首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The advances in the treatment of chronic myeloid leukemia (CML) during the last years were also accompanied by the development of evading strategies by tumor cells, resulting in chemotherapy resistance in some patients. Patented organopalladium compounds derived from the reaction of N,N-dimethyl-1-phenethylamine (dmpa) with [1,2-ethanebis(diphenylphosphine)] (dppe) exhibited a potent antitumor activity in vivo and in vitro in melanoma cells. We showed here that the cyclopalladated derivative [Pd2(R(+))C2, N-dmpa)2(μ-dppe)Cl2], named compound 7b, was highly effective to promote cell death in the K562 human leukemia cells and its mechanisms of action were investigated. It was shown that compound 7b was able to promote exclusively apoptotic cell death in K562 cells associated to cytochrome c release and caspase 3 activation. This cytotoxic effect was not observed in normal peripheral mononuclear blood cells. The compound 7b-induced intrinsic apoptotic pathway was triggered by the protein thiol oxidation that resulted in the dissipation of the mitochondrial transmembrane potential. The preventive effect of the dithiothreitol on the compound 7b-induced cell death and all downstream events associated to apoptosis confirmed that death signal was elicited by the thiol oxidation. These findings contribute to the elucidation of the palladacycle 7b-induced cell death mechanism and present this compound as a promising drug in the CML antitumor chemotherapy.  相似文献   

2.
Huang HL  Chen YC  Huang YC  Yang KC  Pan Hy  Shih SP  Chen YJ 《PloS one》2011,6(12):e29014
Lapatinib is an oral, small-molecule, dual tyrosine kinase inhibitor of epidermal growth factor receptors (EGFR, or ErbB/Her) in solid tumors. Little is known about the effect of lapatinib on leukemia. Using human chronic myelogenous leukemia (CML) K562 cells as an experimental model, we found that lapatinib simultaneously induced morphological changes resembling apoptosis, autophagy, and megakaryocytic differentiation. Lapatinib-induced apoptosis was accompanied by a decrease in mitochondrial transmembrane potential and was attenuated by the pancaspase inhibitor z-VAD-fmk, indicating a mitochondria-mediated and caspase-dependent pathway. Lapatinib-induced autophagic cell death was verified by LC3-II conversion, and upregulation of Beclin-1. Further, autophagy inhibitor 3-methyladenine as well as autophagy-related proteins Beclin-1 (ATG6), ATG7, and ATG5 shRNA knockdown rescued the cells from lapatinib-induced growth inhibition. A moderate number of lapatinib-treated K562 cells exhibited features of megakaryocytic differentiation. In summary, lapatinib inhibited viability and induced multiple cellular events including apoptosis, autophagic cell death, and megakaryocytic differentiation in human CML K562 cells. This distinct activity of lapatinib against CML cells suggests potential for lapatinib as a therapeutic agent for treatment of CML. Further validation of lapatinib activity in vivo is warranted.  相似文献   

3.
Although the identification of tyrosine kinase inhibitors (TKIs) has changed the treatment paradigm of many cancer types including chronic myeloid leukemia (CML), still adjustment of neoplastic cells to cytotoxic effects of anticancer drugs is a serious challenge. In the area of drug resistance, epigenetic alterations are at the center of attention and the present study aimed to evaluate whether blockage of epigenetics mechanisms using a pan-histone deacetylase (HDAC) inhibitor induces cell death in CML-derived K562 cells. We found that the abrogation of HDACs using panobinostat resulted in a reduction in survival of the K562 cell line through p27-mediated cell cycle arrest. Noteworthy, the results of the synergistic experiments revealed that HDAC suppression could be recruited as a way to potentiate cytotoxicity of Imatinib and to enhance the therapeutic efficacy of CML. Here, we proposed for the first time that the inhibitory effect of panobinostat was overshadowed, at least partially, through the aberrant activation of the phosphoinositide 3-kinase (PI3K)/c-Myc axis. Meanwhile, we found that upon blockage of autophagy and the proteasome pathway, as the main axis involved in the activation of autophagy, the anti-leukemic property of the HDAC inhibitor was potentiated. Taken together, our study suggests the beneficial application of HDAC inhibition in the treatment strategies of CML; however, further in vivo studies are needed to determine the efficacy of this inhibitor, either as a single agent or in combination with small molecule inhibitors of PI3K and/or c-Myc in this malignancy.  相似文献   

4.
5.
The mechanisms by which interferon-alpha (IFN-alpha) mediates its anti-leukemic effects in chronic myelogenous leukemia (CML) cells are not known. We determined whether p38 MAPK is activated by IFN-alpha in BCR-ABL-expressing cells and whether its function is required for the generation of growth inhibitory responses. IFN-alpha treatment induced phosphorylation/activation of p38 in the IFN-alpha-sensitive KT-1 cell line, but not in IFN-alpha-resistant K562 cells. Consistent with this, IFN-alpha treatment of KT-1 (but not K562) cells induced activation of the small GTPase Rac1, which functions as an upstream regulator of p38. In addition, IFN-alpha-dependent phosphorylation/activation of p38 was induced by treatment of primary granulocytes isolated from the peripheral blood of patients with CML. To define the functional role of the Rac1/p38 MAPK pathway in IFN-alpha signaling, the effects of pharmacological inhibition of p38 on the induction of IFN-alpha responses were determined. Treatment of KT-1 cells with the p38-specific inhibitors SB203580 and SB202190 reversed the growth inhibitory effects of IFN-alpha. On the other hand, the MEK kinase inhibitor PD098059 had no effects, further demonstrating the specificity of these findings. To directly determine the significance of IFN-alpha-dependent activation of p38 in the induction of the anti-leukemic effects of IFN-alpha, we evaluated the effects of p38 inhibition on leukemic colony formation in bone marrow samples of patients with CML. IFN-alpha inhibited leukemic granulocyte/macrophage colony formation in a dose-dependent manner, whereas concomitant treatment with p38 inhibitors reversed such an inhibition. Thus, the Rac1/p38 MAPK pathway is activated by IFN-alpha in BCR-ABL-expressing cells and appears to play a key role in the generation of the growth inhibitory effects of IFN-alpha in CML cells.  相似文献   

6.
The biological outcome of nitric oxide (NO) and reactive nitrogen species (RNS) in regulating pro survival and pro death autophagic pathways still demand further investigation. In the present study, we investigated the effect of nitrosative stress in K562 cells using NO donor compound DETA-NONOate, peroxynitrite, and SIN-1. Exposure to NO, peroxynitrite, and SIN-1 caused decrease in K562 cell survival. NO induced autophagy but not apoptosis or necrosis in K562 cells. In contrast, peroxynitrite and SIN-1 treatment induced apoptosis in K562 cells. Surprisingly, inhibition of autophagic response using 3-methyladenine led to the induction of apoptosis in K562 cells. Increase in 5’adenosine monophosphate-activated protein kinase (AMPK) phosphorylation was only observed in the presence of NO donor indicated that AMPK was crucial to induce autophagy in K562 cells. We for the first time discovered a novel role of p73 in autophagy induction under nitrosative stress in K562 cells. TAp73α was only induced upon exposure to NO but not in the presence of peroxynitrite. Reduced glutathione (GSH)/oxidised glutathione (GSSG) ratio remained unaltered upon NO exposure. Our data suggest a complex network of interaction and cross regulations between NO and p73. These data open a new path for therapies based on the abilities of RNS to induce autophagy-mediated cell death.  相似文献   

7.
Trichosanthin (TCS), a type I ribosome-inactivating protein, induces cell death in various cell types including several tumor cell lines. However, the mechanism remains largely uncharacterized. In this study, we investigated the possible mechanism underlying its cytotoxicity by using human chronic myeloid leukemia cell line K562. We found that TCS induced apoptosis in K562 cells in a time- and concentration-dependent manner and can be blocked by caspase-3 inhibitors. Interestingly, TCS treatment induced a transient elevation in intracellular calcium concentration and a slow increase in reactive oxygen species production, while calcium chelators and antioxidants had no obvious effect on TCS-induced apoptosis, suggesting that calcium changes and reactive oxygen species may not be involved in TCS-mediated apoptosis in K562 cells. Instead we found that TCS partly inhibited PKC activity. Indeed, the PKC activator, PMA, inhibited while the PKC inhibitor, calphostin c, enhanced TCS-induced apoptosis. These PKC modulators had similar effects on TCS-induced cleavage of caspase-3, and caspase-3 inhibitors prevented calphostin c-enhanced apoptosis induced by TCS. In summary, we conclude that TCS induces apoptosis in K562 cells partly via PKC inhibition and caspase-3 activation.  相似文献   

8.
Chronic myeloid leukemia (CML) is a lethal malignancy, and the progress toward long‐term survival has stagnated in recent decades. Pristimerin, a quinone methide triterpenoid isolated from the Celastraceae and Hippocrateaceae families, is well‐known to exert potential anticancer activities. In this study, we investigated the effects and the mechanisms of action on CML. We found that pristimerin inhibited cell proliferation of K562 CML cells by causing G1 phase arrest. Furthermore, we demonstrated that pristimerin triggered autophagy and apoptosis. Intriguingly, pristimerin‐induced cell death was restored by an autophagy inhibitor, suggesting that autophagy is cross‐linked with pristimerin‐induced apoptosis. Further studies revealed that pristimerin could produce excessive reactive oxygen species (ROS), which then induce JNK activation. These findings provide clear evidence that pristimerin might be clinical benefit to patients with CML.  相似文献   

9.
《Autophagy》2013,9(5):655-657
Resveratrol (RSV) is an attractive candidate for cancer therapy via its ability to intervene at different levels in the AMPK/mTOR pathway. Indeed, RSV is unique in its capacity to inhibit both mTOR and S6 kinase and to activate AMPK. Our recent data reveals that RSV triggered autophagic cell death (ACD) in Chronic Myelogenous Leukemia (CML) cells, via both AMPK activation and JNK-mediated p62/SQSTM1 expression. Here we discuss how Resveratrol can mediate ACD in CML cells and the possibility of utilizing the AMPK/mTOR and JNK/p62 pathways via Resveratrol to combat CML and other hematopoietic malignancies.  相似文献   

10.
PP2A activator FTY720 has been shown to possess the anti-leukemic activity for chronic myelogenous leukemia (CML), however, the cell killing mechanism underlying its anti-leukemic activity has remained to be verified. We investigated the precise mechanisms underlying the apoptosis induction by FTY720, especially focusing on the roles of BH3-only proteins, and the therapeutic potency of FTY720 for CML. Enforced expression of either BCL2 or the dominant-negative protein of FADD (FADD.DN) partly protected CML cells from apoptosis by FTY720, indicating the involvement of both cell extrinsic and intrinsic apoptosis pathways. FTY720 activates pro-apoptotic BH3-only proteins: BIM, which is essential for apoptosis by BCR-ABL1 tyrosine kinase inhibitors (TKIs), and BID, which accelerates the extrinsic apoptosis pathway. Gene knockdown of either BIM or BID partly protected K562 cells from apoptosis by FTY720, but the extent of cell protection was not as much as that by overexpression of either BCL2 or FADD.DN. Moreover, knockdown of both BIM and BID did not provide additional protection compared with knockdown of only BIM or BID, indicating that BIM and BID complement each other in apoptosis by FTY720, especially when either is functionally impaired. FTY720 can overcome TKI resistance caused by ABL kinase domain mutations, dysfunction of BIM resulting from gene deletion polymorphism, and galectin-3 overexpression. In addition, ABT-263, a BH3-mimetic, significantly augmented cell death induction by FTY720 both in TKI-sensitive and -resistant leukemic cells. These results provide the rationale that FTY720, with its unique effects on BIM and BID, could lead to new therapeutic strategies for CML.  相似文献   

11.
Activation of protein kinase C (PKC) triggers cellular signals that inhibit Fas/CD95-induced cell death in Jurkat T-cells by poorly defined mechanisms. Previously, we have shown that one effect of PKC on Fas/CD95-dependent cell death occurs through inhibition of cell shrinkage and K(+) efflux (Gómez-Angelats, M., Bortner, C. D., and Cidlowski, J. A. (2000) J. Biol. Chem. 275, 19609-19619). Here we report that PKC alters Fas/CD95 signaling from the plasma membrane to the activation of caspases by exerting a profound action on survival/cell death decisions. Specific activation of PKC with 12-O-tetradecanoylphorbol-13-acetate or bryostatin-1 induced translocation of PKC from the cytosol to the membrane and effectively inhibited cell shrinkage and cell death triggered by anti-Fas antibody in Jurkat cells. In contrast, inhibition of classical PKC isotypes with G?6976 exacerbated the effect of Fas activation on both apoptotic volume decrease and cell death. PKC activation/inhibition did not affect anti-Fas antibody binding to the cell surface, intracellular levels of FADD (Fas-associated protein with death domain), or c-FLIP (cellular FLICE-like inhibitory protein) expression. However, processing/activation of both caspase-8 and caspase-3 and BID cleavage were markedly blocked upon PKC activation and, conversely, were augmented during PKC inhibition, suggesting a role for PKC upstream of caspase-8 processing and activation. Analysis of death-inducing signaling complex (DISC) formation was carried out to examine the influence of PKC on recruitment of both FADD and procaspase-8 to the Fas receptor. PKC activation blocked FADD recruitment and caspase-8 activation and thus DISC formation in both type I and II cells. In contrast, inhibition of classical PKCs promoted the opposite effect on the Fas pathway by rapidly increasing FADD recruitment, caspase-8 activation, and DISC formation. Together, these data show that PKC finely modulates Fas/CD95 signaling by altering the efficiency of DISC formation.  相似文献   

12.
目的:通过二烯丙基二硫诱导白血病K562 细胞发生自噬性死亡,探讨其作用机制。方法:40 mg/LDADS 作用K562 细胞12 小时后,透射电镜观察K562 细胞超微结构,MDC 染色荧光显微镜观察自噬泡及流式细胞仪定量检测自噬率,RT-PCR 检测Beclin1mRNA 的表达水平。结果:DADS 作用后的K562 细胞后,透射电镜可观察到胞质内出现大量自噬体;MDC染色荧光显微镜观 察显示,K562 细胞胞浆中的自噬泡明显增多,而空白组与溶媒组胞浆中的自噬泡很少;流式细胞术定量测定空白对照组、溶媒对 照组、DADS药物组自噬率分别为(7.27± 5.60)%、(7.10± 5.13)%、(27.39± 6.51)%(P<0.05);空白对照组为0.658± 0.007,溶媒对 照组为0.671± 0.012,两者的Beclin1mRNA 的表达强度无明显差异(P>0.05),DADS 药物组为0.911± 0.008,高于对照组(P<0. 05)。结论:二烯丙基二硫可诱导白血病k562 细胞发生自噬性死亡,其机制可能与Beclin1 的上调有关。  相似文献   

13.
Ovarian cancer is a common cause of death among gynecological cancers. Although ovarian cancer initially responds to chemotherapy, frequent recurrence in patients remains a therapeutic challenge. Pyruvate kinase M2 (PKM2) plays a pivotal role in regulating cancer cell survival. However, its therapeutic role remains unclear. Here, we investigated the anticancer effects of compound 3K, a specific PKM2 inhibitor, on the regulation of autophagic and apoptotic pathways in SK-OV-3 (PKM2-overexpressing human ovarian adenocarcinoma cell line). The anticancer effect of compound 3K was examined using MTT and colony formation assays in SK-OV-3 cells. PKM2 expression was positively correlated with the severity of the tumor, and expression of pro-apoptotic proteins increased in SK-OV-3 cells following compound 3K treatment. Compound 3K induced AMPK activation, which was accompanied by mTOR inhibition. Additionally, this compound inhibited glycolysis, resulting in reduced proliferation of SK-OV-3 cells. Compound 3K treatment suppressed tumor progression in an in vivo xenograft model. Our findings suggest that the inhibition of PKM2 by compound 3K affected the Warburg effect and induced autophagic cell death. Therefore, use of specific PKM2 inhibitors to block the glycolytic pathway and target cancer cell metabolism represents a promising therapeutic approach for treating PKM2-overexpressing ovarian cancer.  相似文献   

14.
Imatinib, a Bcr-Abl-specific inhibitor, is effective for treating chronic myeloid leukemia (CML), but drug resistance has emerged for this disease. In this study, we synthesized a novel tubulin polymerization inhibitor, MPT0B206 (N-[1-(4-methoxy-benzenesulfonyl)-2,3-dihydro-1H-indol-7-yl]-formamide), and demonstrated its apoptotic effect and mechanism in imatinib-sensitive K562 and imatinib-resistant K562R CML cells. Western blotting and immunofluorescence microscopy showed that MPT0B206 induced microtubule depolymerization in K562 and K562R cells. MPT0B206 inhibited the growth of these cells in a concentration- and time-dependent manner. It did not affect the viability of normal human umbilical vein endothelial cells. MPT0B206 induced G2/M cell cycle arrest and the appearance of the mitotic marker MPM-2 in K562 and K562R cells, which is associated with the upregulation of cyclin B1 and the dephosphorylation of Cdc2. Treatment of K562 and K562R cells with MPT0B206 induced apoptosis and reduced the protein levels of procaspase-9 and procaspase-3 and increased caspase-3 activity and PARP cleavage. MPT0B206 also reduced the levels of the antiapoptotic proteins Mcl-1 and Bcl-2 and increased the level of the apoptotic protein Bax. Additional experiments showed that MPT0B206 markedly downregulated Bcr-Abl mRNA expression and total and phosphorylated Bcr-Abl protein levels and inhibited the phosphorylation of its downstream proteins STAT5, MAPK, and AKT, and the protein level of c-Myc in K562 and K562R cells. Furthermore, MPT0B206 triggered viability reduction and apoptosis in CML cells carrying T315I-mutated Bcr-Abl. Together, these results suggest that MPT0B206 is a promising alternative for treating imatinib-resistant CML.  相似文献   

15.
16.
Ceramide is a sphingolipid that activates stress kinases such as p38 and c-JUN N-Terminal Kinase (JNK). Though Chronic Myelogenous Leukemia (CML) derived K562 cells resist killing by short chain C2-ceramide, we report here that longer chain C6-ceramide promotes apoptosis in these cells. C6-ceramide induces cleavage of Caspase-8 and Caspase-9, but only Caspase-8 is required for apoptosis. The sphingolipid killed CML derived KBM5 cells and, to a lesser extent, imatinib-resistant KBM5-STI cells suggesting that BCR-ABL can not completely block C6-ceramide-induced apoptosis but the kinase may regulate the process. BCR-ABL is known to suppress Protein Phosphatase 2A (PP2A) in CML cells. While C6-ceramide can activate PP2A in acute leukemia cells, the sphingolipid did not activate the phosphatase in K562 cells. C6-ceramide did not activate p38 kinase but did promote JNK activation and phosphorylation of JUN. Inhibition of JNK by pharmacological agent protected K562 cells from C6-ceramide suggesting that JNK plays an essential role in C6-ceramide mediated apoptosis. Furthermore, the sphingolipid promoted MCL-1 phosphorylation by a mechanism that, at least in part, involves JNK. The findings presented here suggest that Caspase-8, JNK, and perhaps MCL-1 may play important roles in regulating cell death and may represent new targets for therapeutic strategies for CML.  相似文献   

17.
目的:通过二烯丙基二硫诱导白血病K562细胞发生自噬性死亡,探讨其作用机制。方法:40 mg/LDADS作用K562细胞12小时后,透射电镜观察K562细胞超微结构,MDC染色荧光显微镜观察自噬泡及流式细胞仪定量检测自噬率,RT-PCR检测Beclin1mRNA的表达水平。结果:DADS作用后的K562细胞后,透射电镜可观察到胞质内出现大量自噬体;MDC染色荧光显微镜观察显示,K562细胞胞浆中的自噬泡明显增多,而空白组与溶媒组胞浆中的自噬泡很少;流式细胞术定量测定空白对照组、溶媒对照组、DADS药物组自噬率分别为(7.27±5.60)%、(7.10±5.13)%、(27.39±6.51)%(P〈0.05);空白对照组为0.658±0.007,溶媒对照组为0.671±0.012,两者的Beclin1mRNA的表达强度无明显差异(P〉0.05),DADS药物组为0.911±0.008,高于对照组(P〈0.05)。结论:二烯丙基二硫可诱导白血病k562细胞发生自噬性死亡,其机制可能与Beclin1的上调有关。  相似文献   

18.
Expression of oncogenic Bcr-Abl inhibits cell differentiation of hematopoietic stem/progenitor cells in chronic myeloid leukemia (CML). Differentiation therapy is considered to be a new strategy for treating this type of leukemia. Aclacinomycin A (ACM) is an antitumor antibiotic. Previous studies have shown that ACM induced erythroid differentiation of CML cells. In this study, we investigate the effect of ACM on the sensitivity of human CML cell line K562 to Bcr-Abl specific inhibitor imatinib (STI571, Gleevec). We first determined the optimal concentration of ACM for erythroid differentiation but not growth inhibition and apoptosis in K562 cells. Then, pretreatment with this optimal concentration of ACM followed by a minimally toxic concentration of imatinib strongly induced growth inhibition and apoptosis compared to that with simultaneous co-treatment, indicating that ACM-induced erythroid differentiation sensitizes K562 cells to imatinib. Sequential treatment with ACM and imatinib induced Bcr-Abl down-regulation, cytochrome c release into the cytosol, and caspase-3 activation, as well as decreased Mcl-1 and Bcl-xL expressions, but did not affect Fas ligand/Fas death receptor and procaspase-8 expressions. ACM/imatinib sequential treatment-induced apoptosis was suppressed by a caspase-9 inhibitor and a caspase-3 inhibitor, indicating that the caspase cascade is involved in this apoptosis. Furthermore, we demonstrated that ACM induced erythroid differentiation through the p38 mitogen-activated protein kinase (MAPK) pathway. The inhibition of erythroid differentiation by p38MAPK inhibitor SB202190, p38MAPK dominant negative mutant or p38MAPK shRNA knockdown, reduced the ACM/imatinib sequential treatment-mediated growth inhibition and apoptosis. These results suggest that differentiated K562 cells induced by ACM-mediated p38MAPK pathway become more sensitive to imatinib and result in down-regulations of Bcr-Abl and anti-apoptotic proteins, growth inhibition and apoptosis. These results provided a potential management by which ACM might have a crucial impact on increasing sensitivity of CML cells to imatinib in the differentiation therapeutic approaches.  相似文献   

19.
Resistance toward imatinib (IM) and other BCR/ABL tyrosine kinase inhibitors remains troublesome in the treatment of advanced stage chronic myeloid leukemia (CML). The aim of this study was to estimate the reversal effects of down-regulation of Na+/H+ exchanger 1 (NHE1) on the chemoresistance of BCR-ABL-positive leukemia patients'' cells and cell lines. After treatment with the specific NHE1 inhibitor cariporide to decrease intracellular pH (pHi), the heme oxygenase-1 (HO-1) levels of the K562R cell line and cells from IM-insensitive CML patients decreased. HO-1, as a Bcr/Abl-dependent survival molecule in CML cells, is important for the resistance to tyrosine kinase inhibitors in patients with newly diagnosed CML or IM-resistant CML. Silencing PKC-β and Nrf-2 or treatment with inhibitors of p38 pathways obviously blocked NHE1-induced HO-1 expression. Furthermore, treatment with HO-1 or p38 inhibitor plus IM increased the apoptosis of the K562R cell line and IM-insensitive CML patients'' cells. Inhibiting HO-1 enhanced the activation of caspase-3 and poly(ADP-ribose) polymerase-1. Hence, the results support the anti-apoptotic role of HO-1 induced by NHE1 in the K562R cell line and IM-insensitive CML patients and provide a mechanism by which inducing HO-1 expression via the PKC-β/p38-MAPK pathway may promote tumor resistance to oxidative stress.  相似文献   

20.
The mitogen-activated protein (MAP) kinase family is activated in response to a wide variety of external stress signals such as UV irradiation, heat shock, and many chemotherapeutic drugs and leads to the induction of apoptosis. A novel series of pyrrolo-1,5-benzoxazepines have been shown to potently induce apoptosis in chronic myelogenous leukemia (CML) cells, which are resistant to many chemotherapeutic agents. In this study we have delineated part of the mechanism by which a representative compound known as PBOX-6 induces apoptosis. We have investigated whether PBOX-6 induces activation of MAP kinase signaling pathways in CML cells. Treatment of K562 cells with PBOX-6 resulted in the transient activation of two JNK isoforms, JNK1 and JNK2. In contrast, PBOX-6 did not activate the extracellular signal-regulated kinase (ERK) or p38. Apoptosis was found to occur independently of the small GTPases Ras, Rac, and Cdc42 but involved phosphorylation of the JNK substrates, c-Jun and ATF-2. Pretreatment of K562 cells with the JNK inhibitor, dicoumarol, abolished PBOX-6-induced phosphorylation of c-Jun and ATF-2 and inhibited the induced apoptosis, suggesting that JNK activation is an essential component of the apoptotic pathway induced by PBOX-6. Consistent with this finding, transfection of K562 cells with the JNK scaffold protein, JIP-1, inhibited JNK activity and apoptosis induced by PBOX-6. JIP-1 specifically scaffolds JNK, MKK7, and members of the mixed-lineage kinase (MLK) family, implicating these kinases upstream of JNK in the apoptotic pathway induced by PBOX-6 in K562 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号