首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
甲虫抗冻蛋白是一种具有规则结构的昆虫抗冻蛋白。在相同浓度条件下,甲虫抗冻蛋白比鱼类抗冻蛋白有更高的热滞活性,目前已成为人们重点研究的一类抗冻蛋白。根据甲虫抗冻蛋白的结构特点及其在冰晶表面的吸附模式,应用二维吸附结合模型计算分析了具有6 ̄11个β-螺旋(β-helix)结构片段的甲虫抗冻蛋白变体分子,得到了它们的热滞活性随溶液浓度变化的规律,特别是热滞活性与甲虫抗冻蛋白的β-螺旋结构片段数的关系。结果显示,抗冻蛋白在冰晶表面的覆盖度是一个影响其热滞活性的重要因素。  相似文献   

2.
Some cold water marine fishes avoid cellular damage because of freezing by expressing antifreeze proteins (AFPs) that bind to ice and inhibit its growth; one such protein is the globular type III AFP from eel pout. Despite several studies, the mechanism of ice binding remains unclear because of the difficulty in modeling the AFP-ice interaction. To further explore the mechanism, we have determined the x-ray crystallographic structure of 10 type III AFP mutants and combined that information with 7 previously determined structures to mainly analyze specific AFP-ice interactions such as hydrogen bonds. Quantitative assessment of binding was performed using a neural network with properties of the structure as input and predicted antifreeze activity as output. Using the cross-validation method, a correlation coefficient of 0.60 was obtained between measured and predicted activity, indicating successful learning and good predictive power. A large loss in the predictive power of the neural network occurred after properties related to the hydrophobic surface were left out, suggesting that van der Waal's interactions make a significant contribution to ice binding. By combining the analysis of the neural network with antifreeze activity and x-ray crystallographic structures of the mutants, we extend the existing ice-binding model to a two-step process: 1) probing of the surface for the correct ice-binding plane by hydrogen-bonding side chains and 2) attractive van der Waal's interactions between the other residues of the ice-binding surface and the ice, which increases the strength of the protein-ice interaction.  相似文献   

3.
Antifreeze proteins and antifreeze glycoproteins are structurally diverse molecules that share a common property in binding to ice crystals and inhibiting ice crystal growth. Type II fish antifreeze protein of Atlantic herring (Clupea harengus harengus) is unique in its requirement of Ca(2+) for antifreeze activity. In this study, we utilized the secretion vector pGAPZalpha A to express recombinant herring antifreeze protein (WT) and a fusion protein with a C-terminal six-histidine tag (WT-6H) in yeast Pichia pastoris wild-type strain X-33 or protease-deficient strain SMD1168H. Both recombinant proteins were secreted into the culture medium and properly folded and functioned as the native herring antifreeze protein. Furthermore, our studies demonstrated that expression at a lower temperature increased the yield of the recombinant protein dramatically, which might be due to the enhanced protein folding pathway, as well as increased cell viability at lower temperature. These data suggested that P. pastoris is a useful system for the production of soluble and biologically active herring antifreeze protein required for structural and functional studies.  相似文献   

4.
昆虫抗冻蛋白的研究进展   总被引:2,自引:0,他引:2  
抗冻蛋白是一类与冰晶有亲合力,能够与冰晶结合并抑制冰晶生长的蛋白或糖蛋白。自20世纪60年代以来,研究人员已经分别从鱼类、昆虫、植物、真菌和细菌中发现多种抗冻蛋白。其中已知鱼类抗冻蛋白有5种,也是研究最详细的。但是,近几年来发现昆虫抗冻蛋白活性普遍比较高,因此受到研究人员重视,研究取得了较快的发展。主要讨论昆虫抗冻蛋白的结构特点、抗冻活性、作用机制和应用,并分析目前的研究现状提出一些待解决的问题,以期望对昆虫抗冻蛋白的研究进行比较系统化的整理。  相似文献   

5.
The mechanisms by which the antifreeze protein (AFP) modifies the ice morphology are identified precisely as surface poisoning by the ice binding surface (IBS) of insect AFPs and as bridge-induced surface reconstruction by the IBS of fish AFPs and antifreeze glycoproteins. The primary surfaces of hexagonal ice have predetermined face indices. The "two-dimensional" insect type IBS has regularly spaced binding intervals in two directions. It causes surface poisoning by matching and reinforcing simultaneously intersecting strong bonding directions on the primary ice surfaces. The secondary ice surfaces have variable face indices. The "one-dimensional" and "irregular" IBS variants of fish AFPs and antifreeze glycoproteins are either linearly extended with regular ice binding intervals or have ice binding sites lacking spacing regularity. These variants can bridge transversely lattice periods or shorter oxygen-oxygen distances between parallel adjacent strong bonding directions that do not intersect. Thus, one-dimensional and irregular IBS variants induce supplementary bridges cross-wise on selected secondary surfaces by mimicking strong bonding directions that are not present in the ice structure. These proteins cause surfaces with variable face indices, which in the absence of the AFPs would not grow flat, to appear in the morphology. Whereas for the primary ice surfaces it is only the morphological importance that is determined by the experimental conditions, for the secondary ice surfaces it is the face indices themselves that become adjusted in the process of maximizing the AFP-substrate interaction through attainment of the best structural match. The growth morphology of the AFP-ice system is derived from various factors, including the face indices, surface molecular compositions, relative growth rates, and the mechanisms responsible for that morphology. The theoretical formulation agrees with experiments over a wide range and resolves these, to date, unexplained phenomena.  相似文献   

6.
Solutions of antifreeze glycoproteins 1 through 5 and 8 were analyzed for activity by differential scanning calorimetry. With a scan rate of 1 degree C min-1, antifreeze glycoproteins 1-5 (20 mg/ml) revealed antifreeze activity with a delay in the freeze exotherm during cooling in the presence of ice. Antifreeze glycoprotein 8 (60 mg/ml), however, did not reveal antifreeze activity. When a 0.1 degree C min-1 scan rate was used, glycoproteins 1-5 again yielded a delay in the freeze onset, but the exotherm consisted of multiple events. At the slower scan glycoprotein 8 revealed an initial freeze followed by multiple exothermic events resembling those of glycoproteins 1-5. Thermograms exhibiting antifreeze activity had an initial shoulder in the exotherm direction upon cooling followed by a delay before the exotherm. The shoulders were correlated with c-axis ice growth observed in visual methods. The glycoprotein antifreezes had a linear increase in activity with decreased ice content.  相似文献   

7.
Energy-optimized structure of antifreeze protein and its binding mechanism.   总被引:7,自引:0,他引:7  
A combination of Monte Carlo simulated annealing and energy minimization was utilized to determine the conformation of the antifreeze protein from the fish winter flounder. It was found from the energy-optimized structure that the hydroxyl groups of its four threonine residues, i.e. Thr2, Thr13, Thr24, Thr35, are aligned on almost the same line parallel to the helix axis and separated successively by 16.1, 16.0 and 16.2 A, respectively, very close to the 16.6 A repeat spacing along [0112] in ice. Based on such a space match, a zipper-like model is proposed to elucidate the binding mechanism of the antifreeze protein to ice crystals. According to the current model, the antifreeze protein may bind to an ice nucleation structure in a zipper-like fashion through hydrogen bonding of the hydroxyl groups of these four Thr residues to the oxygen atoms along the [0112] direction in ice lattice, subsequently stopping or retarding the growth of ice pyramidal planes so as to depress the freeze point. The calculated results and the binding mechanism thus derived accord with recent experimental observations. The mechanistic implications derived from such a special antifreeze molecule might be generally applied to elucidate the structure-function relationship of other antifreeze proteins with the following two common features: (1) recurrence of a Thr residue (or any other polar amino acid residue whose side-chain can form a hydrogen bond with water) in an 11-amino-acid period along the sequence concerned; and (2) a high percentage of Ala residue component therein. Further experiments are suggested to test the ice binding model.  相似文献   

8.
AFPs (antifreeze proteins) are produced by many organisms that inhabit ice-laden environments. They facilitate survival at sub-zero temperatures by binding to, and inhibiting, the growth of ice crystals in solution. The Antarctic bacterium Marinomonas primoryensis produces an exceptionally large(>1 MDa) hyperactive Ca2+-dependent AFP. We have cloned,expressed and characterized a 322-amino-acid region of the protein where the antifreeze activity is localized that shows similarity to the RTX (repeats-in-toxin) family of proteins. The recombinant protein requires Ca2+ for structure and activity, and it is capable of depressing the freezing point of a solution in excess of 2 degrees C at a concentration of 0.5 mg/ml, therefore classifying it as a hyperactive AFP. We have developed a homology-guided model of the antifreeze region based partly on the Ca2+-bound beta-roll from alkaline protease. The model has identified both a novel beta-helical fold and an ice-binding site. The interior of the beta-helix contains a single row of bound Ca2+ ions down one side of the structure and a hydrophobic core down the opposite side. The ice binding surface consists of parallel repetitive arrays of threonine and aspartic acid/asparagine residues located down the Ca2+-bound side of the structure. The model was tested and validated by site-directed mutagenesis. It explains the Ca2+-dependency of the region, as well its hyperactive antifreeze activity. This is the first bacterial AFP to be structurally characterized and is one of only five hyperactive AFPs identified to date.AFPS  相似文献   

9.
Efficient cryopreservation of cells at ultralow temperatures requires the use of substances that help maintain viability and metabolic functions post‐thaw. We are developing new technology where plant proteins are used to substitute the commonly‐used, but relatively toxic chemical dimethyl sulfoxide. Recombinant forms of four structurally diverse wheat proteins, TaIRI‐2 (ice recrystallization inhibition), TaBAS1 (2‐Cys peroxiredoxin), WCS120 (dehydrin), and TaENO (enolase) can efficiently cryopreserve hepatocytes and insulin‐secreting INS832/13 cells. This study shows that TaIRI‐2 and TaENO are internalized during the freeze–thaw process, while TaBAS1 and WCS120 remain at the extracellular level. Possible antifreeze activity of the four proteins was assessed. The “splat cooling” method for quantifying ice recrystallization inhibition activity (a property that characterizes antifreeze proteins) revealed that TaIRI‐2 and TaENO are more potent than TaBAS1 and WCS120. Because of their ability to inhibit ice recrystallization, the wheat recombinant proteins TaIRI‐2 and TaENO are promising candidates and could prove useful to improve cryopreservation protocols for hepatocytes and insulin‐secreting cells, and possibly other cell types. TaENO does not have typical ice‐binding domains, and the TargetFreeze tool did not predict an antifreeze capacity, suggesting the existence of nontypical antifreeze domains. The fact that TaBAS1 is an efficient cryoprotectant but does not show antifreeze activity indicates a different mechanism of action. The cryoprotective properties conferred by WCS120 depend on biochemical properties that remain to be determined. Overall, our results show that the proteins' efficiencies vary between cell types, and confirm that a combination of different protection mechanisms is needed to successfully cryopreserve mammalian cells.  相似文献   

10.
《FEBS letters》2014,588(9):1767-1772
The ice binding motifs of insect antifreeze proteins (AFPs) mainly consist of repetitive TxT motifs aligned on a flat face of the protein. However, these motifs often contain non-threonines that disrupt the TxT pattern. We substituted two such disruptive amino acids located in the ice binding face of an AFP from Rhagium mordax with threonine. Furthermore, a mutant with an extra ice facing TxT motif was constructed. These mutants showed enhanced antifreeze activity compared to the wild type at low concentrations. However, extrapolating the data indicates that the wild type will become the most active at concentrations above 270 μmol.  相似文献   

11.
昆虫抗冻蛋白的分离纯化及特性分析   总被引:1,自引:0,他引:1  
昆虫抗冻蛋白具有很高的热滞活性,可保护机体免受结冰引起的伤害。昆虫抗冻蛋白的分离纯化多采用凝胶过滤层析、离子交换层析及HPLC等技术,已用于鱼类抗冻蛋白纯化的冰亲和纯化(IAP)技术也可考虑应用于昆虫抗冻蛋白的分离提纯。昆虫抗冻蛋白具有高活性,规则的一级结构及类似的冰晶结合表面等特性。  相似文献   

12.
Ice-binding mechanism of winter flounder antifreeze proteins   总被引:3,自引:0,他引:3       下载免费PDF全文
We have studied the winter flounder antifreeze protein (AFP) and two of its mutants using molecular dynamics simulation techniques. The simulations were performed under four conditions: in the gas phase, solvated by water, adsorbed on the ice (2021) crystal plane in the gas phase and in aqueous solution. This study provided details of the ice-binding pattern of the winter flounder AFP. Simulation results indicated that the Asp, Asn, and Thr residues in the AFP are important in ice binding and that Asn and Thr as a group bind cooperatively to the ice surface. These ice-binding residues can be collected into four distinct ice-binding regions: Asp-1/Thr-2/Asp-5, Thr-13/Asn-16, Thr-24/Asn-27, and Thr-35/Arg-37. These four regions are 11 residues apart and the repeat distance between them matches the ice lattice constant along the (1102) direction. This match is crucial to ensure that all four groups can interact with the ice surface simultaneously, thereby, enhancing ice binding. These Asx (x = p or n)/Thr regions each form 5-6 hydrogen bonds with the ice surface: Asn forms about three hydrogen bonds with ice molecules located in the step region while Thr forms one to two hydrogen bonds with the ice molecules in the ridge of the (2021) crystal plane. Both the distance between Thr and Asn and the ordering of the two residues are crucial for effective ice binding. The proper sequence is necessary to generate a binding surface that is compatible with the ice surface topology, thus providing a perfect "host/guest" interaction that simultaneously satisfies both hydrogen bonding and van der Waals interactions. The results also show the relation among binding energy, the number of hydrogen bonds, and the activity. The activity is correlated to the binding energy, and in the case of the mutants we have studied the number of hydrogen bonds. The greater the number of the hydrogen bonds the greater the antifreeze activity. The roles van der Waals interactions and the hydrophobic effect play in ice binding are also highlighted. For the latter it is demonstrated that the surface of ice has a clathratelike structure which favors the partitioning of hydrophobic groups to the surface of ice. It is suggested that mutations that involve the deletion of hydrophobic residues (e.g., the Leu residues) will provide insight into the role the hydrophobic effect plays in partitioning these peptides to the surface of ice.  相似文献   

13.
Antifreeze proteins, AFP, impede freezing of bodily fluids and damaging of cellular tissues by low temperatures. Adsorption-inhibition mechanisms have been developed to explain their functioning. Using in silico Molecular Dynamics, we show that type I AFP can also induce melting of the local ice surface. Simulations of antifreeze-positive and antifreeze-negative mutants show a clear correlation between melting induction and antifreeze activity. The presence of local melting adds a function to type I AFPs that is unique to these proteins. It may also explain some apparently conflicting experimental results where binding to ice appears both quasipermanent and reversible.  相似文献   

14.
A variety of organisms have independently evolved proteins exhibiting antifreeze activity that allows survival at subfreezing temperatures. The antifreeze proteins (AFPs) bind ice nuclei and depress the freezing point by a noncolligative absorption–inhibition mechanism. Many organisms have a heterogeneous suite of AFPs with variation in primary sequence between paralogous loci. Here, we demonstrate that the diversification of the AFP paralogues is promoted by positive Darwinian selection in two independently evolved AFPs from fish and beetle. First, we demonstrate an elevated rate of nonsynonymous substitutions compared to synonymous substitutions in the mature protein coding region. Second, we perform phylogeny-based tests of selection to demonstrate a subset of codons is subjected to positive selection. When mapped onto the three-dimensional structure of the fish antifreeze type III antifreeze structure, these codons correspond to amino acid positions that surround but do not interrupt the putative ice-binding surface. The selective agent may be related to efficient binding to diverse ice surfaces or some other aspect of AFP function. Received: 27 February 2001 / Accepted: 12 September 2001  相似文献   

15.
A library of peptides and glycopeptides containing (4R)-hydroxy-l-proline (Hyp) residues were designed with a view to providing stable polyproline II (PPII) helical molecules with antifreeze activity. A library of dodecapeptides containing contiguous Hyp residues or an Ala-Hyp-Ala tripeptide repeat sequence were synthesized with and without α-O-linked N-acetylgalactosamine and α-O-linked galactose-β-(1→3)-N-acetylgalactosamine appended to the peptide backbone. All (glyco)peptides possessed PPII helical secondary structure with some showing significant thermal stability. The majority of the (glyco)peptides did not exhibit thermal hysteresis (TH) activity and were not capable of modifying the morphology of ice crystals. However, an unglycosylated Ala-Hyp-Ala repeat peptide did show significant TH and ice crystal re-shaping activity suggesting that it was capable of binding to the surface of ice. All (glyco)peptides synthesized displayed some ice recrystallization inhibition (IRI) activity with unglycosylated peptides containing the Ala-Hyp-Ala motif exhibiting the most potent inhibitory activity. Interestingly, although glycosylation is critical to the activity of native antifreeze glycoproteins (AFGPs) that possess an Ala-Thr-Ala tripeptide repeat, this same structural modification is detrimental to the antifreeze activity of the Ala-Hyp-Ala repeat peptides studied here.  相似文献   

16.
Antifreeze proteins (AFPs) inhibit the growth of ice by binding to the surface of ice crystals, preventing the addition of water molecules to cause a local depression of the freezing point. AFPs from insects are much more effective at depressing the freezing point than fish AFPs. Here, we have investigated the possibility that insect AFPs bind more avidly to ice than fish AFPs. Because it is not possible to directly measure the affinity of an AFP for ice, we have assessed binding indirectly by examining the partitioning of proteins into a slowly growing ice hemisphere. AFP molecules adsorbed to the surface and became incorporated into the ice as they were overgrown. Solutes, including non-AFPs, were very efficiently excluded from ice, whereas AFPs became incorporated into ice at a concentration roughly equal to that of the original solution, and this was independent of the AFP concentration in the range (submillimolar) tested. Despite their >10-fold difference in antifreeze activity, fish and insect AFPs partitioned into ice to a similar degree, suggesting that insect AFPs do not bind to ice with appreciably higher affinity. Additionally, we have demonstrated that steric mutations on the ice binding surface that decrease the antifreeze activity of an AFP also reduce its inclusion into ice, supporting the validity of using partitioning measurements to assess a protein's affinity for ice.  相似文献   

17.
Antifreeze proteins are a structurally diverse group of proteins characterized by their unique ability to cause a separation of the melting- and growth-temperatures of ice. These proteins have evolved independently in different kinds of cold-adapted ectothermic animals, including insects and fish, where they protect against lethal freezing of the body fluids. There is a great variability in the capacity of different kinds of antifreeze proteins to evoke the antifreeze effect, but the basis of these differences is not well understood. This study reports on salt-induced enhancement of the antifreeze activity of an antifreeze protein from the longhorn beetle Rhagium inquisitor (L.). The results imply that antifreeze activity is predetermined by a steady-state distribution of the antifreeze protein between the solution and the ice surface region. The observed salt-induced enhancement of the antifreeze activity compares qualitatively and quantitatively with salt-induced lowering of protein solubility. Thus, salts apparently enhance antifreeze activity by evoking a solubility-induced shift in the distribution pattern of the antifreeze proteins in favour of the ice. These results indicate that the solubility of antifreeze proteins in the solution surrounding the ice crystal is a fundamental physiochemical property in relation to their antifreeze potency.  相似文献   

18.
Structure and function of antifreeze proteins   总被引:11,自引:0,他引:11  
High-resolution three-dimensional structures are now available for four of seven non-homologous fish and insect antifreeze proteins (AFPs). For each of these structures, the ice-binding site of the AFP has been defined by site-directed mutagenesis, and ice etching has indicated that the ice surface is bound by the AFP. A comparison of these extremely diverse ice-binding proteins shows that they have the following attributes in common. The binding sites are relatively flat and engage a substantial proportion of the protein's surface area in ice binding. They are also somewhat hydrophobic -- more so than that portion of the protein exposed to the solvent. Surface-surface complementarity appears to be the key to tight binding in which the contribution of hydrogen bonding seems to be secondary to van der Waals contacts.  相似文献   

19.
Cheng Y  Yang Z  Tan H  Liu R  Chen G  Jia Z 《Biophysical journal》2002,83(4):2202-2210
Many organisms living in cold environments can survive subzero temperatures by producing antifreeze proteins (AFPs) or antifreeze glycoproteins. In this paper we investigate the ice-binding surface of type II AFP by quantum mechanical methods, which, to the best of our knowledge, represents the first time that molecular orbital computational approaches have been applied to AFPs. Molecular mechanical approaches, including molecular docking, energy minimization, and molecular dynamics simulation, were used to obtain optimal systems for subsequent quantum mechanical analysis. We selected 17 surface patches covering the entire surface of the type II AFP and evaluated the interaction energy between each of these patches and two different ice planes using semi-empirical quantum mechanical methods. We have demonstrated the weak orbital overlay phenomenon and the change of bond orders in ice. These results consistently indicate that a surface patch containing 19 residues (K37, L38, Y20, E22, Y21, I19, L57, T56, F53, M127, T128, F129, R17, C7, N6, P5, G10, Q1, and W11) is the most favorable ice-binding site for both a regular ice plane and an ice plane where water O atoms are randomly positioned. Furthermore, for the first time the computation results provide new insights into the weakening of the ice lattice upon AFP binding, which may well be a primary factor leading to AFP-induced ice growth inhibition.  相似文献   

20.
To help understand the structure/function relationships in antifreeze proteins (AFP), and to define the motifs required for ice binding, a Type III AFP suitable for two-dimensional (2D) NMR studies was produced in Escherichia coli. A synthetic gene for one of the Type III AFP isoforms was assembled in a T7 polymerase-directed expression vector. The 67-amino acid-long gene product differed from the natural AFP by inclusion of an N-terminal methionine but was indistinguishable in activity. The NMR spectra of this AFP were complicated by cis-trans proline isomerization from the C-terminal sequence YPPA. Substitution of this sequence by YAA eliminated isomer signals without altering the activity or structure of the mutant AFP. This variant (rQAE m1.1) was selected for sequential assignment and the secondary structure determination using 2D 1H NMR spectroscopy. Nine beta-strands are paired to form two triple-stranded antiparallel sheets and one double-stranded antiparallel sheet. Two further proline replacements, P29A and P33A, were made to delineate the role of conserved prolines in Type III AFP. These mutants were valuable in clarifying ambiguous NMR spectral assignments amongst the remaining six prolines of rQAE m1.1. In contrast to the replacement of the C-terminal prolyl residues, the exchange of P29 and P33 caused some structural changes and significantly decreased protein solubility and antifreeze activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号