首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A monospecific polyclonal antiserum to the regulatory subunit (R) of the cAMP-dependent protein kinase of Blastocladiella emersonii has been developed by immunization with purified regulatory subunit. In Western blots, the antiserum displays high affinity and specificity for the intact R monomer of Mr = 58,000, as well as for its proteolytic products of Mr = 43,000 and Mr = 36,000, even though the antiserum has been raised against the Mr = 43,000 fragment. Western blots of cell extracts prepared at different times during the life cycle of the fungus indicate that the increase in cAMP-binding activity occurring during sporulation, as well as its decrease during germination, are associated with the accumulation of the regulatory subunit during sporulation and its disappearance during germination, respectively. Pulse labeling with [35S]methionine and immunoprecipitation indicate that the accumulation of R is due to its increased synthesis during sporulation. Two-dimensional gel electrophoresis of affinity purified cell extracts obtained after [35S]methionine pulse labeling during sporulation confirms de novo synthesis of R during this stage and furthermore shows that the protein is rapidly phosphorylated after its synthesis. In vitro translation studies using RNA isolated from different stages of the life cycle followed by immunoprecipitation have shown that the time course of expression of the mRNA coding for the regulatory subunit parallels the rate of its synthesis in vivo.  相似文献   

2.
The hormonal regulation of cAMP-dependent protein kinase was examined in granulosa cells from diethylstilbestrol-implanted immature rats. Follicle-stimulating hormone (FSH) increased the number of available cAMP-binding sites in a dose- and time-dependent manner, with a maximum 4-6-fold increase at 50-100 ng/ml between 6 and 48 h of culture after a transient decrease in available sites during the first 6 h. The potent gonadotropin-releasing hormone (GnRH) agonist [D - Ala6]des - Gly10 - GnRH - N - ethylamide (GnRHa) reduced the FSH-induced increase in cAMP-binding sites by approximately 50% at 24 and 48 h of culture. Photoaffinity labeling with 8-azido-[32P] cAMP revealed the existence of one major cAMP-binding protein (Mr = 55,000 +/- 400) which appeared to be the regulatory (R) subunit of type II cAMP-dependent protein kinase. While FSH induced a 5-10-fold increase in the labeling of R II both in vivo and in vitro, GnRHa reduced the amount of R II induced by FSH in granulosa cells cultured for 48 h. The large increase in R II subunit was not accompanied by a corresponding increase in protein kinase activity, which was only enhanced by 50% after 48 h of culture with FSH. Fractionation of granulosa cell cytosol from FSH-treated ovaries on DEAE-cellulose showed a single peak of cAMP-dependent phosphokinase activity with the elution properties of a type II protein kinase. However, the peak of cAMP binding activity (eluted at 0.20 M KCl) was not coincident with the protein kinase activity. FSH transiently stimulated cAMP-dependent protein kinase activity during the first 10-30 min of culture. GnRHa impaired the FSH-induced early increase in protein kinase activity, causing a delay in activation until 60 min. These findings suggest that a large dose- and time-dependent increase in the content of cAMP-binding sites may be a major factor in cAMP-mediated differentiation of granulosa cells. The inhibitory effect of GnRHa on both FSH-induced protein kinase activation during the first minutes of culture and on FSH-induced R II synthesis during the subsequent 48 h of culture could be crucial events in the prevention of granulosa cell maturation by GnRH agonists.  相似文献   

3.
A rapid and efficient method for purifying cAMP-dependent protein kinase (PKA) holoenzyme based on immunoaffinity chromatography was developed. The affinity column was prepared by coupling a polyclonal antibody raised against the PKA regulatory subunit to NHS-activated Sepharose. The holoenzyme purified by this procedure from the bivalve molluskMytilus galloprovincialiswas shown to be fully active as judged by (1) its cAMP-binding activity, (2) its cAMP-dependent protein kinase activity, and (3) its autophosphorylation ability. Moreover, together with both regulatory and catalytic subunits, which constitute the PKA holoenzyme, a protein with a molecular mass of approximately 200 kDa was copurified, and results from gel-filtration chromatography showed that it was associated with a fraction of PKA. Therefore, this immunoaffinity purification technique could also be useful to isolate such proteins as interact with PKAin vivo.  相似文献   

4.
5.
6.
Different isoforms of the full-length protein kinase A (PKA) regulatory subunit homodimer (R2) and the catalytic (C) subunit-bound holoenzyme (R2C2) have very different global structures despite similar molecular weights and domain organization within their primary sequences. To date, it has been the linker sequence between the R subunit dimerization/docking domain and cAMP-binding domain A that has been implicated in modulating domain interactions to give rise to these differences in global structure. The small angle solution scattering data presented here for three different isoforms of PKA heterodimer (deltaR-C) complexes reveal a role for another conformationally dynamic sequence in modulating inter-subunit and domain interactions, the C helix that connects the cAMP-binding domains A and B of the R subunit. The deltaR-C heterodimer complexes studied here were each formed with a monomeric N-terminal deletion mutant of the R subunit (deltaR) that contains the inhibitor sequence and both cAMP-binding domains. The scattering data show that type IIalpha and type IIbeta deltaR-C heterodimers are relatively compact and globular, with the C subunit contacting the inhibitor sequence and both cAMP-binding domains. In contrast, the type Ialpha heterodimer is significantly more extended, with the C subunit interacting with the inhibitor sequence and cAMP-binding domain A, whereas domain B extends out such that its surface is almost completely solvent exposed. These data implicate the C helix of RIalpha in modulating isoform-specific interdomain communication in the PKA holoenzyme, adding another layer of structural complexity to our understanding of signaling dynamics in this multisubunit, multidomain protein kinase.  相似文献   

7.
Cyclic adenosine 3',5'-monophosphate (cAMP) dependent protein kinase and proteins specifically binding cAMP have been extracted from calf thymus nuclei and analyzed for their abilities to bind to DNA. Approximately 70% of the cAMP-binding activity in the nucleus can be ascribed to a nuclear acidic protein with physical and biochemical characteristics of the regulatory (R) subunit of cAMP-dependent protein kinase. Several peaks of protein kinase activity and of cAMP-binding activity are resolved by affinity chromatography of nuclear acidic proteins on calf thymus DNA covalently linked to aminoethyl Sephrarose 4B. When an extensively purified protein kinase is subjected to chromatography on the DNA column in the presence of 10(-7) M cAMP, the R subunit of the kinase is eluted from the column at 0.05 M NaCl while the catalytic (C) subunit of the enzyme is eluted at 0.1-0.2 M NaCl. When chromatographed in the presence of histones, the R subunit is retained on the column and is eluted at 0.6-0.9 M NaCl. In the presence of cAMP, association of the C subunit with DNA is enhanced, as determined by sucrose density gradient centrifugation of DNA-protein kinase complexes. cAMP increases the capacity of the calf thymus cAMP-dependent protein kinase preparation to bind labeled calf thymus DNA, as determined by a technique employing filter retention of DNA-protein complexes. This protein kinase preparation binds calf thymus DNA in preference to salmon DNA, Escherichia coli DNA, or yeast RNA. Binding of protein kinases to DNA may be part of a mechanism for localizing cyclic nucleotide stimulated protein phosphorylation at specific sites in the chromatin.  相似文献   

8.
lambda gt11 phages harboring five different cDNA fragments for the regulatory (R) subunit of Dictyostelium discoideum cAMP-dependent protein kinase (CAK) directed the synthesis of this protein in Escherichia coli cells. Crude bacterial extracts were probed with an antiserum against the Dictyostelium R subunit. The presence of specific epitopes for the R subunit in a given extract was compared with high-affinity cAMP-binding activity and with the ability to inhibit the catalytic (C) subunit through protein-protein interaction. The expression and the biochemical properties of these proteins were correlated with their cDNA nucleotide sequence. The results show that the Dictyostelium R subunit can be functionally expressed in E. coli cells either as a fusion protein with beta-galactosidase or as a nonfusion protein. In both cases, the products of cDNA clones containing the entire coding sequence retained high-affinity cAMP-binding activity and the capacity to interact with the catalytic subunit. One of the fusions, lacking the 94 N-terminal residues, failed to inhibit catalytic activity, although it bound cAMP with an affinity similar to that of the native R protein from D. discoideum.  相似文献   

9.
During Blastocladiella emersonii germination, the regulatory (R) and the catalytic (C) subunits of the cAMP-dependent protein kinase (PKA) are rapidly and concurrently degraded, after PKA activation in response to a transient increase in intracellular cAMP levels. The possibility that PEST sequences could be acting as proteolytic recognition signals in this process was investigated, and high score PEST sequences were found in both B. emersonii R and C subunits. Deletions in the PEST sequences were obtained by site-directed mutagenesis and the different PKA subunits were independently expressed in Escherichia coli. Proteolysis assays of the various R and C recombinant forms, using B. emersonii cell extracts as the source of proteases, showed a strong correlation between the presence of high score PEST sequences and susceptibility to degradation. Furthermore, the amino-terminal sequence of the proteolytic fragments indicated that the cleavage sites in both subunits are located at or near the PEST regions. The PEST sequence in B. emersonii C subunit, which when deleted or disrupted leads to resistance to proteolysis, is entirely contained in the 72-amino-acid extension located in the N-terminus of the protein. C subunit mutants carrying deletions in this region displayed little difference in their kinetic properties or enzyme thermostability. These results suggest that the N-terminal extension may only play a role in C subunit degradation.  相似文献   

10.
Structural lesions in cAMP-binding sites of regulatory (R) subunit of cAMP-dependent protein kinase caused identical increases in apparent constants for cyclic nucleotide-dependent kinase activation in preparations from cells that were hemizygous or heterozygous for mutant R1 subunit expression. No wild-type kinase activation was observed in extracts from heterozygous mutant cells. This "dominance" was investigated by characterizing expression of wild-type and mutant R1 subunits and properties of protein kinase from S49 mouse lymphoma cell mutants heterozygous for expression of wild-type R1 subunits and R1 subunits with a lesion (Glu200) that inactivates cAMP-binding site A. By both studies of cAMP dissociation and two-dimensional gel analysis, wild-type R subunits comprised about 35% of total R1 subunits in heterozygous mutants. Synthesis of wild-type and mutant R1 subunits was equivalent, but wild-type subunits were degraded preferentially. Hydroxylapatite chromatography revealed a novel R1 subunit-containing species from heterozygous mutant preparations whose elution behavior suggested a trimeric kinase consisting of an R1 subunit dimer and one catalytic (C) subunit. Wild-type R1 subunit was found only in dimer and "trimer" peaks; the tetrameric kinase peak contained only mutant R1 subunit. It is concluded that C subunit binds preferentially to mutant R1 subunit in heterozygous cells forming either tetrameric kinase with mutant R1 subunit homodimers or trimeric kinase with R1 subunit heterodimers. This preferential binding results both in suppression of wild-type kinase activation and differential stabilization of mutant R1 subunits.  相似文献   

11.
cAMP sites of the cAMP-dependent protein kinase from the fungus Mucor rouxii have been characterized through the study of the effects of cAMP and of cAMP analogs on the phosphotransferase activity and through binding kinetics. The tetrameric holoenzyme, which contains two regulatory (R) and two catalytic (C) subunits, exhibited positive cooperativity in activation by cAMP, suggesting multiple cAMP-binding sites. Several other results indicated that the Mucor kinase contained two different cooperative cAMP-binding sites on each R subunit, with properties similar to those of the mammalian cAMP-dependent protein kinase. Under optimum binding conditions, the [3H]cAMP dissociation behavior indicated equal amounts of two components which had dissociation rate constants of 0.09 min-1 (site 1) and 0.90 min-1 (site 2) at 30 degrees C. Two cAMP-binding sites could also be distinguished by C-8 cAMP analogs (site-1-selective) and C-6 cAMP analogs (site-2-selective); combinations of site-1- and site-2-selective analogs were synergistic in protein kinase activation. The two different cooperative binding sites were probably located on the same R subunit, since the proteolytically derived dimeric form of the enzyme, which contained one R and one C component, retained the salient properties of the untreated tetrameric enzyme. Unlike any of the mammalian cyclic-nucleotide-dependent isozymes described thus far, the Mucor kinase was much more potently activated by C-6 cAMP analogs than by C-8 cAMP analogs. In the ternary complex formed by the native Mucor tetramer and cAMP, only the two sites 1 contained bound cAMP, a feature which has also not yet been demonstrated for the mammalian cAMP-dependent protein kinase.  相似文献   

12.
The regulatory (R) subunits of the cAMP-dependent protein kinase (protein kinase A or PKA) are multi-domain proteins responsible for conferring cAMP-dependence and localizing PKA to specific subcellular locations. There are four isoforms of the R subunit in mammals that are similar in molecular mass and domain organization, but clearly serve different biological functions. Although high-resolution structures are available for the cAMP-binding domains and dimerization/docking domains of two isoforms, there are no high-resolution structures of any of the intact R subunit homodimer isoforms. The results of small-angle X-ray scattering studies presented here indicate that the RIalpha, RIIalpha, and RIIbeta homodimers differ markedly in overall shape, despite extensive sequence homology and similar molecular masses. The RIIalpha and RIIbeta homodimers have very extended, rod-like shapes, whereas the RIalpha homodimer likely has a compact Y-shape. Based on a comparison of the R subunit sequences, we predict that the linker regions are the likely cause of these large differences in shape among the isoforms. In addition, we show that cAMP binding does not cause large conformational changes in type Ialpha or IIalpha R subunit homodimers, suggesting that the activation of PKA by cAMP involves only local conformational changes in the R subunits.  相似文献   

13.
cAMP-dependent protein kinase (PKA) forms an inactive heterotetramer of two regulatory (R; with two cAMP-binding domains A and B each) and two catalytic (C) subunits. Upon the binding of four cAMP molecules to the R dimer, the monomeric C subunits dissociate. Based on sequence analysis of cyclic nucleotide-binding domains in prokaryotes and eukaryotes and on crystal structures of cAMP-bound R subunit and cyclic nucleotide-free Epac (exchange protein directly activated by cAMP), four amino acids were identified (Leu203, Tyr229, Arg239 and Arg241) and probed for cAMP binding to the R subunits and for R/C interaction. Arg239 and Arg241 (mutated to Ala and Glu) displayed no differences in the parameters investigated. In contrast, Leu203 (mutated to Ala and Trp) and Tyr229 (mutated to Ala and Thr) exhibited up to 30-fold reduced binding affinity for the C subunit and up to 120-fold reduced binding affinity for cAMP. Tyr229Asp showed the most severe effects, with 350-fold reduced affinity for cAMP and no detectable binding to the C subunit. Based on these results and structural data in the cAMP-binding domain, a switch mechanism via a hydrophobic core region is postulated that is comparable to an activation model proposed for Epac.  相似文献   

14.
15.
The photoaffinity label 8-azido[32P]adenosine 3':5'-monophosphate and affinity chromatography on N6-(2-aminoethyl)-cAMP-Sepharose were used to analyze the cAMP-binding proteins present in cell-free extracts of Blastocladiella emersonii zoospores. In the presence of a mixture of protease inhibitors, 8-azido[32P]cAMP was specifically and quantitatively incorporated into a major protein band of Mr = 58,000, and three minor protein bands of Mr = 50,000, Mr = 43,000, and Mr = 36,000 respectively, after autoradiography following sodium dodecyl sulfate-polyacryl-amide gel electrophoresis. In the absence of the protease inhibitors, the Mr = 58,000 protein band was converted into the lower molecular weight cAMP-binding proteins, indicating a high sensitivity of the intact Mr = 58,000 protein band to endogenous proteases. The Mr = 58,000 protein corresponded to the regulatory subunit (R), of the cAMP-dependent protein kinase of zoospores, as shown by their identical behavior on DEAE-cellulose chromatography. The partially purified protein kinase incorporated 32P from [gamma-32P] ATP . Mg2+ into R as demonstrated by the specific adsorption of the 32P-labeled protein with N6-(2-aminoethyl)-cAMP-Sepharose. The incorporated 32P group was rapidly removed by endogenous phosphoprotein phosphatases in the presence of cAMP, as shown by pulse-chase experiments with [gamma-32P]ATP. Dephosphorylation of R-cAMP and rapid proteolysis may indicate two other mechanisms, in addition to cAMP, for the control of this protein kinase in vivo.  相似文献   

16.
The two isoforms (RI and RII) of the regulatory (R) subunit of cAMP-dependent protein kinase or protein kinase A (PKA) are similar in sequence yet have different biochemical properties and physiological functions. To further understand the molecular basis for R-isoform-specificity, the interactions of the RIIβ isoform with the PKA catalytic (C) subunit were analyzed by amide H/2H exchange mass spectrometry to compare solvent accessibility of RIIβ and the C subunit in their free and complexed states. Direct mapping of the RIIβ-C interface revealed important differences between the intersubunit interfaces in the type I and type II holoenzyme complexes. These differences are seen in both the R-subunits as well as the C-subunit. Unlike the type I isoform, the type II isoform complexes require both cAMP-binding domains, and ATP is not obligatory for high affinity interactions with the C-subunit. Surprisingly, the C-subunit mediates distinct, overlapping surfaces of interaction with the two R-isoforms despite a strong homology in sequence and similarity in domain organization. Identification of a remote allosteric site on the C-subunit that is essential for interactions with RII, but not RI subunits, further highlights the considerable diversity in interfaces found in higher order protein complexes mediated by the C-subunit of PKA.  相似文献   

17.
We show that the yeast, Saccharomyces cerevisiae, contains two cAMP-binding proteins in addition to the well-characterized regulatory (R) subunit of cytoplasmic cAMP-dependent protein kinase (PKA). We provide evidence that they comprise a new type of cAMP receptor, membrane-anchored by covalently attached lipid structures. They are genetically not related to the cytoplasmic R subunit. The respective proteins can be detected in sral mutants, in which the gene for the R subunit of PKA has been disrupted and a monoclonal antibody raised against the cytoplasmic R subunit does not cross-react with the two membrane-bound cAMP-binding proteins. In addition, they differ from the cytoplasmic species also with respect to their location and the peptide maps of the photoaffinity-labeled proteins. Although they differ from one another in molecular mass and subcellular location, peptide maps of the cAMP-binding domains resemble each other and both proteins are membrane-anchored by lipid structures, one to the outer surface of the plasma membrane, the other to the outer surface of the inner mitochondrial membrane. Both anchors can be metabolically labeled by Etn, myo-Ins and fatty acids. In addition, the anchor structure of the cAMP receptor from plasma membranes can be radiolabeled by GlcN and Man. After cleavage of the anchor with glycosylphosphatidylinositol-specific phospholipase C from trypanosomes, the solubilized cAMP-binding protein from plasma membranes reacts with antibodies which specifically recognize the cross-reacting determinant from soluble trypanosomal coat protein, suggesting similarity of the anchors. Degradation studies also point to the glycosylphosphatidylinositol nature of the anchor from the plasma membrane, whereas the mitochondrial counterpart is less complex in that it lacks carbohydrates. The plasma membrane cAMP receptor is, in addition, modified by an N-glycosidically linked carbohydrate side chain, responsible mainly for its higher molecular mass.  相似文献   

18.
Thyrotropin (TSH), via a cyclic AMP (cAMP)-dependent pathway, induces cytoplasmic retractions, proliferation, and differentiation expression in dog thyroid cells. The role of cAMP-dependent protein kinase (PKA) in the induction of these events was assessed by microinjection into living cells. Microinjection of the heat-stable inhibitor of PKA (PKI) inhibited the effects of TSH, demonstrating that activation of PKA was required in this process. Overexpression of the catalytic (C) subunit of PKA brought about by microinjection of the expression plasmid pC alpha ev or of purified C subunit itself was sufficient to mimic the cAMP-dependent cytoplasmic changes and thyroperoxidase mRNA expression but not to induce DNA synthesis and thyroglobulin (Tg) expression. The cAMP-dependent morphological effect was not observed when C subunit was coinjected with the regulatory subunit (RI or RII subunit) of PKA. To mimic the cAMP-induced PKA dissociation into free C and R subunits, the C subunit was coinjected with the regulation-deficient truncated RI subunit (RIdelta1-95) or with wild-type RI or native RII subunits, followed by incubation with TSH at a concentration too low to stimulate the cAMP-dependent events by itself. Although the cAMP-dependent morphology changes were still observed, neither DNA synthesis nor Tg expression was stimulated in these cells. Taken together, these data suggest that in addition to PKA activation, another cAMP-dependent mechanism could exist and play an important role in the transduction of the cAMP signal in thyroid cells.  相似文献   

19.
Kinase-negative mutants of S49 mouse lymphoma cells are pleiotropically negative for all known cAMP-mediated responses of S49 cells and yield cell extracts which are deficient in cAMP binding activity and devoid of cAMP-dependent protein kinase activity. In hybrids between kinase-negative and wild-type cells, the mutant phenotype is dominant: the tetraploid hybrids have reduced cAMP-binding activity and undetectable cAMP-dependent kinase activity. The mutant phenotype is attributable to neither a soluble inhibitor of kinase catalytic subunit, nor a defective kinase regulatory subunit acting as an inhibitor, nor a defective catalytic subunit which sequesters regulatory subunits in inactive complexes. We propose that these mutants carry trans-dominant lesions in a regulatory locus responsible for setting intracellular levels of kinase expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号