首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Triple negative breast cancer (TNBC) is a heterogeneous disease that has a poor prognosis and limited treatment options. Chemokine receptor interactions are important modulators of breast cancer metastasis; however, it is now recognized that quantitative surface expression of one important chemokine receptor, CXCR4, may not directly correlate with metastasis and that its functional activity in breast cancer may better inform tumor pathogenicity. G protein coupled receptor kinase 3 (GRK3) is a negative regulator of CXCR4 activity, and we show that GRK expression correlates with tumorigenicity, molecular subtype, and metastatic potential in human tumor microarray analysis. Using established human breast cancer cell lines and an immunocompetent in vivo mouse model, we further demonstrate that alterations in GRK3 expression levels in tumor cells directly affect migration and invasion in vitro and the establishment of distant metastasis in vivo. The effects of GRK3 modulation appear to be specific to chemokine-mediated migration behaviors without influencing tumor cell proliferation or survival. These data demonstrate that GRK3 dysregulation may play an important part in TNBC metastasis.  相似文献   

2.
我们前期研究表明α2,3-唾液酸水平与乳腺癌侵袭转移密切相关。人α2,3-唾液酸转移酶(ST3Gal Ⅲ)可催化合成细胞表面的α2,3-唾液酸,并在乳腺癌组织中高表达,此酶活性与肿瘤转移潜能密切相关,但其机制尚未阐明。本研究中我们将继续探讨ST3Gal Ⅲ在对乳腺癌转移关键步骤粘附和侵袭中的作用。构建特异靶向ST3Gal Ⅲ的短发夹RNA(shRNA)序列的慢病毒载体,采用细胞转染沉默乳腺癌MDA-MB-231细胞的ST3Gal Ⅲ,经实时定量PCR及Western印迹检测转染后细胞ST3Gal Ⅲ mRNA及蛋白表达,验证构建了稳定下调ST3Gal Ⅲ表达的两个细胞克隆,分别记作shRNA-2、shRNA-4。细胞表面α2,3-唾液酸是ST3Gal Ⅲ下游产物,可代表酶活性。流式细胞术分析结果证实,shRNA-2、shRNA-4细胞表面α2,3-唾液酸的含量显著降低(P<0.05)。细胞黏附、细胞迁移及侵袭能力等功能学检测结果表明,shRNA细胞黏附能力及侵袭能力明显降低(P<0.05)。β1整合素表达与肿瘤侵袭能力获取密切相关。本研究中,沉默ST3Gal Ⅲ可抑制β1整合素表达(P<0.05)。这些结果提示,ST3Gal Ⅲ在乳腺癌转移关键步骤黏附和侵袭中具有重要作用,沉默ST3Gal Ⅲ抑制MDA MB-231细胞黏附和侵袭能力,其作用机制可能是通过下调β1整合素表达。此研究从新的视角认识了乳腺癌转移的机制,并可能提供乳腺癌转移治疗的新靶点。  相似文献   

3.
NAD+ metabolism is an essential regulator of cellular redox reactions, energy pathways, and a substrate provider for NAD+ consuming enzymes. We recently demonstrated that enhancement of NAD+/NADH levels in breast cancer cells with impaired mitochondrial NADH dehydrogenase activity, through augmentation of complex I or by supplementing tumor cell nutrients with NAD+ precursors, inhibits tumorigenicity and metastasis. To more fully understand how aberrantly low NAD+ levels promote tumor cell dissemination, we here asked whether inhibition of NAD+ salvage pathway activity by reduction in nicotinamide phosphoribosyltransferase (NAMPT) expression can impact metastasis and tumor cell adhesive functions. We show that knockdown of NAMPT, the enzyme catalyzing the rate-limiting step of the NAD+ salvage pathway, enhances metastatic aggressiveness in human breast cancer cells and involves modulation of integrin expression and function. Reduction in NAMPT expression is associated with upregulation of select adhesion receptors, particularly αvβ3 and β1 integrins, and results in increased breast cancer cell attachment to extracellular matrix proteins, a key function in tumor cell dissemination. Interestingly, NAMPT downregulation prompts expression of integrin αvβ3 in a high affinity conformation, known to promote tumor cell adhesive interactions during hematogenous metastasis. NAMPT has been selected as a therapeutic target for cancer therapy based on the essential functions of this enzyme in NAD+ metabolism, cellular redox, DNA repair and energy pathways. Notably, our results indicate that incomplete inhibition of NAMPT, which impedes NAD+ metabolism but does not kill a tumor cell can alter its phenotype to be more aggressive and metastatic. This phenomenon could promote cancer recurrence, even if NAMPT inhibition initially reduces tumor growth.  相似文献   

4.
5.
摘要细胞外基质(extracellular matrix,ECM)重塑是癌细胞迁移的关键步骤.本研究基于乳腺癌组织的基因表达谱数据,采用系统生物学方法推测乳腺癌转移中Runx2对细胞外基质重塑的调节机制.采用相关性分析程序分析49例乳腺原发癌和15例淋巴结转移癌组织的基因表达谱数据,筛选与Runx2呈相关性表达的基因,结果得到与ECM重塑相关的候选基因52个,包括ECM成分11个,ECM降解酶及其抑制剂8个,细胞信号分子33个.利用转录调节因子结合序列数据库搜索候选基因启动子区的Runx2结合模序,筛选其中Runx2转录调控的ECM重塑相关基因,并判断可能调节Runx2的上游信号分子;文献检索实验证实的与Runx2有相互调节关系的基因,并基于Runx2上游调控信号分子和下游转录调节基因的分析,构建得到以Runx2为中心的ECM重塑的生物学调控网络.WNT和TGF/BMPs是启动Runx2表达的主要信号通路,Runx2通过转录调节ECM组分、ECM降解酶及其抑制剂和信号分子调节ECM重塑,促进癌细胞完成转移的生物学过程.  相似文献   

6.

Background

Lymph node metastasis is a key event in the progression of breast cancer. Therefore it is important to understand the underlying mechanisms which facilitate regional lymph node metastatic progression.

Methodology/Principal Findings

We performed gene expression profiling of purified tumor cells from human breast tumor and lymph node metastasis. By microarray network analysis, we found an increased expression of polycomb repression complex 2 (PRC2) core subunits EED and EZH2 in lymph node metastatic tumor cells over primary tumor cells which were validated through real-time PCR. Additionally, immunohistochemical (IHC) staining and quantitative image analysis of whole tissue sections showed a significant increase of EZH2 expressing tumor cells in lymph nodes over paired primary breast tumors, which strongly correlated with tumor cell proliferation in situ. We further explored the mechanisms of PRC2 gene up-regulation in metastatic tumor cells and found up-regulation of E2F genes, MYC targets and down-regulation of tumor suppressor gene E-cadherin targets in lymph node metastasis through GSEA analyses. Using IHC, the expression of potential EZH2 target, E-cadherin was examined in paired primary/lymph node samples and was found to be significantly decreased in lymph node metastases over paired primary tumors.

Conclusions/Significance

This study identified an over expression of the epigenetic silencing complex PRC2/EED-EZH2 in breast cancer lymph node metastasis as compared to primary tumor and its positive association with tumor cell proliferation in situ. Concurrently, PRC2 target protein E-cadherin was significant decreased in lymph node metastases, suggesting PRC2 promotes epithelial mesenchymal transition (EMT) in lymph node metastatic process through repression of E-cadherin. These results indicate that epigenetic regulation mediated by PRC2 proteins may provide additional advantage for the outgrowth of metastatic tumor cells in lymph nodes. This opens up epigenetic drug development possibilities for the treatment and prevention of lymph node metastasis in breast cancer.  相似文献   

7.

Background

Local inflammation associated with solid tumors commonly results from factors released by tumor cells and the tumor stroma, and promotes tumor progression. Cancer associated fibroblasts comprise a majority of the cells found in tumor stroma and are appealing targets for cancer therapy. Here, our aim was to determine the efficacy of targeting cancer associated fibroblasts for the treatment of metastatic breast cancer.

Methodology/Principal Findings

We demonstrate that cancer associated fibroblasts are key modulators of immune polarization in the tumor microenvironment of a 4T1 murine model of metastatic breast cancer. Elimination of cancer associated fibroblasts in vivo by a DNA vaccine targeted to fibroblast activation protein results in a shift of the immune microenvironment from a Th2 to Th1 polarization. This shift is characterized by increased protein expression of IL-2 and IL-7, suppressed recruitment of tumor-associated macrophages, myeloid derived suppressor cells, T regulatory cells, and decreased tumor angiogenesis and lymphangiogenesis. Additionally, the vaccine improved anti-metastatic effects of doxorubicin chemotherapy and enhanced suppression of IL-6 and IL-4 protein expression while increasing recruitment of dendritic cells and CD8+ T cells. Treatment with the combination therapy also reduced tumor-associated Vegf, Pdgfc, and GM-CSF mRNA and protein expression.

Conclusions/Significance

Our findings demonstrate that cancer associated fibroblasts promote tumor growth and metastasis through their role as key modulators of immune polarization in the tumor microenvironment and are valid targets for therapy of metastatic breast cancer.  相似文献   

8.
The early onsets of breast cancer metastasis involve cell retention, survival, and resistant to apoptosis and subsequent growth at target vascular beds and tissues in distant organs. We previously reported that angiopoietin-2 (Ang2), an angiogenic regulator stimulates MCF-7 breast tumor metastasis from their orthotopic sites to distant organs through the α(5)β(1) integrin/integrin-linked kinase (ILK)/Akt pathway. Here, by using an experimental tumor metastasis model and in vitro studies, we further dissect the underlying mechanism by which Ang2 promotes the initial growth and survival of MCF-7 breast cancer metastasis in the lung of animals. We show that Ang2 increases cell survival and suppresses cell apoptosis through ILK-induced phosphorylation of Akt1, Akt2, and up-regulation of Bcl-2 in breast cancer cells. Inhibition of ILK, Akt1, and Akt2, and their effector Bcl-2 diminishes Ang2-stimulated breast cancer cell survival and Ang2-attenuated apoptosis in vitro, and initial survival and growth of breast cancer metastasis in the lung of animals. Additionally, siRNA knockdown of endogenous Ang2 in three human metastatic breast cancer cell lines also inhibits phosphorylation of Akt, expression of Bcl-2, and tumor cell survival, migration, and increases cell apoptosis. Since increased expression of Ang2 correlates with elevated potential of human breast cancer metastasis in clinic, our data underscore the importance that up-regulated Ang2 not only stimulates breast cancer growth and metastasis at late stages of the process, but is also critical at the initiating stages of metastases onset, thereby suggesting Ang2 as a promising therapeutic target for treating patients with metastatic breast cancer.  相似文献   

9.
Dickkopf-1(DKK-1)作为Wnt/β-连环蛋白(Wnt/β-catenin)经典信号传导通路的拮抗剂而受到关注.为了进一步阐明DKK-1在乳腺癌细胞迁移中的作用及其分子机制,应用我们建立的乳腺癌细胞MCF-7高转移倾向亚克隆LM-MCF-7细胞株,比较了DKK-1在不同转移能力的乳腺癌细胞株中表达水平及其与细胞迁移能力的关系.结果显示,DKK-1在LM-MCF-7细胞中表达明显下调;"伤口愈合"实验结果表明,在MCF-7细胞中,RNA干扰DKK-1可导致细胞迁移能力增强;相反,在LM-MCF-7细胞中过表达DKK-1则可抑制细胞的迁移.进一步研究结果显示,DKK-1为肿瘤转移抑制因子nm23的上游激活因子.因此,我们的研究结果表明,DKK-1表达水平下调导致nm23表达水平下调,解除了对乳腺癌细胞迁移的抑制作用,是LM-MCF-7乳腺癌细胞具有高迁移能力的原因之一;反之,与LM-MCF-7相比,DKK-1在MCF-7细胞中高表达,其通过上调nm23可抑制乳腺癌细胞迁移.这一发现对进一步揭示乳腺癌细胞转移的分子机制具有的重要意义.  相似文献   

10.
11.
Mammary cancer stem cells (MaCSCs) have been identified as a rare population of cells capable of self-renewal to drive mammary tumorigenesis and metastasis. Nevertheless, relatively little is known about the intracellular signaling pathways regulating self-renewal and metastatic activities of MaCSCs in vivo. Using a recently developed breast cancer mouse model with focal adhesion kinase (FAK) deletion in mammary tumor cells (MFCKO-MT mice), here we present evidence suggesting a compensatory function of Pyk2, a FAK-related kinase, in the regulation of MaCSCs and metastasis in these mice. Increased expression of Pyk2 was found selectively in pulmonary metastatic nodules of MFCKO-MT mice, and its inhibition significantly reduced mammary tumor development and metastasis in these mice. Consistent with the idea of metastasis driven by MaCSCs, we detected selective up-regulation of Pyk2 in MaCSCs, but not bulk mammary tumor cells, of primary tumors developed in MFCKO-MT mice. We further showed that inhibition of Pyk2 in FAK-null MaCSCs significantly decreased their tumorsphere formation and migration in vitro as well as self-renewal, tumorigenicity, and metastatic activity in vivo. Last, we identified PI3K/Akt signaling as a major mediator of FAK regulation of MaCSCs as well as a target for the compensatory function of Pyk2 in FAK-null MaCSCs. Together, these results further advance our understanding of FAK and its related tyrosine kinase Pyk2 in regulation of MaCSCs in breast cancer and suggest that pharmaceutically targeting these kinases may hold promise as a novel treatment for the disease by targeting and eradicating MaCSCs.  相似文献   

12.
Breast cancer cells preferentially metastasize to bone, leading to the formation of primarily osteolytic lesions. Osteoprotegerin (OPG) plays multifactorial roles in the development of osteolytic bone metastases. An increase in the ratio of receptor activator of nuclear factor kappaB ligand (RANKL) to OPG increases osteoclastogenesis within the bone microenvironment. OPG also acts as a survival factor for cancer cells by protecting them from tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mediated apoptosis. This study compares OPG production in vitro in a number of breast cancer cell lines exhibiting both differences in metastatic capacity and in preferential metastasis to bone. Our studies demonstrated that OPG expression by MDA-231, MDA-MET, and MDA-231/K cancer cells was directly correlated with bone specific homing and colonization potential but not with metastasis of cancer cells to other organs; both in IL-1 beta stimulated and control cells. We also demonstrated expression of other bone-related markers including type I collagen, osteocalcin, osteopontin, and Runx2 in these cells. However, the generally lower expression of these markers in the bone selective cell line MDA-MET suggested that increased OPG expression in the bone specific variant was not merely a consequence of enhanced osteomimicry by these cells but that it has a significant role in the metastatic process. Co-culture of breast cancer cells with osteoblastic cells (hFOB 1.19) led to an overall downregulation in OPG production, which was not affected by the bone homing and colonization potential of the cell lines, suggesting that OPG alone is not indicative of osteolytic bone activity by breast cancer cells.  相似文献   

13.
Tropomyosin-related receptor kinase B (TrkB) signaling, stimulated by brain-derived neurotrophic factor (BDNF) ligand, promotes tumor progression, and is related to the poor prognosis of various malignancies. We sought to examine the clinical relevance of BDNF/TrkB expression in colorectal cancer (CRC) tissues, its prognostic value for CRC patients, and its therapeutic potential in vitro and in vivo. Two hundred and twenty-three CRC patient specimens were used to determine both BDNF and TrkB mRNA levels. The expression of these proteins in their primary and metastatic tumors was investigated by immunohistochemistry. CRC cell lines and recombinant BDNF and K252a (a selective pharmacological pan-Trk inhibitor) were used for in vitro cell viability, migration, invasion, anoikis resistance and in vivo peritoneal metastasis assays. Tissue BDNF mRNA was associated with liver and peritoneal metastasis. Tissue TrkB mRNA was also associated with lymph node metastasis. The co-expression of BDNF and TrkB was associated with liver and peritoneal metastasis. Patients with higher BDNF, TrkB, and co-expression of BDNF and TrkB had a significantly poor prognosis. BDNF increased tumor cell viability, migration, invasion and inhibited anoikis in the TrkB-expressing CRC cell lines. These effects were suppressed by K252a. In mice injected with DLD1 co-expressing BDNF and TrkB, and subsequently treated with K252a, peritoneal metastatic nodules was found to be reduced, as compared with control mice. BDNF/TrkB signaling may thus be a potential target for treating peritoneal carcinomatosis arising from colorectal cancer.  相似文献   

14.
15.
16.

Background

Tumor tolerance and immune suppression remain formidable obstacles to the efficacy of immunotherapies that harness the immune system to eradicate breast cancer. A novel syngeneic mouse model of breast cancer metastasis was developed in our lab to investigate mechanisms of immune regulation of breast cancer. Comparative analysis of low-metastatic vs. highly metastatic tumor cells isolated from these mice revealed several important genetic alterations related to immune control of cancer, including a significant downregulation of cd1d1 in the highly metastatic tumor cells. The cd1d1 gene in mice encodes the MHC class I-like molecule CD1d, which presents glycolipid antigens to a specialized subset of T cells known as natural killer T (NKT) cells. We hypothesize that breast cancer cells, through downregulation of CD1d and subsequent evasion of NKT-mediated antitumor immunity, gain increased potential for metastatic tumor progression.

Methodology/Principal Findings

In this study, we demonstrate in a mouse model of breast cancer metastasis that tumor downregulation of CD1d inhibits iNKT-mediated antitumor immunity and promotes metastatic breast cancer progression in a CD1d-dependent manner in vitro and in vivo. Using NKT-deficient transgenic mouse models, we demonstrate important differences between type I and type II NKT cells in their ability to regulate antitumor immunity of CD1d-expressing breast tumors.

Conclusions/Significance

The results of this study emphasize the importance of determining the CD1d expression status of the tumor when tailoring NKT-based immunotherapies for the prevention and treatment of metastatic breast cancer.  相似文献   

17.
18.
Osteoactivin promotes breast cancer metastasis to bone   总被引:1,自引:0,他引:1  
The skeleton is a preferred site of metastasis in patients with disseminated breast cancer. We have used 4T1 mouse mammary carcinoma cells, which metastasize to bone from the mammary fat pads of immunocompetent mice, to identify novel genes involved in this process. In vivo selection of parental cells resulted in the isolation of independent, aggressively bone metastatic breast cancer populations with reduced metastasis to the lung. Gene expression profiling identified osteoactivin as a candidate that is highly and selectively expressed in aggressively bone metastatic breast cancer cells. These cells displayed enhanced migratory and invasive characteristics in vitro, the latter requiring sustained osteoactivin expression. Osteoactivin depletion in these cells, by small interfering RNA, also lead to a loss of matrix metalloproteinase-3 expression, whereas forced osteoactivin expression in parental 4T1 cells was sufficient to elevate matrix metalloproteinase-3 levels, suggesting that this matrix metalloproteinase may be an important mediator of osteoactivin function. Overexpression of osteoactivin in an independent, weakly bone metastatic breast cancer cell model significantly enhanced the formation of osteolytic bone metastases in vivo. Finally, high levels of osteoactivin expression in primary human breast cancers correlate with estrogen receptor-negative status and increasing tumor grade. Thus, we have identified osteoactivin as a protein that is expressed in aggressive human breast cancers and is capable of promoting breast cancer metastasis to bone.  相似文献   

19.
20.
We recently identified a novel metastasis suppressor gene, BRMS1, in breast cancer. Since the BRMS1 gene maps to chromosome 11q13.1-q13.2 and since chromosome 11q defects have been described in various stages of human melanoma progression, we hypothesized that BRMS1 may function as a tumor or metastasis suppressor in melanomas as well. Quantitative real-time RT-PCR revealed that BRMS1 mRNA expression was high in melanocytes, considerably reduced in early melanoma-derived cell lines, and barely detectable in advanced/metastatic cell lines. Stable transfectants of BRMS1 in the human melanoma cell lines MelJuSo and C8161.9 did not alter the tumorigenicity of either cell line, but significantly suppressed metastasis compared to vector-only transfectants. Orthotopic tumors continued to express BRMS1, but expression was lost in lung metastases. In vitro morphology, growth rate, and histology of BRMS1 transfectants were similar to controls. BRMS1 transfectants were less invasive in a collagen sandwich assay and had restored homotypic gap junctional intercellular communication (GJIC). Thus, BRMS1 functions as a metastasis suppressor in more than one tumor type (i.e., breast carcinoma and cutaneous melanoma) by modifying several metastasis-associated phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号