首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The ancestry of African-descended Americans is known to be drawn from three distinct populations: African, European, and Native American. While many studies consider this continental admixture, few account for the genetically distinct sources of ancestry within Africa – the continent with the highest genetic variation. Here, we dissect the within-Africa genetic ancestry of various populations of the Americas self-identified as having primarily African ancestry using uniparentally inherited mitochondrial DNA.

Methods and Principal Findings

We first confirmed that our results obtained using uniparentally-derived group admixture estimates are correlated with the average autosomal-derived individual admixture estimates (hence are relevant to genomic ancestry) by assessing continental admixture using both types of markers (mtDNA and Y-chromosome vs. ancestry informative markers). We then focused on the within-Africa maternal ancestry, mining our comprehensive database of published mtDNA variation (∼5800 individuals from 143 African populations) that helped us thoroughly dissect the African mtDNA pool. Using this well-defined African mtDNA variation, we quantified the relative contributions of maternal genetic ancestry from multiple W/WC/SW/SE (West to South East) African populations to the different pools of today''s African-descended Americans of North and South America and the Caribbean.

Conclusions

Our analysis revealed that both continental admixture and within-Africa admixture may be critical to achieving an adequate understanding of the ancestry of African-descended Americans. While continental ancestry reflects gender-specific admixture processes influenced by different socio-historical practices in the Americas, the within-Africa maternal ancestry reflects the diverse colonial histories of the slave trade. We have confirmed that there is a genetic thread connecting Africa and the Americas, where each colonial system supplied their colonies in the Americas with slaves from African colonies they controlled or that were available for them at the time. This historical connection is reflected in different relative contributions from populations of W/WC/SW/SE Africa to geographically distinct Africa-derived populations of the Americas, adding to the complexity of genomic ancestry in groups ostensibly united by the same demographic label.  相似文献   

2.

Background

From Paleo-Indian times to recent historical episodes, the Mesoamerican isthmus played an important role in the distribution and patterns of variability all around the double American continent. However, the amount of genetic information currently available on Central American continental populations is very scarce. In order to shed light on the role of Mesoamerica in the peopling of the New World, the present study focuses on the analysis of the mtDNA variation in a population sample from El Salvador.

Methodology/Principal Findings

We have carried out DNA sequencing of the entire control region of the mitochondrial DNA (mtDNA) genome in 90 individuals from El Salvador. We have also compiled more than 3,985 control region profiles from the public domain and the literature in order to carry out inter-population comparisons. The results reveal a predominant Native American component in this region: by far, the most prevalent mtDNA haplogroup in this country (at ∼90%) is A2, in contrast with other North, Meso- and South American populations. Haplogroup A2 shows a star-like phylogeny and is very diverse with a substantial proportion of mtDNAs (45%; sequence range 16090–16365) still unobserved in other American populations. Two different Bayesian approaches used to estimate admixture proportions in El Salvador shows that the majority of the mtDNAs observed come from North America. A preliminary founder analysis indicates that the settlement of El Salvador occurred about 13,400±5,200 Y.B.P.. The founder age of A2 in El Salvador is close to the overall age of A2 in America, which suggests that the colonization of this region occurred within a few thousand years of the initial expansion into the Americas.

Conclusions/Significance

As a whole, the results are compatible with the hypothesis that today''s A2 variability in El Salvador represents to a large extent the indigenous component of the region. Concordant with this hypothesis is also the observation of a very limited contribution from European and African women (∼5%). This implies that the Atlantic slave trade had a very small demographic impact in El Salvador in contrast to its transformation of the gene pool in neighbouring populations from the Caribbean facade.  相似文献   

3.
Discovered in the early 16th century by European colonists, Bermuda is an isolated set of islands located in the mid-Atlantic. Shortly after its discovery, Bermuda became the first English colony to forcibly import its labor by trafficking in enslaved Africans, white ethnic minorities, and indigenous Americans. Oral traditions circulating today among contemporary tribes from the northeastern United States recount these same events, while, in Bermuda, St. David's Islanders consider their histories to be linked to a complex Native American, European, and African past. To investigate the influence of historical events on biological ancestry and native cultural identity, we analyzed genetic variation in 111 members of Bermuda's self-proclaimed St. David's Island Native Community. Our results reveal that the majority of mitochondrial DNA (mtDNA) and Y-chromosome haplotypes are of African and West Eurasian origin. However, unlike other English-speaking New World colonies, most African mtDNA haplotypes appear to derive from central and southeast Africa, reflecting the extent of maritime activities in the region. In light of genealogical and oral historical data from the St. David's community, the low frequency of Native American mtDNA and NRY lineages may reflect the influence of genetic drift, the demographic impact of European colonization, and historical admixture with persons of non-native backgrounds, which began with the settlement of the islands. By comparing the genetic data with genealogical and historical information, we are able to reconstruct the complex history of this Bermudian community, which is unique among New World populations.  相似文献   

4.

Background

Despite a greater burden of risk factors, atrial fibrillation (AF) is less common among African Americans than European-descent populations. Genome-wide association studies (GWAS) for AF in European-descent populations have identified three predominant genomic regions associated with increased risk (1q21, 4q25, and 16q22). The contribution of these loci to AF risk in African American is unknown.

Methodology/Principal Findings

We studied 73 African Americans with AF from the Vanderbilt-Meharry AF registry and 71 African American controls, with no history of AF including after cardiac surgery. Tests of association were performed for 148 SNPs across the three regions associated with AF, and 22 SNPs were significantly associated with AF (P<0.05). The SNPs with the strongest associations in African Americans were both different from the index SNPs identified in European-descent populations and independent from the index European-descent population SNPs (r2<0.40 in HapMap CEU): 1q21 rs4845396 (odds ratio [OR] 0.30, 95% confidence interval [CI] 0.13–0.67, P = 0.003), 4q25 rs4631108 (OR 3.43, 95% CI 1.59–7.42, P = 0.002), and 16q22 rs16971547 (OR 8.1, 95% CI 1.46–45.4, P = 0.016). Estimates of European ancestry were similar among cases (23.6%) and controls (23.8%). Accordingly, the probability of having two copies of the European derived chromosomes at each region did not differ between cases and controls.

Conclusions/Significance

Variable European admixture at known AF loci does not explain decreased AF susceptibility in African Americans. These data support the role of 1q21, 4q25, and 16q22 variants in AF risk for African Americans, although the index SNPs differ from those identified in European-descent populations.  相似文献   

5.

Background

Asthma is a common complex condition with clear racial and ethnic differences in both prevalence and severity. Asthma consultation rates, mortality, and severe symptoms are greatly increased in African descent populations of developed countries. African ancestry has been associated with asthma, total serum IgE and lower pulmonary function in African-admixed populations. To replicate previous findings, here we aimed to examine whether African ancestry was associated with asthma susceptibility in African Americans. In addition, we examined for the first time whether African ancestry was associated with asthma exacerbations.

Methodology/Principal Findings

After filtering for self-reported ancestry and genotype data quality, samples from 1,117 self-reported African-American individuals from New York and Baltimore (394 cases, 481 controls), and Chicago (321 cases followed for asthma exacerbations) were analyzed. Genetic ancestry was estimated based on ancestry informative markers (AIMs) selected for being highly divergent among European and West African populations (95 AIMs for New York and Baltimore, and 66 independent AIMs for Chicago). Among case-control samples, the mean African ancestry was significantly higher in asthmatics than in non-asthmatics (82.0±14.0% vs. 77.8±18.1%, mean difference 4.2% [95% confidence interval (CI):2.0–6.4], p<0.0001). This association remained significant after adjusting for potential confounders (odds ratio: 4.55, 95% CI: 1.69–12.29, p = 0.003). African ancestry failed to show an association with asthma exacerbations (p = 0.965) using a model based on longitudinal data of the number of exacerbations followed over 1.5 years.

Conclusions/Significance

These data replicate previous findings indicating that African ancestry constitutes a risk factor for asthma and suggest that elevated asthma rates in African Americans can be partially attributed to African genetic ancestry.  相似文献   

6.
Recently admixed populations offer unique opportunities for studying human history and for elucidating the genetic basis of complex traits that differ in prevalence between human populations. Historical records, classical protein markers, and preliminary genetic data indicate that the Cape Verde islands in West Africa are highly admixed and primarily descended from European males and African females. However, little is known about the variation in admixture levels, admixture dynamics and genetic diversity across the islands, or about the potential of Cape Verde for admixture mapping studies. We have performed a detailed analysis of phenotypic and genetic variation in Cape Verde based on objective skin color measurements, socio-economic status (SES) evaluations and data for 50 autosomal, 34 X-chromosome, and 21 non-recombinant Y-chromosome (NRY) markers in 845 individuals from six islands of the archipelago. We find extensive genetic admixture between European and African ancestral populations (mean West African ancestry = 0.57, sd = 0.08), with individual African ancestry proportions varying considerably among the islands. African ancestry proportions calculated with X and Y-chromosome markers confirm that the pattern of admixture has been sex-biased. The high-resolution NRY-STRs reveal additional patterns of variation among the islands that are most consistent with differentiation after admixture. The differences in the autosomal admixture proportions are clearly evident in the skin color distribution across the islands (Pearson r = 0.54, P-value<2e–16). Despite this strong correlation, there are significant interactions between SES and skin color that are independent of the relationship between skin color and genetic ancestry. The observed distributions of admixture, genetic variation and skin color and the relationship of skin color with SES relate to historical and social events taking place during the settlement history of Cape Verde, and have implications for the design of association studies using this population.  相似文献   

7.

Background

Accurate, high-throughput genotyping allows the fine characterization of genetic ancestry. Here we applied recently developed statistical and computational techniques to the question of African ancestry in African Americans by using data on more than 450,000 single-nucleotide polymorphisms (SNPs) genotyped in 94 Africans of diverse geographic origins included in the HGDP, as well as 136 African Americans and 38 European Americans participating in the Atherosclerotic Disease Vascular Function and Genetic Epidemiology (ADVANCE) study. To focus on African ancestry, we reduced the data to include only those genotypes in each African American determined statistically to be African in origin.

Results

From cluster analysis, we found that all the African Americans are admixed in their African components of ancestry, with the majority contributions being from West and West-Central Africa, and only modest variation in these African-ancestry proportions among individuals. Furthermore, by principal components analysis, we found little evidence of genetic structure within the African component of ancestry in African Americans.

Conclusions

These results are consistent with historic mating patterns among African Americans that are largely uncorrelated to African ancestral origins, and they cast doubt on the general utility of mtDNA or Y-chromosome markers alone to delineate the full African ancestry of African Americans. Our results also indicate that the genetic architecture of African Americans is distinct from that of Africans, and that the greatest source of potential genetic stratification bias in case-control studies of African Americans derives from the proportion of European ancestry.  相似文献   

8.
The Kenyan East African zebu cattle are valuable and widely used genetic resources. Previous studies using microsatellite loci revealed the complex history of these populations with the presence of taurine and zebu genetic backgrounds. Here, we estimate at genome-wide level the genetic composition and population structure of the East African Shorthorn Zebu (EASZ) of western Kenya. A total of 548 EASZ from 20 sub-locations were genotyped using the Illumina BovineSNP50 v. 1 beadchip. STRUCTURE analysis reveals admixture with Asian zebu, African and European taurine cattle. The EASZ were separated into three categories: substantial (⩾12.5%), moderate (1.56%<X<12.5%) and non-introgressed (⩽1.56%) according to the European taurine genetic proportion. The non-European taurine introgressed animals (n=425) show an unfluctuating zebu and taurine ancestry of 0.84±0.009 s.d. and 0.16±0.009 s.d., respectively, with significant differences in African taurine (AT) and Asian zebu backgrounds across chromosomes (P<0.0001). In contrast, no such differences are observed for the European taurine ancestry (P=0.1357). Excluding European introgressed animals, low and nonsignificant genetic differentiation and isolation by distance are observed among sub-locations (Fst=0.0033, P=0.09; r=0.155, P=0.07). Following a short population expansion, a major reduction in effective population size (Ne) is observed from approximately 240 years ago to present time. Our results support ancient zebu × AT admixture in the EASZ population, subsequently shaped by selection and/or genetic drift, followed by a more recent exotic European cattle introgression.  相似文献   

9.
Persistently low white blood cell count (WBC) and neutrophil count is a well-described phenomenon in persons of African ancestry, whose etiology remains unknown. We recently used admixture mapping to identify an approximately 1-megabase region on chromosome 1, where ancestry status (African or European) almost entirely accounted for the difference in WBC between African Americans and European Americans. To identify the specific genetic change responsible for this association, we analyzed genotype and phenotype data from 6,005 African Americans from the Jackson Heart Study (JHS), the Health, Aging and Body Composition (Health ABC) Study, and the Atherosclerosis Risk in Communities (ARIC) Study. We demonstrate that the causal variant must be at least 91% different in frequency between West Africans and European Americans. An excellent candidate is the Duffy Null polymorphism (SNP rs2814778 at chromosome 1q23.2), which is the only polymorphism in the region known to be so differentiated in frequency and is already known to protect against Plasmodium vivax malaria. We confirm that rs2814778 is predictive of WBC and neutrophil count in African Americans above beyond the previously described admixture association (P=3.8×10−5), establishing a novel phenotype for this genetic variant.  相似文献   

10.
《PloS one》2014,9(12)

Background

Coronary heart disease (CHD) is a leading cause of morbidity and mortality in African Americans. However, there is a paucity of studies assessing genetic determinants of CHD in African Americans. We examined the association of published variants in CHD loci with incident CHD, attempted to fine map these loci, and characterize novel variants influencing CHD risk in African Americans.

Methods and Results

Up to 8,201 African Americans (including 546 first CHD events) were genotyped using the MetaboChip array in the Atherosclerosis Risk in Communities (ARIC) study and Women''s Health Initiative (WHI). We tested associations using Cox proportional hazard models in sex- and study-stratified analyses and combined results using meta-analysis. Among 44 validated CHD loci available in the array, we replicated and fine-mapped the SORT1 locus, and showed same direction of effects as reported in studies of individuals of European ancestry for SNPs in 22 additional published loci. We also identified a SNP achieving array wide significance (MYC: rs2070583, allele frequency 0.02, P = 8.1×10−8), but the association did not replicate in an additional 8,059 African Americans (577 events) from the WHI, HealthABC and GeneSTAR studies, and in a meta-analysis of 5 cohort studies of European ancestry (24,024 individuals including 1,570 cases of MI and 2,406 cases of CHD) from the CHARGE Consortium.

Conclusions

Our findings suggest that some CHD loci previously identified in individuals of European ancestry may be relevant to incident CHD in African Americans.  相似文献   

11.

Background and Aims

Meningococcal disease remains one of the most important infectious causes of death in industrialized countries. The highly diverse clinical presentation and prognosis of Neisseria meningitidis infections are the result of complex host genetics and environmental interactions. We investigated whether mitochondrial genetic background contributes to meningococcal disease (MD) susceptibility.

Methodology/Principal Findings

Prospective controlled study was performed through a national research network on MD that includes 41 Spanish hospitals. Cases were 307 paediatric patients with confirmed MD, representing the largest series of MD patients analysed to date. Two independent sets of ethnicity-matched control samples (CG1 [N = 917]), and CG2 [N = 616]) were used for comparison. Cases and controls underwent mtDNA haplotyping of a selected set of 25 mtDNA SNPs (mtSNPs), some of them defining major European branches of the mtDNA phylogeny. In addition, 34 ancestry informative markers (AIMs) were genotyped in cases and CG2 in order to monitor potential hidden population stratification. Samples of known African, Native American and European ancestry (N = 711) were used as classification sets for the determination of ancestral membership of our MD patients. A total of 39 individuals were eliminated from the main statistical analyses (including fourteen gypsies) on the basis of either non-Spanish self-reported ancestry or the results of AIMs indicating a European membership lower than 95%. Association analysis of the remaining 268 cases against CG1 suggested an overrepresentation of the synonym mtSNP G11719A variant (Pearson''s chi-square test; adjusted P-value = 0.0188; OR [95% CI] = 1.63 [1.22–2.18]). When cases were compared with CG2, the positive association could not be replicated. No positive association has been observed between haplogroup (hg) status of cases and CG1/CG2 and hg status of cases and several clinical variants.

Conclusions

We did not find evidence of association between mtSNPs and mtDNA hgs with MD after carefully monitoring the confounding effect of population sub-structure. MtDNA variability is particularly stratified in human populations owing to its low effective population size in comparison with autosomal markers and therefore, special care should be taken in the interpretation of seeming signals of positive associations in mtDNA case-control association studies.  相似文献   

12.
The early African experience in the Americas is marked by the transatlantic slave trade from ~1619 to 1850 and the rise of the plantation system. The origins of enslaved Africans were largely dependent on European preferences as well as the availability of potential laborers within Africa. Rice production was a key industry of many colonial South Carolina low country plantations. Accordingly, rice plantations owners within South Carolina often requested enslaved Africans from the so-called "Grain Coast" of western Africa (Senegal to Sierra Leone). Studies on the African origins of the enslaved within other regions of the Americas have been limited. To address the issue of origins of people of African descent within the Americas and understand more about the genetic heterogeneity present within Africa and the African Diaspora, we typed Y chromosome specific markers in 1,319 men consisting of 508 west and central Africans (from 12 populations), 188 Caribbeans (from 2 islands), 532 African Americans (AAs from Washington, DC and Columbia, SC), and 91 European Americans. Principal component and admixture analyses provide support for significant Grain Coast ancestry among African American men in South Carolina. AA men from DC and the Caribbean showed a closer affinity to populations from the Bight of Biafra. Furthermore, 30-40% of the paternal lineages in African descent populations in the Americas are of European ancestry. Diverse west African ancestries and sex-biased gene flow from EAs has contributed greatly to the genetic heterogeneity of African populations throughout the Americas and has significant implications for gene mapping efforts in these populations.  相似文献   

13.
We analyzed the European genetic contribution to 10 populations of African descent in the United States (Maywood, Illinois; Detroit; New York; Philadelphia; Pittsburgh; Baltimore; Charleston, South Carolina; New Orleans; and Houston) and in Jamaica, using nine autosomal DNA markers. These markers either are population-specific or show frequency differences >45% between the parental populations and are thus especially informative for admixture. European genetic ancestry ranged from 6.8% (Jamaica) to 22.5% (New Orleans). The unique utility of these markers is reflected in the low variance associated with these admixture estimates (SEM 1.3%-2.7%). We also estimated the male and female European contribution to African Americans, on the basis of informative mtDNA (haplogroups H and L) and Y Alu polymorphic markers. Results indicate a sex-biased gene flow from Europeans, the male contribution being substantially greater than the female contribution. mtDNA haplogroups analysis shows no evidence of a significant maternal Amerindian contribution to any of the 10 populations. We detected significant nonrandom association between two markers located 22 cM apart (FY-null and AT3), most likely due to admixture linkage disequilibrium created in the interbreeding of the two parental populations. The strength of this association and the substantial genetic distance between FY and AT3 emphasize the importance of admixed populations as a useful resource for mapping traits with different prevalence in two parental populations.  相似文献   

14.
The extent of recent selection in admixed populations is currently an unresolved question. We scanned the genomes of 29,141 African Americans and failed to find any genome-wide-significant deviations in local ancestry, indicating no evidence of selection influencing ancestry after admixture. A recent analysis of data from 1,890 African Americans reported that there was evidence of selection in African Americans after their ancestors left Africa, both before and after admixture. Selection after admixture was reported on the basis of deviations in local ancestry, and selection before admixture was reported on the basis of allele-frequency differences between African Americans and African populations. The local-ancestry deviations reported by the previous study did not replicate in our very large sample, and we show that such deviations were expected purely by chance, given the number of hypotheses tested. We further show that the previous study’s conclusion of selection in African Americans before admixture is also subject to doubt. This is because the FST statistics they used were inflated and because true signals of unusual allele-frequency differences between African Americans and African populations would be best explained by selection that occurred in Africa prior to migration to the Americas.  相似文献   

15.
The Atlantic slave trade promoted by West European empires (15th-19th centuries) forcibly moved at least 11 million people from Africa, including about one-third from west-central Africa, to European and American destinations. The mitochondrial DNA (mtDNA) genome has retained an imprint of this process, but previous analyses lacked west-central African data. Here, we make use of an African database of 4,860 mtDNAs, which include 948 mtDNA sequences from west-central Africa and a further 154 from the southwest, and compare these for the first time with a publicly available database of 1,148 African Americans from the United States that contains 1,053 mtDNAs of sub-Saharan ancestry. We show that >55% of the U.S. lineages have a West African ancestry, with <41% coming from west-central or southwestern Africa. These results are remarkably similar to the most up-to-date analyses of the historical record.  相似文献   

16.
Cytotoxic T-lymphocyte associated protein 4 (CTLA4) is a negative regulator of T-cell proliferation. Polymorphisms in CTLA4 have been inconsistently associated with susceptibility to rheumatoid arthritis (RA) in populations of European ancestry but have not been examined in African Americans. The prevalence of RA in most populations of European and Asian ancestry is ~1.0%; RA is purportedly less common in black Africans, with little known about its prevalence in African Americans. We sought to determine if CTLA4 polymorphisms are associated with RA in African Americans. We performed a 2-stage analysis of 12 haplotype tagging single nucleotide polymorphisms (SNPs) across CTLA4 in a total of 505 African American RA patients and 712 African American controls using Illumina and TaqMan platforms. The minor allele (G) of the rs231778 SNP was 0.054 in RA patients, compared to 0.209 in controls (4.462×10−26, Fisher's exact). The presence of the G allele was associated with a substantially reduced odds ratio (OR) of having RA (AG+GG genotypes vs. AA genotype, OR 0.19, 95% CI: 0.13–0.26, p=2.4×10−28, Fisher's exact), suggesting a protective effect. This SNP is polymorphic in the African population (minor allele frequency [MAF] 0.09 in the Yoruba population), but is very rare in other groups (MAF=0.002 in 530 Caucasians genotyped for this study). Markers associated with RA in populations of European ancestry (rs3087243 [+60C/T] and rs231775 [+49A/G]) were not replicated in African Americans. We found no confounding of association for rs231778 after stratifying for the HLA-DRB1 shared epitope, presence of anti-cyclic citrullinated peptide antibody, or degree of admixture from the European population. An African ancestry-specific genetic variant of CTLA4 appears to be associated with protection from RA in African Americans. This finding may explain, in part, the relatively low prevalence of RA in black African populations.  相似文献   

17.
To better understand the population substructure of African Americans living in coastal South Carolina, we used restriction site polymorphisms and an insertion/deletion in mitochondrial DNA (mtDNA) to construct seven-position haplotypes across 1,395 individuals from Sierra Leone, Africa, from U.S. European Americans, and from the New World African-derived populations of Jamaica, Gullah-speaking African Americans of the South Carolina Sea Islands (Gullahs), African Americans living in Charleston, South Carolina, and West Coast African Americans. Analyses showed a high degree of similarity within the New World African-derived populations, where haplotype frequencies and diversities were similar. Phi-statistics indicated that very little genetic differentiation has occurred within New World African-derived populations, but that there has been significant differentiation of these populations from Sierra Leoneans. Genetic distance estimates indicated a close relationship of Gullahs and Jamaicans with Sierra Leoneans, while African Americans living in Charleston and the West Coast were progressively more distantly related to the Sierra Leoneans. We observed low maternal European American admixture in the Jamaican and Gullah samples (m = 0.020 and 0.064, respectively) that increased sharply in a clinal pattern from Charleston African Americans to West Coast African Americans (m = 0.099 and 0.205, respectively). The appreciably reduced maternal European American admixture noted in the Gullah indicates that the Gullah may be uniquely situated to allow genetic epidemiology studies of complex diseases in African Americans with low European American admixture.  相似文献   

18.
Genetic exchange by hybridization or admixture can make an important contribution to evolution, and introgression of favourable alleles can facilitate adaptation to new environments. A small number of honeybees (Apis mellifera) with African ancestry were introduced to Brazil ~60 years ago, which dispersed and hybridized with existing managed populations of European origin, quickly spreading across much of the Americas in an example of a massive biological invasion. Here, we analyse whole‐genome sequences of 32 Africanized honeybees sampled from throughout Brazil to study the effect of this process on genome diversity. By comparison with ancestral populations from Europe and Africa, we infer that these samples have 84% African ancestry, with the remainder from western European populations. However, this proportion varies across the genome and we identify signals of positive selection in regions with high European ancestry proportions. These observations are largely driven by one large gene‐rich 1.4‐Mbp segment on chromosome 11 where European haplotypes are present at a significantly elevated frequency and likely confer an adaptive advantage in the Africanized honeybee population. This region has previously been implicated in reproductive traits and foraging behaviour in worker bees. Finally, by analysing the distribution of ancestry tract lengths in the context of the known time of the admixture event, we are able to infer an average generation time of 2.0 years. Our analysis highlights the processes by which populations of mixed genetic ancestry form and adapt to new environments.  相似文献   

19.
A Neolithic domestication of taurine cattle in the Fertile Crescent from local aurochsen (Bos primigenius) is generally accepted, but a genetic contribution from European aurochsen has been proposed. Here we performed a survey of a large number of taurine cattle mitochondrial DNA (mtDNA) control regions from numerous European breeds confirming the overall clustering within haplogroups (T1, T2 and T3) of Near Eastern ancestry, but also identifying eight mtDNAs (1.3%) that did not fit in haplogroup T. Sequencing of the entire mitochondrial genome showed that four mtDNAs formed a novel branch (haplogroup R) which, after the deep bifurcation that gave rise to the taurine and zebuine lineages, constitutes the earliest known split in the mtDNA phylogeny of B. primigenius. The remaining four mtDNAs were members of the recently discovered haplogroup Q. Phylogeographic data indicate that R mtDNAs were derived from female European aurochsen, possibly in the Italian Peninsula, and sporadically included in domestic herds. In contrast, the available data suggest that Q mtDNAs and T subclades were involved in the same Neolithic event of domestication in the Near East. Thus, the existence of novel (and rare) taurine haplogroups highlights a multifaceted genetic legacy from distinct B. primigenius populations. Taking into account that the maternally transmitted mtDNA tends to underestimate the extent of gene flow from European aurochsen, the detection of the R mtDNAs in autochthonous breeds, some of which are endangered, identifies an unexpected reservoir of genetic variation that should be carefully preserved.  相似文献   

20.
To develop informative tools for the study of population affinities in African Americans, we sequenced the hypervariable segments I and II (HVS I and HVS II) of mitochondrial DNA (mtDNA) from 96 Sierra Leoneans; European Americans; rural, Gullah-speaking African Americans; urban African Americans living in Charleston, South Carolina; and Jamaicans. We identified single nucleotide polymorphisms (SNPs) exhibiting ethnic affinities, and developed restriction endonuclease tools to screen these SNPs. Here we show that three HVS restriction site polymorphisms (RSPs), EcoRV, FokI, and MfeI, exhibit appreciable differences in frequency (average delta = 0.4165) between putative African American parental populations (i.e., extant Africans living in Sierra Leone and European Americans). Estimates of European American mtDNA admixture, calculated from haplotypes composed of these three novel RSPs, show a cline of increasing admixture from Gullah-speaking African American (m = 0.0300) to urban Charleston African American (m = 0.0689) to West Coast African American (m = 0.1769) populations. This haplotype admixture in the Gullahs is the lowest recorded to date among African Americans, consistent with previous studies using autosomal markers. These RSPs may become valuable new tools in the study of ancestral affinities and admixture dynamics of African Americans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号