DHA has attracted increasing attention. Nevertheless, there is no systematic summary on the anticancer effects of DHA. Notably, studies have shown that DHA exerts anticancer effects through various molecular mechanisms, such as inhibiting proliferation, inducing apoptosis, inhibiting tumor metastasis and angiogenesis, promoting immune function, inducing autophagy and endoplasmic reticulum (ER) stress. In this review, we comprehensively summarized the latest progress regarding the anticancer activities of DHA in cancer. Importantly, the underlying anticancer molecular mechanisms and pharmacological effects of DHA in vitro and in vivo are the focus of our attention. Interestingly, new methods to improve the solubility and bioavailability of DHA are discussed, which greatly enhance its anticancer efficacy. Remarkably, DHA has synergistic anti-tumor effects with a variety of clinical drugs, and preclinical and clinical studies provide stronger evidence of its anticancer potential. Moreover, this article also gives suggestions for further research on the anticancer effects of DHA. Thus, we hope to provide a strong theoretical support for DHA as an anticancer drug.  相似文献   

11.
In this study, we investigated the effects and molecular mechanisms of 2‐phenylbenzimidazole‐5‐sulphonic acid (PBSA), an ultraviolet B protecting agent used in sunscreen lotions and moisturizers, on ovarian cancer cell responses and tumour angiogenesis. PBSA treatment markedly blocked mitogen‐induced invasion through down‐regulation of matrix metalloproteinase (MMP) expression and activity in ovarian cancer SKOV‐3 cells. In addition, PBSA inhibited mitogen‐induced cell proliferation by suppression of cyclin‐dependent kinases (Cdks), but not cyclins, leading to pRb hypophosphorylation and G1 phase cell cycle arrest. These anti‐cancer activities of PBSA in ovarian cancer cell invasion and proliferation were mediated by the inhibition of mitogen‐activated protein kinase kinase 3/6‐p38 mitogen‐activated protein kinase (MKK3/6‐p38MAPK) activity and subsequent down‐regulation of MMP‐2, MMP‐9, Cdk4, Cdk2 and integrin β1, as evidenced by treatment with p38MAPK inhibitor SB203580. Furthermore, PBSA suppressed the expression and secretion of vascular endothelial growth factor in SKOV‐3 cells, leading to inhibition of capillary‐like tubular structures in vitro and angiogenic sprouting ex vivo. Taken together, our results demonstrate the pharmacological effects and molecular targets of PBSA on modulating ovarian cancer cell responses and tumour angiogenesis, and suggest further evaluation and development of PBSA as a promising chemotherapeutic agent for the treatment of ovarian cancer.  相似文献   

12.
13.
This study investigated the anticancer effects of geraniin on ovarian cancer cells and the signaling pathways involved. Ovarian cancer cells were treated with different concentrations of geraniin for 48 h and examined for viability, apoptosis, mitochondrial membrane depolarization, and gene expression. Xenograft tumor studies were performed to determine the anticancer activity of geraniin in vivo. Geraniin significantly decreased cancer cell viability in a concentration‐dependent fashion. Geraniin significantly triggered apoptosis, which was accompanied by loss of mitochondrial membrane potential and increased cytochrome c release and caspsase‐3 activity. Mechanistically, geraniin significantly downregulated Mcl‐1 and impaired NF‐κB p65 binding to the mcl‐1 promoter. Overexpression of Mcl‐1 significantly reversed geraniin‐induced apoptosis in OVCAR3 cells. In addition, geraniin retarded ovarian cancer growth and reduced expression of phospho‐p65 and Mcl‐1. Collectively, geraniin elicits growth suppression in ovarian cancer through inhibition of NF‐κB and Mcl‐1 and may provide therapeutic benefits for this malignancy.  相似文献   

14.
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and accounts for the fourth leading cause of all cancer deaths. Scientific evidence has found that plant extracts seem to be a reliable choice due to their multitarget effects against HCC. Juniperus communis has been used for centuries in traditional medicine and its anticancer properties have been reported. As a result, the purpose of the study was to investigate the anticancer effect and mechanism of J. communis extract (JCo extract) on HCC in vitro and in vivo. In the present study, we found that JCo extract inhibited the growth of human HCC cells by inducing cell cycle arrest at the G0/G1 phase, extensive apoptosis and suppressing metastatic protein expressions in HCC cells. Moreover, the combinational treatment of JCo and VP-16 was found to enhance the anticancer effect, revealing that JCo extract might have the potential to be utilized as an adjuvant to promote HCC treatment. Furthermore, in vivo study, JCo extract significantly suppressed HCC tumor growth and extended the lifespan with no or low systemic and pathological toxicity. JCo extract significantly up-regulated the expression of pro-apoptotic proteins and tumor suppressor p53, suppressed VEGF/VEGFR autocrine signaling, down-regulated cell cycle regulatory proteins and MMP2/MMP9 proteins. Overall, our results provide a basis for exploiting JCo extract as a potential anticancer agent against HCC.  相似文献   

15.
Osthole, an ingredient of Traditional Chinese Medicine (TCM) from natural product Cnidium monnieri (L.) Cusson, was used as a lead compound for structural modification. A series of osthole derivatives bearing aryl substituents at 3-position of coumarin, has been prepared and evaluated for their growth inhibitory activity against human breast cancer cell lines MCF-7 and MDA-MB-231. Interestingly, some derivatives exhibited good inhibition, among them compound 8e was found to be the most potent compound with IC(50) values of 0.24 μM, 0.31 μM against MCF-7 and MDA-MB-231, respectively, which was improved more than 100-folds compared with its parent compound osthole.  相似文献   

16.
Ovarian cancer is the leading cause of death from all gynecological cancers and conventional therapies such as surgery, chemotherapy, and radiotherapy usually fail to control advanced stages of the disease. Thus, there is an urgent need for alternative and innovative therapeutic options. We reason that cancer gene therapy using a vector capable of specifically delivering an enzyme-encoding gene to ovarian cancer cells will allow the cancer cell to metabolize a harmless prodrug into a potent cytotoxin, which will lead to therapeutic effects. In the current study, we explore the use of a human papillomavirus (HPV) pseudovirion to deliver a herpes simplex virus thymidine kinase (HSV-tk) gene to ovarian tumor cells. We found that the HPV-16 pseudovirion was able to preferentially infect murine and human ovarian tumor cells when administered intraperitoneally. Furthermore, intraperitoneal injection of HPV-16 pseudovirions carrying the HSV-tk gene followed by treatment with ganciclovir led to significant therapeutic anti-tumor effects in murine ovarian cancer-bearing mice. Our data suggest that HPV pseudovirion may serve as a potential delivery vehicle for ovarian cancer gene therapy.  相似文献   

17.
Recent studies have shown that tricyclic antidepressants (TCAs) may have anti‐inflammatory and anticonvulsant effects in addition to its antidepressant effects. So far, the nonantidepressant effects of TCAs and their molecular pharmacological mechanisms remain completely unclear. Chronic inflammation in the brain parenchyma may be related to the pathogenesis and progression of various neurodegenerative diseases. As a common antidepressant and anti‐insomnia drug, doxepin also may be a potential anti‐inflammatory and anticonvulsant drug, so the study on the anti‐inflammatory protective effect of doxepin and its molecular mechanism has become a very important issue in pharmacology and clinical medicine. Further elucidating the anti‐inflammatory and neuroprotective effects of doxepin and its molecular mechanism may provide the important theoretical and clinical basis for the prevention and treatment of neurodegenerative disease. This study was designed to understand the glio‐protective mechanism of doxepin against the inflammatory damage induced by lipopolysaccharide (LPS) exposure in C6‐glioma cells. We found the treatment of C6‐glioma cells with LPS results in deleterious effects, including the augmentation of inflammatory cytokine levels (tumor necrosis factor‐α, interleukin‐1β), and suppresses the Akt phosphorylation. Furthermore, our outcomes demonstrated that doxepin was able to suppress these effects induced by LPS, through activation of the phosphatidylinositol‐3‐kinase‐mediated protein kinase B (Akt) pathway. To sum up, these results highlight the potential role of doxepin against neuroinflammatory‐related disease in the brain.  相似文献   

18.
Malignant melanoma is the most aggressive and deadliest form of skin cancer due to its highly metastatic potential, which calls for new and improved therapies. Cationic antimicrobial peptides (CAPs) are naturally occurring molecules found in most species, in which they play a significant role in the first line of defense against pathogens, and several CAPs have shown promising potential as novel anticancer agents. Structure–activity relationship studies on the CAP bovine lactoferricin allowed us to de novo design short chemically modified lytic anticancer peptides. In the present study, we investigated the in vivo antitumor effects of LTX-315 against intradermally established B16 melanomas in syngeneic mice. Intratumoral administration of LTX-315 resulted in tumor necrosis and the infiltration of immune cells into the tumor parenchyma followed by complete regression of the tumor in the majority of the animals. LTX-315 induced the release of danger-associated molecular pattern molecules such as the high mobility group box-1 protein in vitro and the subsequent upregulation of proinflammatory cytokines such as interleukin (IL) 1β, IL6 and IL18 in vivo. Animals cured by LTX-315 treatment were protected against a re-challenge with live B16 tumor cells both intradermally and intravenously. Together, our data indicate that intratumoral treatment with LTX-315 can provide local tumor control followed by protective immune responses and has potential as a new immunotherapeutic agent.  相似文献   

19.
Gambogic acid (GA), a natural compound from gamboge resin, has been introduced as a promising antitumor drug contributing to its broad spectrum of antitumor activity. However, the poor aqueous solubility and short half-life hinder its clinical application. Pluronic F68 (F68) is a well-known amphiphilic block copolymer consisting of hydrophobic propylene oxide units and hydrophilic ethylene oxide. Although F68 has an amphiphilic structure, its short propylene oxide segment limits its dilution stability and drug-loading capacity. To overcome this limitation, we modified F68 by conjugating linoleic acid, a hydrophobic fatty acid, to increase the hydrophilic-hydrophobic interaction and thus improve the stability of F68 nano-spheres. This F68-linoleic acid (F68-LA) conjugate was synthesized and was used to load GA to improve its anticancer effects. GA-loaded F68-LA nano-spheres were stable for 6 days, with a mean diameter of 159.3 nm and zeta potential of ?23.2 mV. The entrapment efficiency of GA in F68-LA nano-spheres was as high as 92.0%. Furthermore, F68-LA/GA nano-spheres exhibited an enhanced cytotoxic activity and proapoptotic effect against human ovarian cancer A2780 cells, compared with free GA. Our results showed that the F68-LA/GA nano-spheres might be a promising cancer-targeted drug delivery system in ovarian cancer therapy.  相似文献   

20.
Ovarian cancer is one human malignancy which has response portly to doxorubicin. The anti-cancer activity of gambogic acid has been tested in in vitro and in vivo studies. In this study, we showed that gambogic acid, a natural compound, could potentiate the anticancer activity of doxorubicin in ovarian cancer through ROS-mediated apoptosis. Platinum-resistant human ovarian cancer cell line (SKOV-3) was treated with gambogic acid, doxorubicin, or the combination of both to investigate cell proliferation and apoptosis. We found that the combination of gambogic acid and doxorubicin causes synergistic loss of cell viability in SKOV-3 cells and this synergistic effect correlated with increased cellular ROS accumulation. Moreover, in vivo results showed that gambogic acid and doxorubicin combination resulted in a synergistic suppressing effect on tumor growth in ovarian cancer mice model. Taken together, the results suggested that doxorubicin in combination with gambogic acid might provide a promising therapeutic strategy to enhance chemosensitivity of ovarian cancer to doxorubicin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号