首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The processes of genetic admixture determine the haplotype structure and linkage disequilibrium patterns of the admixed population, which is important for medical and evolutionary studies. However, most previous studies do not consider the inherent complexity of admixture processes. Here we proposed two approaches to explore population admixture dynamics, and we demonstrated, by analyzing genome-wide empirical and simulated data, that the approach based on the distribution of chromosomal segments of distinct ancestry (CSDAs) was more powerful than that based on the distribution of individual ancestry proportions. Analysis of 1,890 African Americans showed that a continuous gene flow model, in which the African American population continuously received gene flow from European populations over about 14 generations, best explained the admixture dynamics of African Americans among several putative models. Interestingly, we observed that some African Americans had much more European ancestry than the simulated samples, indicating substructures of local ancestries in African Americans that could have been caused by individuals from some particular lineages having repeatedly admixed with people of European ancestry. In contrast, the admixture dynamics of Mexicans could be explained by a gradual admixture model in which the Mexican population continuously received gene flow from both European and Amerindian populations over about 24 generations. Our results also indicated that recent gene flows from Sub-Saharan Africans have contributed to the gene pool of Middle Eastern populations such as Mozabite, Bedouin, and Palestinian. In summary, this study not only provides approaches to explore population admixture dynamics, but also advances our understanding on population history of African Americans, Mexicans, and Middle Eastern populations.  相似文献   

2.
Identifying the ancestry of chromosomal segments of distinct ancestry has a wide range of applications from disease mapping to learning about history. Most methods require the use of unlinked markers; but, using all markers from genome-wide scanning arrays, it should in principle be possible to infer the ancestry of even very small segments with exquisite accuracy. We describe a method, HAPMIX, which employs an explicit population genetic model to perform such local ancestry inference based on fine-scale variation data. We show that HAPMIX outperforms other methods, and we explore its utility for inferring ancestry, learning about ancestral populations, and inferring dates of admixture. We validate the method empirically by applying it to populations that have experienced recent and ancient admixture: 935 African Americans from the United States and 29 Mozabites from North Africa. HAPMIX will be of particular utility for mapping disease genes in recently admixed populations, as its accurate estimates of local ancestry permit admixture and case-control association signals to be combined, enabling more powerful tests of association than with either signal alone.  相似文献   

3.

Background

The ancestry of African-descended Americans is known to be drawn from three distinct populations: African, European, and Native American. While many studies consider this continental admixture, few account for the genetically distinct sources of ancestry within Africa – the continent with the highest genetic variation. Here, we dissect the within-Africa genetic ancestry of various populations of the Americas self-identified as having primarily African ancestry using uniparentally inherited mitochondrial DNA.

Methods and Principal Findings

We first confirmed that our results obtained using uniparentally-derived group admixture estimates are correlated with the average autosomal-derived individual admixture estimates (hence are relevant to genomic ancestry) by assessing continental admixture using both types of markers (mtDNA and Y-chromosome vs. ancestry informative markers). We then focused on the within-Africa maternal ancestry, mining our comprehensive database of published mtDNA variation (∼5800 individuals from 143 African populations) that helped us thoroughly dissect the African mtDNA pool. Using this well-defined African mtDNA variation, we quantified the relative contributions of maternal genetic ancestry from multiple W/WC/SW/SE (West to South East) African populations to the different pools of today''s African-descended Americans of North and South America and the Caribbean.

Conclusions

Our analysis revealed that both continental admixture and within-Africa admixture may be critical to achieving an adequate understanding of the ancestry of African-descended Americans. While continental ancestry reflects gender-specific admixture processes influenced by different socio-historical practices in the Americas, the within-Africa maternal ancestry reflects the diverse colonial histories of the slave trade. We have confirmed that there is a genetic thread connecting Africa and the Americas, where each colonial system supplied their colonies in the Americas with slaves from African colonies they controlled or that were available for them at the time. This historical connection is reflected in different relative contributions from populations of W/WC/SW/SE Africa to geographically distinct Africa-derived populations of the Americas, adding to the complexity of genomic ancestry in groups ostensibly united by the same demographic label.  相似文献   

4.
Admixture mapping requires a genomewide panel of relatively evenly spaced markers that can distinguish the ancestral origins of chromosomal segments in admixed individuals. Through use of the results of the International HapMap Project and specific selection criteria, the current study has examined the ability of selected single-nucleotide polymorphisms (SNPs) to extract continental ancestry information in African American subjects and to explore parameters for admixture mapping. Genotyping of two linguistically diverse West African populations (Bini and Kanuri Nigerians, who are Niger-Congo [Bantu] and Nilo-Saharan speakers, respectively), European Americans, and African Americans validated a genomewide set of >4,000 SNP ancestry-informative markers with mean and median F(ST) values >0.59 and mean and median Fisher's information content >2.5. This set of SNPs extracted a larger amount of ancestry information in African Americans than previously reported SNP panels and provides nearly uniform coverage of the genome. Moreover, in the current study, simulations show that this more informative panel improves power for admixture mapping in African Americans when ethnicity risk ratios are modest. This is particularly important in the application of admixture mapping in complex genetic diseases for which only modest ethnicity risk ratios of relevant susceptibility genes are expected.  相似文献   

5.

Background

Population history can be reflected in group genetic ancestry, where genomic variation captured by the mitochondrial DNA (mtDNA) and non-recombining portion of the Y chromosome (NRY) can separate female- and male-specific admixture processes. Genetic ancestry may influence genetic association studies due to differences in individual admixture within recently admixed populations like African Americans.

Principal Findings

We evaluated the genetic ancestry of Senegalese as well as European Americans and African Americans from Philadelphia. Senegalese mtDNA consisted of ∼12% U haplotypes (U6 and U5b1b haplotypes, common in North Africa) while the NRY haplotypes belonged solely to haplogroup E. In Philadelphia, we observed varying degrees of admixture. While African Americans have 9–10% mtDNAs and ∼31% NRYs of European origin, these results are not mirrored in the mtDNA/NRY pools of European Americans: they have less than 7% mtDNAs and less than 2% NRYs from non-European sources. Additionally, there is <2% Native American contribution to Philadelphian African American ancestry and the admixture from combined mtDNA/NRY estimates is consistent with the admixture derived from autosomal genetic data. To further dissect these estimates, we have analyzed our samples in the context of different demographic groups in the Americas.

Conclusions

We found that sex-biased admixture in African-derived populations is present throughout the Americas, with continual influence of European males, while Native American females contribute mainly to populations of the Caribbean and South America. The high non-European female contribution to the pool of European-derived populations is consistently characteristic of Iberian colonization. These data suggest that genomic data correlate well with historical records of colonization in the Americas.  相似文献   

6.
Genetic studies have identified substantial non-African admixture in the Horn of Africa (HOA). In the most recent genomic studies, this non-African ancestry has been attributed to admixture with Middle Eastern populations during the last few thousand years. However, mitochondrial and Y chromosome data are suggestive of earlier episodes of admixture. To investigate this further, we generated new genome-wide SNP data for a Yemeni population sample and merged these new data with published genome-wide genetic data from the HOA and a broad selection of surrounding populations. We used multidimensional scaling and ADMIXTURE methods in an exploratory data analysis to develop hypotheses on admixture and population structure in HOA populations. These analyses suggested that there might be distinct, differentiated African and non-African ancestries in the HOA. After partitioning the SNP data into African and non-African origin chromosome segments, we found support for a distinct African (Ethiopic) ancestry and a distinct non-African (Ethio-Somali) ancestry in HOA populations. The African Ethiopic ancestry is tightly restricted to HOA populations and likely represents an autochthonous HOA population. The non-African ancestry in the HOA, which is primarily attributed to a novel Ethio-Somali inferred ancestry component, is significantly differentiated from all neighboring non-African ancestries in North Africa, the Levant, and Arabia. The Ethio-Somali ancestry is found in all admixed HOA ethnic groups, shows little inter-individual variance within these ethnic groups, is estimated to have diverged from all other non-African ancestries by at least 23 ka, and does not carry the unique Arabian lactase persistence allele that arose about 4 ka. Taking into account published mitochondrial, Y chromosome, paleoclimate, and archaeological data, we find that the time of the Ethio-Somali back-to-Africa migration is most likely pre-agricultural.  相似文献   

7.
Basu A  Tang H  Zhu X  Gu CC  Hanis C  Boerwinkle E  Risch N 《Human genetics》2008,124(3):207-214
Migrations to the new world brought together individuals from Europe, Africa and the Americans. Inter-mating between these migrant and indigenous populations led to the subsequent formation of new admixed populations, such as African and Latino Americans. These unprecedented events brought together genomes that had evolved independently on different continents for tens of thousands of years and presented new environmental challenges for the indigenous and migrant populations, as well as their offspring. These circumstances provided novel opportunities for natural selection to occur that could be reflected in deviations at specific locations from the genome-wide ancestry distribution. Here we present an analysis examining European, Native American and African ancestry based on 284 microsatellite markers in a study of Mexican Americans from the Family Blood Pressure Program. We identified two genomic regions where there was a significant decrement in African ancestry (at 2p25.1, p < 10−8 and 9p24.1, p < 2 × 10−5) and one region with a significant increase in European ancestry (at 1p33, p < 2 × 10−5). These locations may harbor genes that have been subjected to natural selection after the ancestral mixing giving rise to Mexicans.  相似文献   

8.
One of the main findings derived from the analysis of the Neandertal genome was the evidence for admixture between Neandertals and non-African modern humans. An alternative scenario is that the ancestral population of non-Africans was closer to Neandertals than to Africans because of ancient population substructure. Thus, the study of North African populations is crucial for testing both hypotheses. We analyzed a total of 780,000 SNPs in 125 individuals representing seven different North African locations and searched for their ancestral/derived state in comparison to different human populations and Neandertals. We found that North African populations have a significant excess of derived alleles shared with Neandertals, when compared to sub-Saharan Africans. This excess is similar to that found in non-African humans, a fact that can be interpreted as a sign of Neandertal admixture. Furthermore, the Neandertal''s genetic signal is higher in populations with a local, pre-Neolithic North African ancestry. Therefore, the detected ancient admixture is not due to recent Near Eastern or European migrations. Sub-Saharan populations are the only ones not affected by the admixture event with Neandertals.  相似文献   

9.
Markers informative for ancestry are necessary for admixture mapping and improving case-control association analyses. In particular, African Americans are an admixed population for which genetic studies require accurately evaluating admixture. This will require markers that can be used in African Americans to determine if a given genomic region is of European or African ancestry. This report shows that, despite studies indicating high intra-African sequence variation, markers with large inter-ethnic differences have only small variations in allele distribution among divergent African populations and should be valuable for evaluating admixture in complex disease genetic studies.  相似文献   

10.
Drosophila melanogaster is postulated to have colonized North America in the past several 100 years in two waves. Flies from Europe colonized the east coast United States while flies from Africa inhabited the Caribbean, which if true, make the south‐east US and Caribbean Islands a secondary contact zone for African and European D. melanogaster. This scenario has been proposed based on phenotypes and limited genetic data. In our study, we have sequenced individual whole genomes of flies from populations in the south‐east US and Caribbean Islands and examined these populations in conjunction with population sequences from the west coast US, Africa, and Europe. We find that west coast US populations are closely related to the European population, likely reflecting a rapid westward expansion upon first settlements into North America. We also find genomic evidence of African and European admixture in south‐east US and Caribbean populations, with a clinal pattern of decreasing proportions of African ancestry with higher latitude. Our genomic analysis of D. melanogaster populations from the south‐east US and Caribbean Islands provides more evidence for the Caribbean Islands as the source of previously reported novel African alleles found in other east coast US populations. We also find the border between the south‐east US and the Caribbean island to be the admixture hot zone where distinctly African‐like Caribbean flies become genomically more similar to European‐like south‐east US flies. Our findings have important implications for previous studies examining the generation of east coast US clines via selection.  相似文献   

11.
Variation in gene expression is a fundamental aspect of human phenotypic variation. Several recent studies have analyzed gene expression levels in populations of different continental ancestry and reported population differences at a large number of genes. However, these differences could largely be due to non-genetic (e.g., environmental) effects. Here, we analyze gene expression levels in African American cell lines, which differ from previously analyzed cell lines in that individuals from this population inherit variable proportions of two continental ancestries. We first relate gene expression levels in individual African Americans to their genome-wide proportion of European ancestry. The results provide strong evidence of a genetic contribution to expression differences between European and African populations, validating previous findings. Second, we infer local ancestry (0, 1, or 2 European chromosomes) at each location in the genome and investigate the effects of ancestry proximal to the expressed gene (cis) versus ancestry elsewhere in the genome (trans). Both effects are highly significant, and we estimate that 12±3% of all heritable variation in human gene expression is due to cis variants.  相似文献   

12.
Drosophila melanogaster originated in Africa and colonized the rest of the world only recently (approximately 10,000 to 15,000 years ago). Using 151 microsatellite loci, we investigated patterns of gene flow between African D. melanogaster populations representing presumptive ancestral variation and recently colonized European populations. Although we detected almost no evidence for alleles of non-African ancestry in a rural D. melanogaster population from Zimbabwe, an urban population from Zimbabwe showed evidence for admixture. Interestingly, the degree of admixture differed among chromosomes. X chromosomes of both rural and urban populations showed almost no non-African ancestry, but the third chromosome in the urban population showed up to 70% of non-African alleles. When chromosomes were broken into contingent microsatellite blocks, even higher estimates of admixture and significant heterogeneity in admixture was observed among these blocks. The discrepancy between the X chromosome and the third chromosome is not consistent with a neutral admixture hypothesis. The higher number of European alleles on the third chromosome could be due to stronger selection against foreign alleles on the X chromosome or to more introgression of (beneficial) alleles on the third chromosome.  相似文献   

13.
The incidence of chronic kidney disease varies by ethnic group in the USA, with African Americans displaying a two-fold higher rate than European Americans. One of the two defining variables underlying staging of chronic kidney disease is the glomerular filtration rate. Meta-analysis in individuals of European ancestry has identified 23 genetic loci associated with the estimated glomerular filtration rate (eGFR). We conducted a follow-up study of these 23 genetic loci using a population-based sample of 1,018 unrelated admixed African Americans. We included in our follow-up study two variants in APOL1 associated with end-stage kidney disease discovered by admixture mapping in admixed African Americans. To address confounding due to admixture, we estimated local ancestry at each marker and global ancestry. We performed regression analysis stratified by local ancestry and combined the resulting regression estimates across ancestry strata using an inverse variance-weighted fixed effects model. We found that 11 of the 24 loci were significantly associated with eGFR in our sample. The effect size estimates were not significantly different between the subgroups of individuals with two copies of African ancestry vs. two copies of European ancestry for any of the 11 loci. In contrast, allele frequencies were significantly different at 10 of the 11 loci. Collectively, the 11 loci, including four secondary signals revealed by conditional analyses, explained 14.2% of the phenotypic variance in eGFR, in contrast to the 1.4% explained by the 24 loci in individuals of European ancestry. Our findings provide insight into the genetic basis of variation in renal function among admixed African Americans.  相似文献   

14.
The early African experience in the Americas is marked by the transatlantic slave trade from ~1619 to 1850 and the rise of the plantation system. The origins of enslaved Africans were largely dependent on European preferences as well as the availability of potential laborers within Africa. Rice production was a key industry of many colonial South Carolina low country plantations. Accordingly, rice plantations owners within South Carolina often requested enslaved Africans from the so-called "Grain Coast" of western Africa (Senegal to Sierra Leone). Studies on the African origins of the enslaved within other regions of the Americas have been limited. To address the issue of origins of people of African descent within the Americas and understand more about the genetic heterogeneity present within Africa and the African Diaspora, we typed Y chromosome specific markers in 1,319 men consisting of 508 west and central Africans (from 12 populations), 188 Caribbeans (from 2 islands), 532 African Americans (AAs from Washington, DC and Columbia, SC), and 91 European Americans. Principal component and admixture analyses provide support for significant Grain Coast ancestry among African American men in South Carolina. AA men from DC and the Caribbean showed a closer affinity to populations from the Bight of Biafra. Furthermore, 30-40% of the paternal lineages in African descent populations in the Americas are of European ancestry. Diverse west African ancestries and sex-biased gene flow from EAs has contributed greatly to the genetic heterogeneity of African populations throughout the Americas and has significant implications for gene mapping efforts in these populations.  相似文献   

15.
We report a study of genome-wide, dense SNP (∼900K) and copy number polymorphism data of indigenous southern Africans. We demonstrate the genetic contribution to southern and eastern African populations, which involved admixture between indigenous San, Niger-Congo-speaking and populations of Eurasian ancestry. This finding illustrates the need to account for stratification in genome-wide association studies, and that admixture mapping would likely be a successful approach in these populations. We developed a strategy to detect the signature of selection prior to and following putative admixture events. Several genomic regions show an unusual excess of Niger-Kordofanian, and unusual deficiency of both San and Eurasian ancestry, which were considered the footprints of selection after population admixture. Several SNPs with strong allele frequency differences were observed predominantly between the admixed indigenous southern African populations, and their ancestral Eurasian populations. Interestingly, many candidate genes, which were identified within the genomic regions showing signals for selection, were associated with southern African-specific high-risk, mostly communicable diseases, such as malaria, influenza, tuberculosis, and human immunodeficiency virus/AIDs. This observation suggests a potentially important role that these genes might have played in adapting to the environment. Additionally, our analyses of haplotype structure, linkage disequilibrium, recombination, copy number variation and genome-wide admixture highlight, and support the unique position of San relative to both African and non-African populations. This study contributes to a better understanding of population ancestry and selection in south-eastern African populations; and the data and results obtained will support research into the genetic contributions to infectious as well as non-communicable diseases in the region.  相似文献   

16.
Admixture is a well known confounder in genetic association studies. If genome-wide data is not available, as would be the case for candidate gene studies, ancestry informative markers (AIMs) are required in order to adjust for admixture. The predominant population group in the Western Cape, South Africa, is the admixed group known as the South African Coloured (SAC). A small set of AIMs that is optimized to distinguish between the five source populations of this population (African San, African non-San, European, South Asian, and East Asian) will enable researchers to cost-effectively reduce false-positive findings resulting from ignoring admixture in genetic association studies of the population. Using genome-wide data to find SNPs with large allele frequency differences between the source populations of the SAC, as quantified by Rosenberg et. al''s -statistic, we developed a panel of AIMs by experimenting with various selection strategies. Subsets of different sizes were evaluated by measuring the correlation between ancestry proportions estimated by each AIM subset with ancestry proportions estimated using genome-wide data. We show that a panel of 96 AIMs can be used to assess ancestry proportions and to adjust for the confounding effect of the complex five-way admixture that occurred in the South African Coloured population.  相似文献   

17.
Methods for high-density admixture mapping of disease genes   总被引:26,自引:0,他引:26       下载免费PDF全文
Admixture mapping (also known as "mapping by admixture linkage disequilibrium," or MALD) has been proposed as an efficient approach to localizing disease-causing variants that differ in frequency (because of either drift or selection) between two historically separated populations. Near a disease gene, patient populations descended from the recent mixing of two or more ethnic groups should have an increased probability of inheriting the alleles derived from the ethnic group that carries more disease-susceptibility alleles. The central attraction of admixture mapping is that, since gene flow has occurred recently in modern populations (e.g., in African and Hispanic Americans in the past 20 generations), it is expected that admixture-generated linkage disequilibrium should extend for many centimorgans. High-resolution marker sets are now becoming available to test this approach, but progress will require (a). computational methods to infer ancestral origin at each point in the genome and (b). empirical characterization of the general properties of linkage disequilibrium due to admixture. Here we describe statistical methods to estimate the ancestral origin of a locus on the basis of the composite genotypes of linked markers, and we show that this approach accurately estimates states of ancestral origin along the genome. We apply this approach to show that strong admixture linkage disequilibrium extends, on average, for 17 cM in African Americans. Finally, we present power calculations under varying models of disease risk, sample size, and proportions of ancestry. Studying approximately 2500 markers in approximately 2500 patients should provide power to detect many regions contributing to common disease. A particularly important result is that the power of an admixture mapping study to detect a locus will be nearly the same for a wide range of mixture scenarios: the mixture proportion should be 10%-90% from both ancestral populations.  相似文献   

18.
The continent of Africa is thought to be the site of origin of all modern humans and is the more recent origin of millions of African Americans. Although Africa has the highest levels of human genetic diversity both within and between populations, it is under-represented in studies of human genetics. Recent advances have been made in understanding the origins of modern humans within Africa, the rate of adaptations due to positive selection, the routes taken in the first migrations of modern humans out of Africa, and the degree of admixture with archaic populations. Africa is also in dire need of effective medical interventions, and studies of genetic variation in Africans will shed light on the genetic basis of diseases and resistance to infectious diseases. Thus, we have tremendous potential to learn about human variation and evolutionary history and to positively impact human health care from studies of genetic diversity in Africa.  相似文献   

19.
While genome-wide association studies (GWAS) have primarily examined populations of European ancestry, more recent studies often involve additional populations, including admixed populations such as African Americans and Latinos. In admixed populations, linkage disequilibrium (LD) exists both at a fine scale in ancestral populations and at a coarse scale (admixture-LD) due to chromosomal segments of distinct ancestry. Disease association statistics in admixed populations have previously considered SNP association (LD mapping) or admixture association (mapping by admixture-LD), but not both. Here, we introduce a new statistical framework for combining SNP and admixture association in case-control studies, as well as methods for local ancestry-aware imputation. We illustrate the gain in statistical power achieved by these methods by analyzing data of 6,209 unrelated African Americans from the CARe project genotyped on the Affymetrix 6.0 chip, in conjunction with both simulated and real phenotypes, as well as by analyzing the FGFR2 locus using breast cancer GWAS data from 5,761 African-American women. We show that, at typed SNPs, our method yields an 8% increase in statistical power for finding disease risk loci compared to the power achieved by standard methods in case-control studies. At imputed SNPs, we observe an 11% increase in statistical power for mapping disease loci when our local ancestry-aware imputation framework and the new scoring statistic are jointly employed. Finally, we show that our method increases statistical power in regions harboring the causal SNP in the case when the causal SNP is untyped and cannot be imputed. Our methods and our publicly available software are broadly applicable to GWAS in admixed populations.  相似文献   

20.
Hypertension (HTN) is a devastating disease with a higher incidence in African Americans than European Americans, inspiring searches for genetic variants that contribute to this difference. We report the results of a large-scale admixture scan for genes contributing HTN risk, in which we screened 1,670 African Americans with HTN and 387 control individuals for regions of the genome with elevated proportion of African or European ancestry. No loci were identified that were significantly associated with HTN. We also searched for evidence of an admixture signal at 40 candidate genes and eight previously reported linkage peaks, but none appears to contribute substantially to the differential HTN risk between African and European Americans. Finally, we observed nominal association at one of the loci detected in the admixture scan of Zhu et al. 2005 (p = 0.016 at 6q24.3 correcting for four hypotheses tested), although we caution that the significance is marginal and the estimated odds ratio of 1.19 per African allele is less than what would be expected from the original report; thus, further work is needed to follow up this locus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号