首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
Plants belonging to the Brassicaceae family exhibit species‐specific profiles of glucosinolates (GSLs), a class of defence compounds against pathogens and insects. GSLs also exhibit various human health–promoting properties. Among them, glucoraphanin (aliphatic 4‐methylsulphinylbutyl GSL) has attracted the most attention because it hydrolyses to form a potent anticancer compound. Increased interest in developing commercial varieties of Brassicaceae crops with desirable GSL profiles has led to attempts to identify genes that are potentially valuable for controlling GSL biosynthesis. However, little attention has been focused on genes of kale (Brassica oleracea var. acephala). In this study, we established full‐length kale cDNA libraries containing 59 904 clones, which were used to generate an expressed sequence tag (EST) data set with 119 204 entries. The EST data set clarified genes related to the GSL biosynthesis pathway in kale. We specifically focused on BoMYB29, a homolog of Arabidopsis MYB29/PMG2/HAG3, not only to characterize its function but also to demonstrate its usability as a biological resource. BoMYB29 overexpression in wild‐type Arabidopsis enhanced the expression of aliphatic GSL biosynthetic genes and the accumulation of aliphatic GSLs. When expressed in the myb28myb29 mutant, which exhibited no detectable aliphatic GSLs, BoMYB29 restored the expression of biosynthetic genes and aliphatic GSL accumulation. Interestingly, the ratio of methylsulphinyl GSL content, including glucoraphanin, to that of methylthio GSLs was greatly increased, indicating the suitability of BoMYB29 as a regulator for increasing methylsulphinyl GSL content. Our results indicate that these biological resources can facilitate further identification of genes useful for modifications of GSL profiles and accumulation in kale.  相似文献   

3.
4.
Glucosinolates (GSLs), whose degradation products have been shown to be increasingly important for human health and plant defence, compose important secondary metabolites found in the order Brassicales. It is highly desired to enhance pest and disease resistance by increasing the leaf GSL content while keeping the content low in seeds of Brassica napus, one of the most important oil crops worldwide. Little is known about the regulation of GSL accumulation in the leaves. We quantified the levels of 9 different GSLs and 15 related traits in the leaves of 366 accessions and found that the seed and leaf GSL content were highly correlated (r = 0.79). A total of 78 loci were associated with GSL traits, and five common and eleven tissue‐specific associated loci were related to total leaf and seed GSL content. Thirty‐six candidate genes were inferred to be involved in GSL biosynthesis. The candidate gene BnaA03g40190D (BnaA3.MYB28) was validated by DNA polymorphisms and gene expression analysis. This gene was responsible for high leaf/low seed GSL content and could explain 30.62% of the total leaf GSL variation in the low seed GSL panel and was not fixed during double‐low rapeseed breeding. Our results provide new insights into the genetic basis of GSL variation in leaves and seeds and may facilitate the metabolic engineering of GSLs and the breeding of high leaf/low seed GSL content in B. napus.  相似文献   

5.
Abstract

Glucosinolates (GSLs) are sulfur- and nitrogen-containing secondary metabolites that function in plant defense and provide benefits to human health. In this study, using Agrobacterium rhizogenes R1000, green and red kale hairy roots were established. The expression levels of GSLs biosynthesis genes and their accumulation in both kale hairy roots were analyzed by quantitative real-time PCR and HPLC. The results showed that the expression of most indolic GSLs biosynthesis genes was higher in the hairy roots of green kale than in that of red kale. In contrast, the expression of BoCYP83A1 and BoSUR1 encoding key enzymes aromatic GSL biosynthesis was significantly higher in red kale hairy root. The HPLC analysis identified six GSLs. The levels of 4-methoxyglucobrassicin, glucobrassicin, and 4-hydroxyglucobrassicin were 6.21, 5.98, and 2 times higher, respectively, in green kale than in red kale, whereas the levels of neoglucobrassicin and gluconasturtiin were 16.2 and 3.48 times higher, respectively, in red kale than in green kale. Our study provides insights into the underlying mechanisms of GSLs biosynthesis in kale hairy roots and can be potentially used as “biological factories” for producing bioactive substances such as GSLs.  相似文献   

6.
Isopropylmalate synthase (IPMS) is a key enzyme in the biosynthesis of the essential amino acid leucine, and thus primary metabolism. In Arabidopsis, the functionally similar enzyme, methythiolalkylmalate synthase (MAM), is an important enzyme in the elongation of methionine prior to glucosinolate (GSL) biosynthesis, as part of secondary metabolism. We describe the cloning of an IPMS gene from Brassica, BatIMS, and its functional characterisation by heterologous expression in E. coli and Arabidopsis. Over expression of BatIMS in Arabidopsis resulted in plants with an aberrant phenotype, reminiscent of mutants in GSL biosynthesis. Metabolite analyses showed that these plants had both perturbed amino acid metabolism and enhanced levels of GSLs. Microarray profiling showed that BatIMS over expression caused up regulation of the genes for methionine-derived GSL biosynthesis, and down regulation of genes involved in leucine catabolism, in addition to perturbed expression of genes involved in auxin and ethylene metabolism. The results illustrate the cross talk that can occur between primary and secondary metabolism within transgenic plants. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

7.
8.
Sclerotinia sclerotiorum and Botrytis cinerea are notorious plant pathogenic fungi with an extensive host range including Brassica crops. Glucosinolates (GSLs) are an important group of secondary metabolites characteristic of the Brassicales order, whose degradation products are proving to be increasingly important in plant protection. Enhancing the defense effect of GSL and their associated degradation products is an attractive strategy to strengthen the resistance of plants by transgenic approaches. We generated the lines of Brassica napus with three biosynthesis genes involved in GSL metabolic pathway (BnMAM1, BnCYP83A1 and BnUGT74B1), respectively. We then measured the foliar GSLs of each transgenic lines and inoculated them with S. sclerotiorum and B. cinerea. Compared with the wild type control, over-expressing BnUGT74B1 in B. napus increased the aliphatic and indolic GSL levels by 1.7 and 1.5 folds in leaves respectively; while over-expressing BnMAM1 or BnCYP83A1 resulted in an approximate 1.5-fold higher only in the aliphatic GSL level in leaves. The results of plant inoculation demonstrated that BnUGT74B1-overexpressing lines showed less severe disease symptoms and tissue damage compared with the wild type control, but BnMAM1 or BnCYP83A1-overexpressing lines showed no significant difference in comparison to the controls. These results suggest that the resistance to S. sclerotiorum and B. cinerea in B. napus could be enhanced through tailoring the GSL profiles by transgenic approaches or molecular breeding, which provides useful information to assist plant breeders to design improved breeding strategies.  相似文献   

9.
10.
植物对不利环境的适应依赖于将外部胁迫信号传递到内部信号通路中,在进化过程中形成一系列的胁迫响应机制。其中,油菜素内酯(brassinosteroids, BRs)是一种类固醇激素,广泛参与植物生长发育和逆境响应过程。BRs被包括受体BRI1和共受体BAK1在内的细胞表面受体感知,继而触发信号级联,导致蛋白激酶BIN2的抑制和转录因子BES1/BZR1的激活,BES1/BZR1可直接调控数千个下游响应基因的表达。在模式植物拟南芥中的研究表明,BR的生物合成和信号转导通路成员,特别是BIN2和其下游的转录因子BES1/BZR1,可以被各种环境因子广泛地调节。本文系统总结了BR相关的最新研究进展,对BR的生物合成和信号转导是如何被复杂的环境因子所调节,以及BR与环境因子如何协同调控作物重要农艺性状、冷胁迫和盐胁迫的响应进行了综述。  相似文献   

11.
Plants defend themselves against herbivores not only by a single trait but also by diversified multiple defense strategies. It remains unclear how these multiple defense mechanisms are effectively organized against herbivores. In this study, we focused on Brassicaceae plants, which have one of the most diversified secondary metabolites, glucosinolates (GSLs), as a defense against herbivores. By analyzing various defense traits including GSL profiles among 12 species (11 genera) of Brassicaceae plants, it is revealed that their defense strategies can be divided into three categories as multiple defenses. The GSL profiles differed between these three categories: (i) high nutritional level with long‐chain aliphatic GSLs; (ii) low nutritional level and high physical defenses with short‐chain aliphatic GSLs; and (iii) high nutritional level and low defense. The feeding experiment was conducted using two types of herbivores, Pieris rapae (Lepidoptera: Pieridae) as a specialist herbivore and the Eri silkmoth Samia cynthia ricini (Lepidoptera: Saturniidae) as a generalist, to assess the ability of each plant in multiple defense strategy. It was observed that the Eri silkmoth's performance differed according to which defense strategy it was exposed to. However, the growth rate of P. rapae did not vary among the three categories of defense strategy. These results suggest that the diversified defense strategies of Brassicaceae species have evolved to cope with diversified herbivores.  相似文献   

12.
13.
Enzymes that catalyze the condensation of acetyl coenzyme A and 2-oxo acids are likely to be important in two distinct metabolic pathways in Arabidopsis. These are the synthesis of isopropylmalate, an intermediate of Leu biosynthesis in primary metabolism, and the synthesis of methylthioalkylmalates, intermediates of Met elongation in the synthesis of aliphatic glucosinolates (GSLs), in secondary metabolism. Four Arabidopsis genes in the ecotype Columbia potentially encode proteins that could catalyze these reactions. MAM1 and MAML are adjacent genes on chromosome 5 at the Gsl-elong locus, while MAML-3 and MAML-4 are at opposite ends of chr 1. The isopropylmalate synthase activity of each member of the MAM-like gene family was investigated by heterologous expression in an isopropylmalate synthase-null Escherichia coli mutant. Only the expression of MAML-3 restored the ability of the mutant to grow in the absence of Leu. A MAML knockout line (KO) lacked long-chain aliphatic GSLs, which were restored when the KO was transformed with a functional MAML gene. Variation in expression of MAML did not alter the total levels of Met-derived GSLs, but just the ratio of chain lengths. MAML overexpression in Columbia led to an increase in long-chain GSLs, and an increase in 3C GSLs. Moreover, plants overexpressing MAML contained at least two novel amino acids. One of these was positively identified via MS/MS as homo-Leu, while the other, with identical mass and fragmentation patterns, was likely to be homo-Ile. A MAML-4 KO did not exhibit any changes in GSL profile, but had perturbed soluble amino acid content.  相似文献   

14.
15.
16.
  • Recent discoveries pointed out the importance of the mutual correlation between timing of environmental stress and plant fitness. However, the internal reshaping of plant growth under daily stress sensing, and their metabolic coordination remain to be investigated. Thus, we studied the connection between time of day, growth and defence to understand how plant fitness is affected by diurnal stress inputs.
  • We examined if simulated herbivory (leaf wounding) in the morning, at midday or the evening differentially influence plant defence state vs growth in three crop species of Brassica: broccoli (Brassica oleraceae), turnip greens (B. rapa) and rapeseed (B. napus).
  • The data revealed that plant's tolerance of wounding stress is diurnally regulated in Brassica crops. Trade-offs between biomass and investment in glucosinolates (GSL) and phenolics were affected by timing of leaf stress. Negative correlations between biomass and induction of defence compounds were found for plants treeated in the morning and evening. However, the correlations were positive for midday treatment. Interestingly, we revealed a new connection between plant growth and changes in aliphatic GSLs and flavonoids in response to wounding.
  • These data suggest that metabolic stress-dependent circadian oscillations in leaf defences could be one mechanism conferring a competitive advantage to plants to anticipate daily environmental variations by synchronizing them with growth. Moreover, this work provides first insights into how secondary metabolites are linked to growth response in a timing-related manner.
  相似文献   

17.
Glucosinolates (GSLs) are amino acid-derived secondary metabolites with diverse biological activities dependent on chemical modifications of the side chain. We previously identified the flavin-monooxygenase FMO(GS-OX1) as an enzyme in the biosynthesis of aliphatic GSLs in Arabidopsis (Arabidopsis thaliana) that catalyzes the S-oxygenation of methylthioalkyl to methylsulfinylalkyl GSLs. Here, we report the fine mapping of a quantitative trait locus for the S-oxygenating activity in Arabidopsis. In this region, there are three FMOs that, together with FMO(GS-OX1) and a fifth FMO, form what appears to be a crucifer-specific subclade. We report the identification of these four uncharacterized FMOs, designated FMO(GS-OX2) to FMO(GS-OX5). Biochemical characterization of the recombinant protein combined with the analysis of GSL content in knockout mutants and overexpression lines show that FMO(GS-OX2), FMO(GS-OX3), and FMO(GS-OX4) have broad substrate specificity and catalyze the conversion from methylthioalkyl GSL to the corresponding methylsulfinylalkyl GSL independent of chain length. In contrast, FMO(GS-OX5) shows substrate specificity toward the long-chain 8-methylthiooctyl GSL. Identification of the FMO(GS-OX) subclade will generate better understanding of the evolution of biosynthetic activities and specificities in secondary metabolism and provides an important tool for breeding plants with improved cancer prevention characteristics as provided by the methylsulfinylalkyl GSL.  相似文献   

18.
19.
Maintaining metabolic homeostasis is critical for plant growth and development. Here we report proteome and metabolome changes when the metabolic homeostasis is perturbed due to gene-dosage dependent mutation of Arabidopsis isopropylmalate dehydrogenases (IPMDHs). By integrating complementary quantitative proteomics and metabolomics approaches, we discovered that gradual ablation of the oxidative decarboxylation step in leucine biosynthesis caused imbalance of amino acid homeostasis, redox changes and oxidative stress, increased protein synthesis, as well as a decline in photosynthesis, which led to rearrangement of central metabolism and growth retardation. Disruption of IPMDHs involved in aliphatic glucosinolate biosynthesis led to synchronized increase of both upstream and downstream biosynthetic enzymes, and concomitant repression of the degradation pathway, indicating metabolic regulatory mechanisms in controlling glucosinolate biosynthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号