首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aquatic fungus Blastocladiella emersonii provides a system for studying the regulation of expression of regulatory (R) and catalytic (C) subunits of cAMP-dependent protein kinase (PKA). Blastocladiella cells contain a single PKA with properties very similar to type II kinases of mammalian tissues. During development cAMP-dependent protein kinase activity and its associated cAMP-binding activity change drastically. We have previously shown that the increase in cAMP-binding activity during sporulation is due to de novo synthesis of R subunit and to an increase in the translatable mRNA coding for R (Marques et al., Eur. J. Biochem. 178, 803, 1989). In the present work we have continued these studies to investigate the mechanism by which the changes in the level of kinase activity take place. The C subunit of Blastocladiella has been purified; antiserum has been raised against it and used to determine amounts of C subunit throughout the fungus' life cycle. A sharp increase in C subunit content occurs during sporulation and peaks at the zoospore stage. Northern blot analyses, using Blastocladiella C and R cDNA probes, have shown that the levels of C and R mRNAs parallel their intracellular protein concentrations. These results indicate a coordinate pretranslational control for C and R subunit expression during differentiation in Blastocladiella.  相似文献   

2.
During Blastocladiella emersonii germination, the regulatory (R) and the catalytic (C) subunits of the cAMP-dependent protein kinase (PKA) are rapidly and concurrently degraded, after PKA activation in response to a transient increase in intracellular cAMP levels. The possibility that PEST sequences could be acting as proteolytic recognition signals in this process was investigated, and high score PEST sequences were found in both B. emersonii R and C subunits. Deletions in the PEST sequences were obtained by site-directed mutagenesis and the different PKA subunits were independently expressed in Escherichia coli. Proteolysis assays of the various R and C recombinant forms, using B. emersonii cell extracts as the source of proteases, showed a strong correlation between the presence of high score PEST sequences and susceptibility to degradation. Furthermore, the amino-terminal sequence of the proteolytic fragments indicated that the cleavage sites in both subunits are located at or near the PEST regions. The PEST sequence in B. emersonii C subunit, which when deleted or disrupted leads to resistance to proteolysis, is entirely contained in the 72-amino-acid extension located in the N-terminus of the protein. C subunit mutants carrying deletions in this region displayed little difference in their kinetic properties or enzyme thermostability. These results suggest that the N-terminal extension may only play a role in C subunit degradation.  相似文献   

3.
The cAMP binding domain of the regulatory subunit (R) of Mucor rouxii protein kinase A was cloned. The deduced amino acid sequence was highly homologous in sequence and in size to the corresponding region in fungal and higher eukaryotic regulatory subunits (47-54%), but particularly homologous (62%) to Blastocladiella emersonii, a fungus classified in a different phylum. Amino acids reported to be important for interaction with cAMP, for cooperativity between the two cAMP binding domains, in the general folding of the domain, and for interaction with the catalytic subunit were conserved in all the fungal sequences. Based on either sequence or functional behavior, the M. rouxii R subunit cannot be classified as being more similar to RI or RII of mammalian systems. The M. rouxii protein sequence was modeled using as template the coordinates of the crystallized bovine regulatory subunit type Ialpha. The quality of the model is good. The two backbones could be perfectly overlapped, except for two loop regions of high divergence. The alpha helix C of domain A, proposed to have a strong interaction with the catalytic subunit, contains a leucine replacing a basic residue (arginine or lysine) commonly found in RI or RII. The domains A and B of the M. rouxii regulatory subunit were overexpressed as fusion proteins with GST. GST domain B protein was inactive. GST domain A was active; the kinetic parameters of affinity toward cAMP analogs, site selectivity, and dissociation kinetics of bound cAMP were analogous to the properties of the domain in the whole regulatory subunit.  相似文献   

4.
Cyclic nucleotide-independent protein kinase (EC 2.7.1.37) activity was found in the nuclear cap organelle, within which ribosomes of zoospores of Blastocladiella emersonii are sequestered. Two protein kinase activities were resolved from the high-salt wash fraction of zoospore ribosomes by selective adsorption to DEAE-cellulose. Both enzymes phosphorylated in vitro a 32,000 Mr protein of the 40S ribosomal subunit. Phosphorylation of this ribosomal protein, which exhibits electrophoretic properties similar to those of mammalian ribosomal protein S6, was also observed in vivo in 32P-labeled zoospores.  相似文献   

5.
We have isolated and characterized the micronuclear gene encoding the regulatory subunit of cAMP-dependent protein kinase of the ciliated protozoan Euplotes octocarinatus, as well as its macronuclear version and the corresponding cDNA. Analyses of the sequences revealed that the micronuclear gene contains one small 69-bp internal eliminated sequence (IES) that is removed during macronuclear development. The IES is located in the 5'-noncoding region of the micronuclear gene and is flanked by a pair of tetranucleotide 5'-TACA-3' direct repeats. The macronuclear DNA molecule carrying this gene is approximately 1400 bp long and is amplified to about 2000 copies per macronucleus. Sequence analysis suggests that the expression of this gene requires a +1 ribosomal frameshift. The deduced protein shares 31% identity with the cAMP-dependent protein kinase type I regulatory subunit of Homo sapiens, and 53% identity with the regulatory subunit R44 of one of the two cAMP-dependent protein kinases of Paramecium. In addition, it contains two highly conserved cAMP binding sites in the C-terminal domain. The putative autophosphorylation site ARTSV of the regulatory subunit of E. octocarinatus is similar to that of the regulatory subunit R44 of Paramecium but distinct from the consensus motif RRXSZ of other eukaryotic regulatory subunits of cAMP-dependent protein kinases.  相似文献   

6.
ABSTRACT. The 44-kDa regulatory subunit (R44) of one form of cAMP-dependent protein kinase of Paramecium was purified, and two partial internal amino acid sequences from it were used to clone the corresponding cDNA. This R44 cDNA clone was 1022-bp long, including 978 bp of coding sequence and 7 bp and 37 bp of 5' and 3' untranslated sequences, respectively. A 1.1-kb mRNA was labeled on a Northern blot. The deduced R44 amino acid sequence had 31%–38% positional identity to the sequences of other cloned cAMP-dependent protein kinase regulatory subunits. R44 sequence showed equal sequence similarity to mammalian types I and II regulatory subunits. The N -terminal sequence encoding the regulatory subunit dimerization domain found in most regulatory subunits is not present in the R44 clone, confirming the lack of regulatory subunit dimer formation previously reported for the Paramecium cAMP-dependent protein kinase. The putative autophosphorylation site of R44 contains the amino acid sequence TRTS, distinct from the consensus sequence RRXS, where X is any residue, found in other autophosphorylated cAMP-dependent protein kinase regulatory subunits and many cAMP-dependent protein kinase substrates.  相似文献   

7.
A monospecific polyclonal antiserum to the regulatory subunit (R) of the cAMP-dependent protein kinase of Blastocladiella emersonii has been developed by immunization with purified regulatory subunit. In Western blots, the antiserum displays high affinity and specificity for the intact R monomer of Mr = 58,000, as well as for its proteolytic products of Mr = 43,000 and Mr = 36,000, even though the antiserum has been raised against the Mr = 43,000 fragment. Western blots of cell extracts prepared at different times during the life cycle of the fungus indicate that the increase in cAMP-binding activity occurring during sporulation, as well as its decrease during germination, are associated with the accumulation of the regulatory subunit during sporulation and its disappearance during germination, respectively. Pulse labeling with [35S]methionine and immunoprecipitation indicate that the accumulation of R is due to its increased synthesis during sporulation. Two-dimensional gel electrophoresis of affinity purified cell extracts obtained after [35S]methionine pulse labeling during sporulation confirms de novo synthesis of R during this stage and furthermore shows that the protein is rapidly phosphorylated after its synthesis. In vitro translation studies using RNA isolated from different stages of the life cycle followed by immunoprecipitation have shown that the time course of expression of the mRNA coding for the regulatory subunit parallels the rate of its synthesis in vivo.  相似文献   

8.
We have isolated two unlinked yeast genes complementing the cell division cycle mutant cdc25-1, one containing the wild type allele CDC25 and the other acting as an extragenic suppressor of the cdc25-1 lesion if present on a multicopy plasmid. Nucleotide sequence analysis of the suppressor gene has revealed an open reading frame that encodes a 45,000-dalton protein belonging to the protein kinase family. The cdc25-suppressing protein kinase (PK-25) shows 48% sequence similarity to the catalytic subunit (CA) of mammalian cAMP-dependent protein kinase and 27-31% similarity to cyclic nucleotide-independent enzymes, including the yeast CDC28 gene product. The PK-25 gene was targeted by integrative transformation into a chromosomal region unlinked to the CYR2 site, the structural gene of CA. The cdc25-suppressing protein kinase is also functionally different from CA, since cyr2 strains deficient in the free catalytic subunit remain temperature sensitive if transformed with a multicopy plasmid containing the PK-25 gene. Furthermore, a deficiency of the cAMP-binding regulatory subunit (RA) caused by the bcy1 mutation fails to suppress the cdc25 mutation, indicating that PK-25 does not interact with the cAMP receptor protein. Our data suggest that the cdc25 suppressor gene encodes a cAMP-independent protein kinase involved in the control of the cell cycle start.  相似文献   

9.
The photoaffinity label 8-azido[32P]adenosine 3':5'-monophosphate and affinity chromatography on N6-(2-aminoethyl)-cAMP-Sepharose were used to analyze the cAMP-binding proteins present in cell-free extracts of Blastocladiella emersonii zoospores. In the presence of a mixture of protease inhibitors, 8-azido[32P]cAMP was specifically and quantitatively incorporated into a major protein band of Mr = 58,000, and three minor protein bands of Mr = 50,000, Mr = 43,000, and Mr = 36,000 respectively, after autoradiography following sodium dodecyl sulfate-polyacryl-amide gel electrophoresis. In the absence of the protease inhibitors, the Mr = 58,000 protein band was converted into the lower molecular weight cAMP-binding proteins, indicating a high sensitivity of the intact Mr = 58,000 protein band to endogenous proteases. The Mr = 58,000 protein corresponded to the regulatory subunit (R), of the cAMP-dependent protein kinase of zoospores, as shown by their identical behavior on DEAE-cellulose chromatography. The partially purified protein kinase incorporated 32P from [gamma-32P] ATP . Mg2+ into R as demonstrated by the specific adsorption of the 32P-labeled protein with N6-(2-aminoethyl)-cAMP-Sepharose. The incorporated 32P group was rapidly removed by endogenous phosphoprotein phosphatases in the presence of cAMP, as shown by pulse-chase experiments with [gamma-32P]ATP. Dephosphorylation of R-cAMP and rapid proteolysis may indicate two other mechanisms, in addition to cAMP, for the control of this protein kinase in vivo.  相似文献   

10.
The complete amino acid sequence of the regulatory subunit of type I cAMP-dependent protein kinase from bovine skeletal muscle is presented. The S-carboxymethylated protein was cleaved with cyanogen bromide to provide a complete set of nonoverlapping fragments. These fragments were overlapped and aligned by using peptides generated by proteolytic cleavage. The protein contains 379 amino acid residues corresponding to a molecular weight of 42 804. As in the type II regulatory subunit of cAMP-dependent protein kinase, a pattern of internal gene duplication is observed, which is consistent with two cAMP-binding domains. The two types of regulatory subunit from type I and type II kinase display similarities in domain substructure and in amino acid sequence, which provide a molecular basis for new insight into their regulatory roles. Detailed analyses of the homology of the regulatory subunits of type I and type II cAMP-dependent protein kinase and of similar relationships to cGMP-dependent protein kinase and Escherichia coli catabolite gene activator protein are presented in accompanying reports from this laboratory [Takio, K., Smith, S. B., Krebs, E. G., Walsh, K., & Titani, K. (1984) Biochemistry (second paper of three in this issue); Takio, K., Wade, R. D., Smith, S. B., Krebs, E. G., Walsh, K. A., & Titani, K. (1984) Biochemistry (third paper of three in this issue)].  相似文献   

11.
12.
13.
The CYR3 mutant of yeast, Saccharomyces cerevisiae, partially accumulated unbudded cells and required cAMP for the best growth at 35 degrees C. The CYR3 mutation was partially dominant over the wild type counterpart and suppressed by the bcy1 mutation which is responsible for the deficiency of the regulatory subunit of cAMP-dependent protein kinase. The molecular weights of cAMP-dependent protein kinase and its catalytic and regulatory subunits were 160,000, 30,000, and 50,000, respectively. No significant differences in the molecular weights of cAMP-dependent protein kinase and the subunits were found between the wild type and CYR3 mutant strains. However, the cAMP-dependent protein kinase activity of CYR3 cells showed significantly higher Ka values for activation by cAMP at 35 degrees C than those of wild type and a clear difference in the electrophoretic mobility of the regulatory subunit was found between the wild type and CYR3 enzymes. The CYR3 mutation was suppressed by the IAC mutation which caused the production of a significantly high level of cAMP. The results indicate that the CYR3 phenotype was produced by a structural mutation in the CYR3 gene coding for the regulatory subunit of cAMP-dependent protein kinase in yeast.  相似文献   

14.
A cAMP-dependent protein kinase from mycelia of Saccobolus platensis was characterized. The holoenzyme seems to be a dimer (i.e., regulatory subunit--catalytic subunit) of 78,000 Da, slightly activated by cAMP but susceptible to dissociation into its subunits by cAMP, or by kemptide and protamine, the best substrates for Saccobolus protein kinase. The regulatory subunit was purified to homogeneity by affinity chromatography. It is highly specific for cAMP and has two types of binding sites but failed to inhibit the phosphotransferase activity of the homologous or the heterologous (bovine heart) catalytic components. The activity of the catalytic subunit was completely abolished by the regulatory component of the bovine heart protein kinase as well as by a synthetic peptide corresponding to the active site of the mammalian protein kinase inhibitor. The data suggest that interaction between the subunits of the S. platensis protein kinase is different than that found in cAMP-dependent protein kinases from other sources. Similarities and differences between the Saccobolus protein kinase and enzymes from low eucaryotes and mammalian tissues are discussed.  相似文献   

15.
An exposed "hinge" region of cGMP-dependent protein kinase is known to be susceptible to both limited proteolysis and autophosphorylation. A 91-residue fragment has been isolated from this region and its amino acid sequence has been compared with the analogous regions of the cAMP-dependent protein kinases. Although a resemblance among these sequences is not striking, the phosphorylation sites are in corresponding regions toward the NH2 termini, and there are indications of homology in the vicinity of their autophosphorylation sites. As in the cAMP-dependent protein kinase, the site of autophosphorylation and the site of susceptibility to limited proteolysis are very near each other in the primary structure. The actual site of autophosphorylation (the underlined threonine residue in Pro-Arg-Thr-Thr-Arg) is quite different from those in the regulatory subunit of Type II cAMP-dependent kinase or the site in Type I regulatory subunit that can be phosphorylated by the cGMP-dependent protein kinase.  相似文献   

16.
The regulatory subunit of cAMP-dependent protein kinase designated RII beta (RII51) has previously been shown to be the product of a separate gene. This was accomplished by the molecular cloning of a partial cDNA clone estimated to lack 30-45 nucleotides of the 5' end of the coding region. We hereby report the isolation of a cDNA clone for RII beta from rat granulosa cells, extending 43 nucleotides further 5' compared with the previously published cDNA sequence, and from which the entire amino acid sequence (415 residues) of the rat RII beta protein can be deduced. A cAMP regulated mRNA of 3.2 kilobases (kb) for RII beta was detected by the isolated cDNA in rat Sertoli cells.  相似文献   

17.
18.
The mammalian cAMP-dependent protein kinases have regulatory (R) subunits that show substantial homology in amino acid sequence with the catabolite gene activator protein (CAP), a cAMP-dependent gene regulatory protein from Escherichia coli. Each R subunit has two in-tandem cAMP binding domains, and the structure of each of these domains has been modeled by analogy with the crystal structure of CAP. Both the type I and II regulatory subunits have been considered, so that four cAMP binding domains have been modeled. The binding of cAMP in general is analogous in all the structures and has been correlated with previous results based on photolabeling and binding of cAMP analogues. The model predicts that the first cAMP binding domain correlates with the previously defined fast dissociation site, which preferentially binds N6-substituted analogues of cAMP. The second domain corresponds to the slow dissociation site, which has a preference for C8-substituted analogues. The model also is consistent with cAMP binding in the syn conformation in both sites. Finally, this model has targeted specific regions that are likely to be involved in interdomain contacts. This includes contacts between the two cAMP binding domains as well as contacts with the amino-terminal region of the R subunit and with the catalytic subunit.  相似文献   

19.
20.
It has been shown that cAMP-dependent phosphorylation of a soluble sperm protein is important for the initiation of flagellar motion. The suggestion has been made that this motility initiation protein, named axokinin, is the major 56,000-dalton phosphoprotein present in both dog sperm and in other cells containing axokinin-like activity. Since the regulatory subunit of a type II cAMP-dependent protein kinase is a ubiquitous cAMP-dependent phosphoprotein of similar subunit molecular weight as reported for axokinin, we have addressed the question of how many soluble 56,000-dalton cAMP-dependent phosphoproteins are present in mammalian sperm. We report that in bovine sperm cytosol, the ratio of the type I to type II cAMP-dependent protein kinase is approximately 1:1. The type II regulatory subunit is related to the non-neural form of the enzyme and undergoes a phosphorylation-dependent electrophoretic mobility shift. The apparent subunit molecular weights of the phospho and dephospho forms are 56,000 and 54,000 daltons, respectively. When bovine sperm cytosol or detergent extracts are phosphorylated in the presence of catalytic subunits, two major proteins are phosphorylated and have subunit molecular weights of 56,000 and 40,000 daltons. If, however, the type II regulatory subunit (RII) is quantitatively removed from these extracts using either immobilized cAMP or an anti-RII monoclonal affinity column, the ability to phosphorylate the 56,000- but not 40,000-dalton polypeptide is lost. These data suggest that the major 56,000 dalton cAMP-dependent phosphoprotein present in bovine sperm is the regulatory subunit of a type II cAMP-dependent protein kinase and not the motility initiator protein, axokinin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号