首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li J  Xia X  Ke Y  Nie H  Smith MA  Zhu X 《Biochimica et biophysica acta》2007,1770(8):1169-1180
Trichosanthin (TCS), a traditional Chinese medicine, exerts antitumor activities by inducing apoptosis in many different tumor cell lines. However, the mechanisms remain obscure. The present study focused on various caspase pathways that may be involved in TCS-induced apoptosis in leukemia HL-60 cells. Key caspases in both intrinsic and extrinsic pathways including caspase-8, -9 and -3 were activated upon TCS treatment. Additionally, TCS treatment induced upregulation of BiP and CHOP and also activated caspase-4, which for the first time strongly supported the involvement of endoplasmic reticulum stress pathway in TCS-induced apoptosis. Interestingly, although caspase-8 was activated, Fas/Fas ligand pathway was not involved as evidenced by a lack of induction of Fas or Fas ligand and a lack of inhibitory effect of anti-Fas blocking antibody on TCS-induced apoptosis. Instead, caspase-8 was activated in a caspase-9 and -4 dependent manner. The involvement of mitochondria was demonstrated by the reduction of mitochondrial membrane potential and release of cytochrome c and Smac besides the activation of caspase-9. Further investigation confirmed that caspase-3 was the major executioner caspase downstream to caspase-9, -4 and -8. Taken together, our results suggested that TCS-induced apoptosis in HL-60 cells was mainly mediated by mitochondrial and ER stress signaling pathways via caspase-3.  相似文献   

2.
Gomesin is an antimicrobial peptide isolated from hemocytes of a common Brazilian tarantula spider named Acanthoscurria gomesiana. This peptide exerts antitumor activity in vitro and in vivo by an unknown mechanism. In this study, the cytotoxic mechanism of gomesin in human neuroblastoma SH-SY5Y and rat pheochromocytoma PC12 cells was investigated. Gomesin induced necrotic cell death and was cytotoxic to SH-SY5Y and PC12 cells. The peptide evoked a rapid and transient elevation of intracellular calcium levels in Fluo-4-AM loaded PC12 cells, which was inhibited by nimodipine, an L-type calcium channel blocker. Preincubation with nimodipine also inhibited cell death induced by gomesin in SH-SY5Y and PC12 cells. Gomesin-induced cell death was prevented by the pretreatment with MAPK/ERK, PKC or PI3K inhibitors, but not with PKA inhibitor. In addition, gomesin generated reactive oxygen species (ROS) in SH-SY5Y cells, which were blocked with nimodipine and MAPK/ERK, PKC or PI3K inhibitors. Taken together, these results suggest that gomesin could be a useful anticancer agent, which mechanism of cytotoxicity implicates calcium entry through L-type calcium channels, activation of MAPK/ERK, PKC and PI3K signaling as well as the generation of reactive oxygen species.  相似文献   

3.
蛋白酶体抑制剂MG132诱导人白血病细胞K562和宫颈癌细胞HeLa凋亡,用3个不同浓度的蛋白酶体抑制剂MG132处理人白血病细胞K562和宫颈癌细胞HeLa,通过MTT检测、annexin Ⅴ/ PI 双染法、流式细胞术、酶标仪和Western 印迹分别检测MG132对K562细胞和HeLa细胞的生长效应、细胞凋亡率、细胞内活性氧(ROS)水平和caspase-3活性变化的影响.蛋白酶体抑制剂MG132诱导K562细胞凋亡明显,对HeLa细胞诱导凋亡不明显.结果表明,蛋白酶体抑制剂MG132特异性诱导不同肿瘤细胞凋亡的程度存在明显差异.  相似文献   

4.
Hyperglycemia, a symptom of diabetes mellitus, induces hyperosmotic responses, including apoptosis, in vascular endothelial cells and leukocytes. Hyperosmotic shock elicits a stress response in mammalian cells, often leading to apoptotic cell death. In a previous report, we showed that hyperosmotic shock induced apoptosis in various mammalian cells. Importantly, apoptotic biochemical changes (i.e., caspase-3 activation and DNA fragmentation) were blocked by antioxidant pretreatment during hyperosmotic shock-induced cell death. In the present study, we report that resveratrol, a phytoalexin present in grapes with known antioxidant and anti-inflammatory properties, attenuates high glucose-induced apoptotic changes, including c-Jun N-terminal kinase (JNK) activation and caspase-3 activation in human leukemia K562 cells. Experiments with the cell permeable dye, 2',7'-dichlorofluorescein diacetate (DCF-DA), an indicator of reactive oxygen species (ROS) generation, revealed that high glucose treatment directly increased intracellular oxidative stress, which was attenuated by resveratrol. In addition, high glucose-treated K562 cells displayed a lower degree of attachment to collagen, the major component of vessel wall subendothelium. In contrast, cells pretreated with resveratrol followed by high glucose exhibited higher affinity for collagen. The results of this report collectively imply the involvement of oxidative stress in high glucose-induced apoptosis and alterations in attachment ability. Moreover, resveratrol blocks these events by virtue of its antioxidant property.  相似文献   

5.
Caspase-8 has an important role as an initiator caspase during death receptor-mediated apoptosis. Moreover, it has been reported to contribute to the regulation of cell fate in various types of cells including T-cells. In this report, we show that caspase-8 has an essential role in cell survival in mouse T-lymphoma-derived L5178Y cells. The knockdown of caspase-8 expression decreased the growth rate and increased cell death, both of which were induced by the absence of protease activity of procaspase-8. The cell death was associated with reactive oxygen species (ROS) accumulation, caspase activation, and autophagosome formation. The cell death was inhibited completely by treatment with ROS scavengers, but only partly by treatment with caspase inhibitors, expression of Bcl-xL, and knockdown of caspase-3 or Atg-7 which completely inhibits apoptosis or autophagosome formation, respectively, indicating that apoptosis and autophagy-associated cell death are induced simultaneously by the knockdown of caspase-8 expression. Further analysis indicated that RIP1 and RIP3 regulate this multiple cell death, because the cell death as well as ROS production was completely inhibited by not only treatment with the RIP1 inhibitor necrostatin-1, but also by knockdown of RIP3. Thus, in the absence of protease activity of procaspase-8, RIP1 and RIP3 simultaneously induce not only nonapoptotic cell death conceivably including autophagic cell death and necroptosis but also apoptosis through ROS production in mouse T-lymphoma cells.  相似文献   

6.
(DIPP-L-Leu)2-L-LysOCH3 is a diisopropylphosphoryl dipeptide which is known to induce apoptosis of human leukemia K562 cells. The molecular and cellular mechanisms involved in this process remain to be clarified. Herein, we show that (DIPP-L-Leu)2-L-LysOCH3-induced apoptosis is associated with cytosolic accumulation of cytochrome c, sustained loss of mitochondrial transmembrane potential (MMP), transient generation of reactive oxygen species (ROS) and elevation of intracellular Ca2+ concentration. A specific caspase assay reveals an increase in caspase-9 and caspase-3 activity but no change in caspase-8 activity. Immunofluorescence analysis indicates that (DIPP-L-Leu)2-L-LysOCH3 induced upregulation of pro-apoptotic Bax and downregulation of anti-apoptotic Bcl-2 and Bcl-x(L). These results suggest that the mitochondria-regulated death pathway mediates (DIPP-L-Leu)2-L-LysOCH3-induced K562 cells apoptosis.  相似文献   

7.
XN4 might induce DNA damage and apoptotic cell death through reactive oxygen species (ROS). The inhibition of proliferation of K562 and K562/G01 cells was measured by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide). The mRNA levels of NADPH oxidase 1-5 (Nox1-5) genes were evaluated by qRT-PCR. The levels of extracellular reactive oxygen species (ROS), DNA damage, apoptosis, and cell cycle progression were examined by flow cytometry (FCM). Protein levels were analyzed by immunoblotting. XN4 significantly inhibited the proliferation of K562 and K562/G01 cells, with IC50 values of 3.75±0.07 µM and 2.63±0.43 µM, respectively. XN4 significantly increased the levels of Nox4 and Nox5 mRNA, stimulating the generation of intracellular ROS, inducing DNA damage and activating ATM-γ-H2AX signaling, which increased the number of cells in the S and G2/M phase of the cell cycle. Subsequently, XN4 induced apoptotic cell death by activating caspase-3 and PARP. Moreover, the above effects were all reversed by the ROS scavenger N-acetylcysteine (NAC). Additionally, XN4 can induce apoptosis in progenitor/stem cells isolated from CML patients’ bone marrow. In conclusion, XN4-induced DNA damage and cell apoptosis in CML cells is mediated by the generation of ROS.  相似文献   

8.
Although 1,2,3,4,6-penta-O-galloyl-beta-d-glucose (PGG) was well known to have antitumor activities in breast, prostate, kidney, liver cancers and HL-60 leukemia via regulation of caspase 3, p53, S-phase kinase-associated protein 2 (Skp2) and insulin receptor signaling, the underlying mechanism of PGG-induced apoptosis linked with reactive oxygen species (ROS) mediated c-Jun N-terminal kinase (JNK) and DAXX was never elucidated in chronic myeloid leukemia (CML) K562 cells until now. Herein PGG significantly decreased the viability of CML cell lines such as K562 and KBM-5 without hurting normal peripheral blood lymphocytes (PBLs). PGG increased the number of TUNEL-positive cells and the sub-G1 cell population as well as activated caspase cascades including caspase-8, -9 and -3 in K562 cells. Interestingly, a significant activation of JNK by PGG was observed by MULTIPLEX assay and Western blotting. Conversely, JNK inhibitor D-JNKi suppressed the cleavages of caspase 3 and PARP induced by PGG in K562 cells. Also, PGG dramatically enhanced generation of ROS and reduced the expression of death-domain-associated protein (DAXX). Of note, ROS inhibitor acetyl-l-cysteine (NAC) reversed JNK-dependent apoptosis and DAXX inhibition induced by PGG. Overall, these findings suggest that ROS-dependent JNK activation and DAXX downregulation are critically involved in PGG-induced apoptosis in K562 cells.  相似文献   

9.
EF Fang  CZ Zhang  L Zhang  JH Wong  YS Chan  WL Pan  XL Dan  CM Yin  CH Cho  TB Ng 《PloS one》2012,7(9):e41592
Breast cancer ranks as a common and severe neoplasia in women with increasing incidence as well as high risk of metastasis and relapse. Translational and laboratory-based clinical investigations of new/novel drugs are in progress. Medicinal plants are rich sources of biologically active natural products for drug development. The 27-kDa trichosanthin (TCS) is a ribosome inactivating protein purified from tubers of the Chinese herbal plant Trichosanthes kirilowii Maximowicz (common name Tian Hua Fen). In this study, we extended the potential medicinal applications of TCS from HIV, ferticide, hydatidiform moles, invasive moles, to breast cancer. We found that TCS manifested anti-proliferative and apoptosis-inducing activities in both estrogen-dependent human MCF-7 cells and estrogen-independent MDA-MB-231 cells. Flow cytometric analysis disclosed that TCS induced cell cycle arrest. Further studies revealed that TCS-induced tumor cell apoptosis was attributed to activation of both caspase-8 and caspase-9 regulated pathways. The subsequent events including caspase-3 activation, and increased PARP cleavage. With regard to cell morphology, stereotypical apoptotic features were observed. Moreover, in comparison with control, TCS- treated nude mice bearing MDA-MB-231 xenograft tumors exhibited significantly reduced tumor volume and tumor weight, due to the potent effect of TCS on tumor cell apoptosis as determined by the increase of caspase-3 activation, PARP cleavage, and DNA fragmentation using immunohistochemistry. Considering the clinical efficacy and relative safety of TCS on other human diseases, this work opens up new therapeutic avenues for patients with estrogen-dependent and/or estrogen-independent breast cancers.  相似文献   

10.
Sialic acid binding immunoglobulin like lectin (Siglec)-8 crosslinking with specific antibodies causes human eosinophil apoptosis. Mechanisms by which Siglec-8 crosslinking induces apoptosis are not known. Peripheral blood eosinophils were examined for caspase, mitochondria and reactive oxygen species (ROS) involvement after incubating the cells with anti-Siglec-8 crosslinking Abs or control Abs, in the presence or absence of selective inhibitors. Siglec-8 crosslinking induced rapid cleavage of caspase-3, caspase-8, and caspase-9 in eosinophils. Selective caspase-8 and/or caspase-9 inhibitors inhibited this apoptosis. Siglec-8 crosslinking on eosinophils increased dissipation of mitochondrial membrane potential upstream of caspase activation. Rotenone and antimycin, inhibitors of mitochondrial respiratory chain components, completely inhibited apoptosis. Additional experiments with an inhibitor of ROS, diphenyleneiodonium, demonstrated that ROS was also essential for Siglec-8-mediated apoptosis and preceded Siglec-8-mediated mitochondrial dissipation. These experiments show that Siglec-8-induced apoptosis occurs through the sequential production of ROS, followed by induction of mitochondrial injury and caspase cleavage.  相似文献   

11.
The compound(E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1 H-inden-1-one(BCI) is known as an inhibitor of dual specific phosphatase 1/6 and mitogen-activated protein kinase. However, its precise anti-lung cancer mechanism remains unknown. In this study, the effects of BCI on the viability of non-small cell lung cancer cell lines NCI-H1299, A549, and NCI-H460 were evaluated. We confirmed that BCI significantly inhibited the viability of p53(-) NCI-H1299 cells as compared to NCI-H460 and A549 cells, which express wild-type p53. Furthermore, BCI treatment increased the level of cellular reactive oxygen species and pre-treatment of cells with N-acetylcysteine markedly attenuated BCI-mediated apoptosis of NCI-H1299 cells. BCI induced cellular morphological changes, inhibited viability, and produced reactive oxygen species in NCI-H1299 cells in a dose-dependent manner. BCI induced processing of caspase-9, caspase-3, and poly ADP-ribose polymerase as well as the release of cytochrome c from the mitochondria into the cytosol. In addition, BCI downregulated Bcl-2 expression and enhanced Bax expression in a dose-dependent manner in NCI-H1299 cells. However, BCI failed to modulate the expression of the death receptor and extrinsic factor caspase-8 and Bid, a linker between the intrinsic and extrinsic apoptotic pathways in NCI-H1299 cells. Thus, BCI induces apoptosis via generation of reactive oxygen species and activation of the intrinsic pathway in NCI-H1299 cells.  相似文献   

12.
The present study determines the role of reactive oxygen species (ROS) production and calcium signaling evoked by the tumor necrosis factor-alpha (TNFα) on apoptosis in the human leukemia HL-60 and K562 cell lines. The results show that treatment of both cell lines cells with 10 ng/mL TNFα resulted in a rise in the percentage of apoptotic cells after 6 h of treatment. It was also observed that the administration of 10 ng/mL TNFα increased intracellular ROS production, as well as a time-dependent increase in caspase-8, -3, and -9 activities. The present results also show that the pretreatment with well-known antioxidants such as trolox and N-acetyl cysteine partially reduced the caspase activation caused by the administration of TNFα. The findings suggest that TNFα-induced apoptosis is dependent on alterations in intracellular ROS generation in human leukemia HL-60 and K562 cells.  相似文献   

13.
The anti-cancer activities of curcumin (CUR), a polyphenol derived from the plant Curcuma longa, has been extensively studied. In the present study, we found that CUR displayed anti-multidrug-resistant (MDR) activity in K562/A02 cells. A short-time treatment with CUR sufficiently and equally induced DNA damage, decreased cell viability, and triggered apoptosis in parent K562 and MDR K562/A02 cells. The short-time treatment with CUR also caused decrease of pro-caspase 3 in both cell lines and decrease of pro-caspase 9, increase of PARP cleavage and the ratio of Bax/Bcl-xL in MDR K562/A02 cells. Further experiment revealed that CUR was capable of down-regulating P-glycoprotein in MDR K562/A02 cells. Moreover, we observed that Cu(2+) enhanced CUR-mediated apoptosis which was blocked by antioxidants N-acetyl-cysteine and catalase. In summary, the short-time treatment with CUR sufficiently induced DNA damage, decreased cell viability and triggered apoptosis in MDR K562/A02 cells and Cu(2+) enhanced CUR-mediated apoptosis which due to reactive oxygen species generation.  相似文献   

14.
NADPH oxidase has been considered a major source of reactive oxygen species in phagocytic and non-phagocytic cells. Apoptosis linked to oxidative stress has been implicated in pancreatitis. Recently, we demonstrated that NADPH oxidase subunits Nox1, p27phox, p47phox, and p67phox are constitutively expressed in pancreatic acinar cells, which are activated by cerulein, a cholecystokinin analogue. Cerulein induces an acute and edematous form of pancreatitis. We investigated whether inhibition of NADPH oxidase by diphenyleneiodonium suppresses the production of reactive oxygen species and apoptosis by determining viable cell numbers, DNA fragmentation, TUNEL staining, caspase-3 activity, and the expression of apoptosis-inducing factor in pancreatic acinar AR42J cells stimulated with cerulein. Inhibition on NADPH oxidase by diphenyleneiodonium was assessed by the alterations in NADPH oxidase activity and translocation of the cytosolic subunits p67phox and p47phox to the membrane. Intracellular Ca2+ level was monitored to investigate the relationship between NADPH oxidase and Ca2+ in cells stimulated with cerulein. As a result, cerulein induced the activation of NADPH, increased production of reactive oxygen species, and apoptotic indices determined by the expression of apoptosis-inducing factor, caspase-3 activation, TUNEL staining, DNA fragmentation, and cell viability. Treatment with DPI inhibited cerulein-induced activation of NADPH oxidase, the production of reactive oxygen species, and apoptosis, but not the increase of intracellular Ca2+ levels in pancreatic acinar cells. These results demonstrate that the cerulein-induced increase in intracellular Ca2+ level may be an upstream event of NADPH oxidase activation. Diphenyleneiodonium, an NADPH oxidase inhibitor, inhibits the expression of apoptosis-inducing factor and caspase-3 activation, and thus apoptosis in pancreatic acinar cells.  相似文献   

15.
Ormeloxifen is a nonsteroidal selective estrogen receptor modulator (SERM) and has been shown to possess anticancer activities in breast and uterine cancer. Here, we show that ormeloxifen induces apoptosis in dose-dependent manner in a variety of leukemia cells, more strikingly in K562. 2-DE-gel electrophoresis of K562 cells induced with ormeloxifen showed that 57 and 30% of proteins belong to apoptosis and cell-cycle pathways, respectively. Our data demonstrate that ormeloxifen-induced apoptosis in K562 cells involves activation of extracellular signal-regulated kinases (ERKs) and subsequent cytochrome c release, leading to mitochondria-mediated caspase-3 activation. Ormeloxifen-induced apoptosis via ERK activation was drastically inhibited by prior treatment of K562 cells with ERK inhibitor PD98059. Ormeloxifen also inhibits proliferation of K562 cells by blocking them in G0-G1 phase by inhibiting c-myc promoter via ormeloxifen-induced MBP-1 (c-myc promoter-binding protein) and upregulation of p21 expression. We further show that ormeloxifen-induced apoptosis in K562 is translatable to mononuclear cells isolated from chronic myeloid leukemia (CML) patients. Thus, ormeloxifen induces apoptosis in K562 cells via phosphorylation of ERK and arrests them in G0-G1 phase by reciprocal regulation of p21 and c-myc. Therefore, inclusion of ormeloxifen in the therapy of chronic myeloid leukemia can be of potential utility.  相似文献   

16.
Calcium ion is essential for cellular functions including signal transduction. Uncontrolled calcium stress has been linked causally to a variety of neurodegenerative diseases. Thapsigargin, which inhibits Ca2+-ATPase in the endoplasmic reticulum (ER) and blocks the sequestration of calcium by the ER, induced apoptotic cell death (chromatin condensation and nuclear fragmentation) accompanied by GRP78 protein expression and caspase-3 activation in rat fetal cortical neurons (days in vitro 9–10). Blockade of N-methyl-d-aspartate (NMDA) receptors with NMDA antagonists induced apoptosis without GRP78 protein expression. Apoptosis accompanied both caspase-9 and caspase-3 activation. We then examined whether GSK-3 is involved in thapsigargin-induced cell death by using GSK-3 inhibitors. We assayed the effects of selective GSK-3 inhibitors, SB216763, alsterpaullone and 1-azakenpaullone, on thapsigargin-induced apoptosis. These inhibitors completely protected cells from thapsigargin-induced apoptosis. In addition, GSK-3 inhibitors inhibited caspase-9 and caspase-3 activation accompanied by thapsigargin-induced apoptosis. These results suggest that thapsigargin induces caspase-dependent apoptosis mediated through GSK-3β activation in rat cortical neurons.  相似文献   

17.
This work shows that 25 μM quercetin caused a marked inhibition of K562 cells growth together with a mild cytotoxicity, while HSB-2 cells were practically unaffected. Moreover, quercetin induced caspase-3 and cytochrome c-dependent apoptosis almost exclusively in the former cell line. Exposure of K562 cells to quercetin caused also a significant increase of cells in G2/M phase that reached the maximum peak at 24 h (4-fold with respect to the basal value). The major sensitivity exhibited by K562 cells was only in part imputable to their higher glutathione content, as compared to HSB-2 cells, thus confirming previous reports describing the formation of intracellular quercetin–thiol toxic adducts in cells exposed to the flavonoid. In fact, after induction of intracellular glutathione increase we detected in both cell lines a significant rise of apoptotic cells, again more marked in K562 cells. By contrast, glutathione-depleted cells, failed to show a decrease of apoptosis in both cell lines, thus contradicting our previous findings and literature data. Since the yet unresolved question about the anti-oxidant or the pro-oxidant capacity of quercetin, we investigated which of these two properties worked in our experimental model. Interestingly, not only quercetin did not produce reactive oxygen species but also prevented their formation, as observed in cells exposed to the oxidizing agent ter-butylhydroperoxide, acting as an efficient oxygen radicals scavenger. This result indicates that quercetin exhibited, in these cell lines, anti-oxidant more than pro-oxidant ability.  相似文献   

18.
Masaya Arisaka 《FEBS letters》2010,584(5):1016-77
We have recently demonstrated that reactive oxygen species (ROS) play an important role in RAW264.7 cell apoptosis induced by cationic liposomes composed of stearylamine (SA-liposomes). In this study, we investigated whether protein kinase Cδ PKCδ) is involved in apoptosis induced by cationic liposomes. Tyrosine phosphorylation, nuclear localization, and cleavage of PKCδ were observed following the treatment of cells with SA-liposomes, suggesting that SA-liposomes activate PKCδ. Rottlerin, a specific inhibitor of PKCδ, inhibited ROS generation and also suppressed apoptosis. Cell surface proteoglycans may contribute to PKCδ activation by SA-liposomes. These findings suggest that PKCδ is strongly associated with apoptosis induced by SA-liposomes.  相似文献   

19.
Excess fluoride intake could induce apoptosis in the cells. As an essential micronutrient and cytoprotectant, zinc is involved in many types of apoptosis. Here, we studied the effects of zinc and ZIP1 on fluoride-induced apoptosis in mouse MC3T3-E1 cells and examined the underlying molecular mechanisms. Our study found that fluoride not only inhibited cell proliferation and increased the intracellular reactive oxygen species (ROS) but also induced cell apoptosis. Whereas pretreatment with zinc significantly attenuated fluoride-induced ROS production and partly protected cells against fluoride-induced apoptosis through MAPK/ERK signaling pathway. Our study also found that fluoride upregulated the expression of ZIP1 in a time-dependent manner. Moreover, overexpression of ZIP1 also inhibited fluoride-induced apoptosis by activation of PI3K/Akt pathway. This cytoprotective effect of zinc and ZIP1 may be new factors that affect the physiological activity of fluoride and need study further.  相似文献   

20.
We reported previously that singlet oxygen, generated by irradiation of rose bengal with visible light, induced apoptosis in human promyelocytic leukemia HL-60 cells. However, the mechanism of apoptosis caused by this reactive oxygen species is unclear. In this study, we demonstrate that singlet oxygen induced caspase-3 activation and Z-DEVD-FMK, a caspase-3 inhibitor, blocked apoptosis induction, while caspase-1 activity was not detectable and the caspase-1 inhibitor Z-YVAD-FMK had a very limited effect on apoptosis. This suggests that the activation of caspase-3 by singlet oxygen is essential for the commitment of cells to undergo apoptosis. Further studies showed that singlet oxygen induced an increase in caspase-8 activity and a reduction in mitochondrial cytochrome c. Time course analysis indicated that the cleavage of caspase-8 precedes that of caspase-3. In addition, blockade of caspase-8 by Z-IETD-FMK inhibited cleavage of pro-caspase-3 and prevented loss of mitochondrial cytochrome c. These results suggest that caspase-8 mediates caspase-3 activation and cytochrome c release during singlet oxygen-induced apoptosis in HL-60 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号