首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Boddington  C.L.  Dodd  J.C. 《Plant and Soil》2000,218(1-2):145-157
Two glasshouse experiments were performed to assess the development and metabolic activity of mycorrhizas formed by isolates of arbuscular mycorrhizal fungi (AMF) from three different genera, Acaulospora, Gigaspora and Glomus on Desmodium ovalifolium L. plants. In the first experiment the effect of disturbance of a pre-established extra-radical mycelium (ERM) was studied. In the second experiment the effect of phosphate addition as either organic matter (OM) or fertiliser was studied. Disturbance of a pre-established ERM reduced the formation of mycorrhizas by Gigaspora rosea (BEG111) and increased that by Glomus manihotis (BEG112) on D. ovalifolium plants. Acaulospora tuberculata (BEG41) failed to form mycorrhizas in the experiment. Either Gi. rosea (BEG111) or G. manihotis (BEG112) appeared to be the major component of the colonisation resulting from treatments with combinations of two or three of the AMF and determined the sensitivity of these treatments to disturbance of a pre-established ERM. The addition of phosphate fertiliser (10 mg P kg-1) reduced mycorrhiza formation by each species of AMF compared with the addition of OM (10 mg P kg-1). This work indicates that AMF from different genera respond differently to management by agricultural practices when in association with a tropical legume. Clearly, there is potential to alter the formation of mycorrhizas of AMF from different genera, through the use of agricultural practices. The significance of the development and metabolic activity of mycorrhizas formed by AMF from different genera for plant growth is discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Semi-arid tropical soils, characterized by low soil organic carbon (SOC) with limited available macronutrients and micronutrients for crop plants, are predicated to have a yield sustainability problem in the future due to intensive cropping and limited nutrient management adoptions. Arbuscular mycorrhizal fungi (AMF), the functional link between plant and soil, play a pivotal role in nutrient cycling, organic matter stabilization and soil structure and fertility improvement. Hence, so far unexplored or underutilized, native AMF could be a potential resource for fertility management of these semi-arid tropical soils. Hence, in the present investigation, we assessed the abundance and diversity of AMF in phosphorus-deficient agricultural soils of semi-arid tropics of southern India. Our results show that the spore density and infective propagules of AMF were relatively low in these soils. The morpho-typing of extracted AMF spores revealed that these soils were dominated by glomeraceae (six species of Glomus) while species of Gigaspora, Scutellospora and Acaulospora were found in low abundance. The diversity indices assessed for the AMF species were also globally low. The non-metric multi-dimensional scaling and hierarchical cluster analysis of species richness showed variation in the community composition of AMF in the soils. The principal component analysis of the assessed soil variables suggest that the available phosphorus (P), SOC and dehydrogenase and alkaline phosphatase activities had negative impact on spore density and infective propagules of AMF with no effect on species diversity. The regression analyses reveal that the available P is the significant soil variable that drives the AMF abundance and infectivity. This study opens the possibilities of effective utilization of native mycorrhizae for agriculture in semi-arid tropical soils.  相似文献   

3.
The arbuscular mycorrhizal fungal (AMF) communities associated with cacao in Venezuela were studied. The species of AMF spores present in sixteen cacao plantations and in one nursery were isolated and identified when possible. The spore densities, species richness, diversity, Shannon-Wiener diversity index and dominance concentration index for the AMF communities were calculated. Acaulospora scrobiculata was associated with cacao plants in all study sites. No Scutellospora spp. were found in the analyzed soils. The spore number found in cacao plantations was relatively lower as compared with other tropical crops (38 spores 100 g–1 soil up to 1674). Soils that were cultivated with cacao for more than 40 years showed the lowest spore numbers. Species richness and diversity of AMF communities associated with cacao, were negatively correlated with available P in soils. The Shannon-Wiener diversity index was positively correlated with soil organic matter. These results indicate that the traditional cacao cultivation practices used in Venezuela, maintain mycorrhizal infection on cacao plants. The diversity of the AMF community is similar to that found in natural undisturbed ecosystems from Venezuela.  相似文献   

4.
间作栽培对连作马铃薯根际土壤微生物群落的影响   总被引:6,自引:0,他引:6  
连作严重影响了作物的产量和品质,而土壤微生物群落结构与功能对土壤生态系统和植物健康至关重要。以连作10a土壤为基质,单作马铃薯为对照,采用磷脂脂肪酸(Phospholipid fatty acids)、BIOLOGA技术和真菌形态学鉴定方法,研究了玉米、蚕豆与马铃薯间作模式下土壤微生物群落结构、功能和丛植菌根(Arbuscular Mycorrhizal)真菌对土壤环境变化的响应。结果表明:间作调控下,马铃薯根际土壤微生物主要类群结构发生显著改变;玉米间作马铃薯,土壤微生物群落总生物量降低,但群落功能多样性提高,促进了以羧酸类、多聚化合物、芳香类化合物、氨基酸类化合物为碳源的微生物类群代谢活性增强;蚕豆间作增加了土壤微生物总生物量,仅促进了以碳水化合物为碳源的微生物类群代谢活性。间作改变了作物根际土壤AM真菌的种、属数,AM真菌多样性降低,优势种由明球囊霉、地球囊霉转变为玉米间作体系里的福摩萨球囊霉、球泡球囊霉;蚕豆间作体系里福摩萨球囊霉和疣状无梗囊霉是优势种。间作栽培下AM真菌优势种群的变化可能受植物间的共生关系、微生物结构与功能等因素的制约。间作条件下,玉米显著影响了马铃薯根际土壤微生物群落功能多样性,而蚕豆则显著改变了微生物群落结构多样性;玉米、蚕豆对马铃薯根际土壤微生物群落功能与结构变化的影响不同步;间作调控后持续的土壤微生物群落结构与功能观察才有助于解释土壤微生物结构变化引起的功能响应。  相似文献   

5.
Little is known about how tropical land-use systems contribute to the conservation of functionally important insect groups, including dung beetles. In a study at the margin of Lore Lindu National Park (a biodiversity hotspot in Central Sulawesi, Indonesia) dung-beetle communities were sampled in natural forest, young secondary forest, agroforestry systems (cacao plantations with shade trees) and annual cultures (maize fields), each with four replicates (n = 16 sites). At each site we used 10 pitfall traps, baited with cattle dung, along a 100 m transect for six 3-day periods. The number of trapped specimens and species richness at the natural forest sites was higher than in all land-use systems, which did not significantly differ. Each land-use system contained, on average, 75% of the species richness of the natural forest, thereby indicating their importance for conservation. However, a two-dimensional scaling plot based on NESS indices (m = 6) indicated distinct dung beetle communities for both forest types, while agroforestry systems and annual cultures exhibited a pronounced overlap. Mean body size of dung beetles was not significantly influenced by land-use intensity. Five of the six most abundant dung beetle species were recorded in all habitats, whereas the abundance of five other species was significantly related to habitat type. Mean local abundance and number of occupied sites were closely correlated, further indicating little habitat specialisation. The low dung beetle diversity (total of 18 recorded species) may be due to the absence of larger mammals in Sulawesi during historical times, even though Sulawesi is the largest island of Wallacea. In conclusion, the dung beetle fauna of the lower montane forest zone in Central Sulawesi appears to be relatively robust to man-made habitat changes and the majority of species did not exhibit strong habitat preferences.  相似文献   

6.
Arbuscular mycorrhizal fungi (AMF) were surveyed for species richness and abundance in sporulation in six distinct land uses in the western Amazon region of Brazil. Areas included mature pristine forest and sites converted to pasture, crops, agroforestry, young and old secondary forest. A total of 61 AMF morphotypes were recovered and 30% of them could not be identified to known species. Fungal communities were dominated by Glomus species but Acaulospora species produced the most abundant sporulation. Acaulospora gedanensis cf., Acaulospora foveata, Acaulospora spinosa, Acaulospora tuberculata, Glomus corymbiforme, Glomus sp15, Scutellospora pellucida, and Archaeospora trappei sporulated in all land use areas. Total spore numbers were highly variable among land uses. Mean species richness in crop, agroforestry, young and old secondary forest sites was twice that in pristine forest and pasture. fungal communities were dominated in all land use areas except young secondary forest by two or three species which accounted for 48% to 63% of all sporulation. Land uses influenced AMF community in (1) frequency of occurrence of sporulating AMF species, (2) mean species diversity, and (3) relative spore abundance. Conversion of pristine forest into distinct land uses does not appear to reduce AMF diversity. Cultural practices adopted in this region maintain a high diversity of arbuscular mycorrhizal fungi.  相似文献   

7.
In order to explore the importance of indigenous agroforestry systems for biodiversity conservation, we compared the abundance, species richness and diversity of dung beetles and terrestrial mammals across a gradient of different land use types from agricultural monocultures (plantains) to agroforestry systems (cocoa and banana) and forests in the BriBri and Cabécar indigenous reserves in Talamanca, Costa Rica. A total of 132,460 dung beetles of 52 species and 913 tracks of 27 terrestrial mammal species were registered. Dung beetle species richness and diversity were greatest in the forests, intermediate in the agroforestry systems and lowest in the plantain monocultures, while dung beetle abundance was greatest in the plantain monocultures. The number of mammal tracks per plot was significantly higher in forests than in plantain monocultures, whereas mammal species richness was higher in forests than in either cocoa agroforestry systems or plantain monocultures. Species composition of both terrestrial mammals and dung beetles also varied across the different land use types. Our study indicates that indigenous cocoa and banana agroforestry systems maintain an intermediate level of biodiversity (which is less than that of the original forest but significantly greater than that of plantain monocultures) and provide suitable habitat for a number of forest-dependent species. Although the agroforestry systems appear to serve as favorable habitats for many terrestrial mammal species, their potential positive contribution to mammal conservation is being offset by heavy hunting pressure in the reserves. As in other agricultural landscapes, the conservation of biodiversity in Talamanca will depend not only on maintaining the existing forest patches and reducing the conversion of traditional agroforestry systems to monocultures, but also on reducing hunting pressure.  相似文献   

8.
Arbuscular mycorrhizal fungi (AMF) are essential constituents of most terrestrial ecosystems. AMF species differ in terms of propagation strategies and the major propagules they form. This study compared the AMF community composition of different propagule fractions – colonized roots, spores and extraradical mycelium (ERM) – associated with five Mediterranean plant species in Sierra de Baza Natural Park (Granada, Spain). AMF were identified using 454 pyrosequencing of the SSU rRNA gene. A total of 96 AMF phylogroups [virtual taxa (VT)] were detected in the study site, including 31 novel VT. After per‐sample sequencing depth standardization, 71 VT were recorded from plant roots, and 47 from each of the spore and ERM fractions. AMF communities differed significantly among the propagule fractions, and the root‐colonizing fraction differed among host plant species. Indicator VT were detected for the root (13 Glomus VT), spore (Paraglomus VT281, VT336, Pacispora VT284) and ERM (Diversispora VT62) fractions. This study provides detailed evidence from a natural system that AMF taxa are differentially allocated among soil mycelium, soil spores and colonized root propagules. This has important implications for interpreting AMF diversity surveys and designing applications of AMF in vegetation restoration.  相似文献   

9.
为研究高寒草甸大型土壤动物群落组成和分布对环境因子的响应,选取祁连山东段的甘肃省天祝县高原鼢鼠典型分布区域,以鼠丘密度代表干扰强度设置4个干扰区。调查各干扰区植被群落特征、土壤理化性质、大型土壤动物类群组成及其数量,采用约束性排序方法分析环境因子对大型土壤动物类群组成和分布的影响。结果表明:高原鼢鼠干扰下高寒草甸大型土壤动物优势类群为瓦娄蜗牛科、象甲科和短角亚目幼虫;极重度干扰区大型土壤动物类群的丰度、丰富度、Shannon指数显著高于重度干扰区(P<0.05);多元回归分析表明大型土壤动物类群丰度、丰富度和Shannon指数与土壤温度呈显著负相关(P<0.05),丰富度与土壤含水量呈显著负相关(P<0.05),丰度与土壤紧实度呈显著负相关(P<0.05),丰富度和Shannon指数与植物Shannon指数呈显著负相关(P<0.05);冗余分析和偏冗余分析表明,土壤温度、紧实度和含水量是影响高寒草甸大型土壤动物类群组成和分布的主要环境因子。  相似文献   

10.
Climate and agricultural practice interact to influence both crop production and soil microbes in agroecosystems. Here, we carried out a unique experiment in Central Germany to simultaneously investigate the effects of climates (ambient climate vs. future climate expected in 50–70 years), agricultural practices (conventional vs. organic farming), and their interaction on arbuscular mycorrhizal fungi (AMF) inside wheat (Triticum aestivum L.) roots. AMF communities were characterized using Illumina sequencing of 18S rRNA gene amplicons. We showed that climatic conditions and agricultural practices significantly altered total AMF community composition. Conventional farming significantly affected the AMF community and caused a decline in AMF richness. Factors shaping AMF community composition and richness at family level differed greatly among Glomeraceae, Gigasporaceae and Diversisporaceae. An interactive impact of climate and agricultural practices was detected in the community composition of Diversisporaceae. Organic farming mitigated the negative effect of future climate and promoted total AMF and Gigasporaceae richness. AMF richness was significantly linked with nutrient content of wheat grains under both agricultural practices.  相似文献   

11.
 The aim of this study was to compare mycorrhizal abundance and diversity in sites with different regimes of disturbance in a tropical rain forest at Los Tuxtlas, Veracruz, Mexico. Arbuscular mycorrhizal spores were quantified at two sites: closed canopy and gaps in the forest. Data were recorded during dry, rainy, and windy ("nortes") seasons. Spores of eight Glomus species, sporocarps of three Sclerocystis species, three species of Acaulospora and two of Gigaspora were found. Significant differences in the number of species and spores were found among seasons. The highest numbers of species and spores were observed during the dry season, with a marked decrease during the rainy season. Our results show that disturbance does not but seasonality does affect abundance and richness of mycorrhizal spores in this tropical wet forest. Accepted: 11 October 1998  相似文献   

12.
Cowpea (Vigna unguiculata) is a nutritious legume crop for both its grain and leaves and comprises an important component in both human and animal nutrition. In Brazil, the use of mulch, such as coconut fiber, and organic fertilizers to maximize cowpea production offers an alternative to conventional mineral fertilizer strategies. Farming practices affect the diversity and activity of soil microorganisms, including arbuscular mycorrhizal fungi (AMF), important plant growth promoters for legumes. Our objective was to determine the effect of mulching with coconut fiber and manure on AMF diversity in cowpea. Soil samples were collected from an Experimental Station in Petrolina, NE Brazil: one Caatinga (natural dry‐forest vegetation), one fallow, and one experimental site established in the fallow area and cultivated with cowpea receiving cattle manure and four doses (0, 12, 24, 48 t/ha) of coconut fiber. AMF species richness, abundance, and diversity were evaluated. Sixty‐four AMF species were recorded, with predominance of Glomeraceae and Acaulosporaceae. Highest species richness (47) was recovered from the Caatinga but AMF diversity was also high in the cultivated sites, demonstrating the importance of mycotrophic plants, such as cowpea, in crop production systems for the maintenance of AMF species richness. Although several species, such as Claroideoglomus etunicatum, Acaulospora scrobiculata, Glomus trufemii, and Paraglomus pernambucanum, revealed pronounced sporulation patterns, even high doses of coconut fiber did not affect AMF richness and diversity, compared to fallow. Consequently, cultivation of mycotrophic plants and use of organic manures are able to maintain high AMF species richness in tropical agroecosystems.  相似文献   

13.
The controlled disposal of tannery sludge in agricultural soils is a viable alternative for recycling such waste; however, the impact of this practice on the arbuscular mycorrhizal fungi (AMF) communities is not well understood. We studied the effects of low-chromium tannery sludge amendment in soils on AMF spore density, species richness and diversity, and root colonization levels. Sludge was applied at four doses to an agricultural field in Rolandia, Paraná state, Brazil. The sludge was left undisturbed on the soil surface and then the area was harrowed and planted with corn. The soil was sampled at four intervals and corn roots once within a year (2007/2008). AMF spore density was low (1 to 49 spores per 50 cm3 of soil) and decreased as doses of tannery sludge increased. AMF root colonization was high (64%) and unaffected by tannery sludge. Eighteen AMF species belonging to six genera (Acaulospora, Glomus, Gigaspora, Scutellospora, Paraglomus, and Ambispora) were recorded. At the sludge doses of 9.0 and 22.6 Mg ha−1, we observed a decrease in AMF species richness and diversity, and changes in their relative frequencies. Hierarchical grouping analysis showed that adding tannery waste to the soil altered AMF spore community in relation to the control, modifying the mycorrhizal status of soil and selectively favoring the sporulation of certain species.  相似文献   

14.
In agriculturally marginal areas, the control of unpalatable weeds on species rich pastures may become problematic due to agricultural and socio-economic developments. It is unclear how increased dominance of unpalatable species would affect the botanical diversity of these grasslands. We investigated whether there was any relationship between plant species diversity and the abundance of unpalatable species and whether soil conditions affected this relationship. In three species-rich montane pastures in western Switzerland, we related plant species richness to soil attributes, the relative cover of all unpalatable species and the relative cover of the locally dominant, toxic Veratrum album in 25 plots of 4 m2. We furthermore determined species richness in small transects through patches of V. album. Species richness was significantly lower in and near (≤ 0.3 m) patches of V. album. At the field scale, plant species richness was best described by total soil N:P ratio (positive relation) in one site and the relative abundance of unpalatable species (negative relation) and soil N:P ratio (positive relation) in a second site. In the third site, species richness was not significantly related to any measured variable. Vegetation diversity (Simpson's D) was negatively related to the relative abundance of unpalatable species in one site and positively related to pH in another site. The results suggest that no single factor can explain plant species richness and diversity in montane pastures. At very high densities unpalatable species can have adverse effects but soil nutrient status appears to be a more general determinant of plant species richness. Conservation efforts should give priority to the prevention of intensification of these pastures.  相似文献   

15.
Knowledge about the presence and diversity of arbuscular mycorrhizal fungi (AMF) in a specific area is an essential first step for utilizing these fungi in any application. The community composition of AMF in intensively managed agricultural soil in the Sichuan Province of southwest China currently is unknown. In one set of samples, AMF were trapped in pot cultures from 40 fields growing legumes in the Panxi region, southeast Sichuan. In a second set of samples, the MPN method with four-fold dilutions and maize as host was used to estimate infective propagules in soil from another 50 agricultural sites throughout the province. Soil types were heterogeneous and were classified as purple, yellow, paddy and red. Crops at each site were either maize, wheat or sweet orange. From this set of soil, AMF spores were also extracted and identified. Including all ninety soils, thirty glomeromycotan species in Glomus (20 species), Acaulospora (four species), Scutellospora (three species), Ambispora (one species), Archaeospora (one species) and Paraglomus (one species) were identified. Yellow, red and purple soils yielded similar numbers of AMF species, while AMF species diversity was clearly lower in paddy soil. In trap culture soils, the most frequent species were Glomus aggregatum or Glomus intraradices, Glomus claroideum and Glomus etunicatum. The species Acaulospora capsicula, Acaulospora delicata, G. aggregatum (or intraradices), G. claroideum, Glomus epigaeum, G. etunicatum, Glomus luteum, Glomus monosporum, Glomus mosseae and Glomus proliferum were successfully cultured as single-species pot cultures in Plantago lanceolata. The three most frequent species in field soils were G. mosseae, Glomus caledonium and Glomus constrictum. MPN values varied between 17 and 3334 propagules 100 g soil−1 among the fifty field sites sampled. Regression analysis, including host&soil, log(P) and pH as explanatory variables explained 59% of the variation in log(MPN). The highest MPN estimates were found in purple soil cropped with maize and citrus, 324 and 278 propagules 100 g soil−1, respectively. The lowest MPN value, 54 propagules 100 g soil−1, was measured in wheat in purple and yellow soil. Despite intensive agricultural management that can include often repeated tillage, our examination of 90 agricultural sites revealed that soils of the Sichuan region have moderate to high numbers of infective AMF propagules as well as a high AMF species diversity. This opens possibilities for further studies and utilization of AMF in agriculture and horticulture in the Sichuan province, People’s Republic of China.  相似文献   

16.
The oil palm industry is one of the main economic drivers in Southeast Asia. The industry has caused tropical deforestation on a massive scale in producing countries, and this forest conversion to oil palm agriculture has decimated the habitat of numerous native species. Monoculture and polyculture practices are two distinctive oil palm production systems. We hypothesize that polyculture farming hosts a greater diversity of species than monoculture farming. Habitat complexity in smallholdings is influenced by multiple farming practices (i.e. polyculture and monoculture). However, little is known about the effects of such farming practices in smallholdings on mammalian biodiversity, and particularly frugivorous bats. Our study aimed to find the best farming practice to reconcile oil palm production with biodiversity conservation. Mist-nets were used to trap frugivorous bats at 120 smallholdings in Peninsular Malaysia. We compared species richness and the abundance of frugivorous bats between monoculture and polyculture smallholdings. We investigated their relationships with vegetation structure characteristics. Our results revealed that species richness and abundance of frugivorous bats were significantly greater in polyculture smallholdings than monoculture smallholdings. We also found that 28.21% of the variation in species richness was explained by in situ habitat characteristics, including the number of dead standing oil palms and immature oil palms, non-grass cover, height of non-grass cover, and farming practices. The in situ habitat quality was closely associated with oil palm farming management. Commercial growers should implement polyculture rather than monoculture farming because polyculture farming has positive effects on the abundance and species richness of bats in oil palm production landscapes.  相似文献   

17.
【目的】解析不同连作年限花魔芋软腐病株、健株根域的丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)群落多样性。【方法】使用AMF 18S SSU rRNA基因特异引物AMV4.5NF/AMDGR对正茬及连作2年和3年的软腐病株、健株魔芋根系和根际土壤DNA扩增建库,通过高通量测序和生物信息学分析探究魔芋软腐病与其根域AMF群落多样性的关系。【结果】魔芋根系具有明显的AMF菌丝、泡囊和丛枝等结构。在相同连作年限条件下,健株根系AMF总侵染率、侵染强度和孢子密度均显著高于病株(P<0.05);在不同连作年限条件下,病株根系AMF总侵染率和侵染强度随连作年限延长而降低。从所有样品中共鉴定到9属53种AMF,其中有49个已知种和4个新种。球囊霉属(Glomus)和类球囊霉属(Claroideoglomus)是AMF群落的优势属,其AMF种分别占总AMF种数的41.5%和26.4%;丰度最高的Paraglomus sp.VTX00308是所有样品的共有种。连作、软腐病及二者的交互作用显著影响根系AMF群落的Shannon指数和Simpson指数及根际土壤AMF的Chao1指数(P<0.05)。通过丰度差异分析发现6个在连作软腐病发生后丰度差异显著的AMF种(P<0.05);NMDS分析表明,不同连作年限的魔芋软腐病株与健株之间的根域AMF菌种组成、相对丰度和群落结构存在差异。相关性分析表明,软腐病发病率和病情指数与魔芋根系和根际土壤AMF的Shannon指数、根系AMF的Chao1和Simpson指数以及AMF总侵染率、侵染强度和孢子密度极显著负相关(P<0.01)。【结论】比对健株,连作魔芋软腐病株根际土壤AMF孢子密度以及根系AMF侵染率、种数和多样性均降低,其群落结构显著改变。  相似文献   

18.
Many studies have shown that soil disturbance facilitates establishment of invasive, non-native plant species, and a number of mechanisms have been isolated that contribute to the process. To our knowledge no studies have isolated the role of altered soil compaction, a likely correlate of many types of soil disturbance, in facilitating invasion. To address this, we measured the response of seeded non-native and native plant species to four levels of soil compaction in mesocosms placed in an abandoned agricultural field in the Methow Valley, Washington, USA. Soil compaction levels reflected the range of resistance to penetration (0.1–3.0 kg cm−2) measured on disturbed soils throughout the study system prior to the experiment. Percent cover of non-native species, namely Bromus tectorum and Centaurea diffusa, decreased by 34% from the least to the most compacted treatments, whereas percent cover of native species, mostly Pseudoroegneria spicata and Lupinus spp., did not respond to compaction treatments. Experimental results were supported by a survey of soil penetration resistance and percent cover by species in 18 abandoned agricultural fields. Percent cover of B. tectorum was negatively related to soil compaction levels, whereas none of the native species showed any response to soil compaction. These results highlight a potentially important, though overlooked, aspect of soil disturbance that may contribute to subsequent non-native plant establishment.  相似文献   

19.
20.
The Atlantic forests of southern Bahia in Brazil present great species richness and a high degree of endemism. A large part of these native forests were transformed into cacao plantations in an agroforestry system known locally as cabrucas, where native trees were culled and cacao was planted under the shade of remaining trees. The present study analyzed the influence of time of implantation (age) and time of abandonment of management practices on tree species diversity of cabruca plantations to evaluate the capacity for conservation and recovery of species richness of native Atlantic Forest trees in cabrucas. Phytosociological surveys were conducted in five cabrucas with different conditions of age and state of abandonment. All trees, including hemiepiphytes and excluding the cacao plants, with a minimum stem diameter of 10 cm at breast height, were surveyed within a 3-ha sampling area in each plantation. A total of 2514 individual trees belonging to 293 species and 52 families were recorded in the five cabrucas. The Shannon diversity index varied from 3.31 to 4.22 among the cabrucas and was positively correlated with the time of abandonment (r = 0.97). The new cabrucas showed the highest values of estimated total richness (Chao) and the highest proportion of late successional species than the old ones. All areas preserved a very high proportion of native forest species while the three old cabrucas showed a higher proportion of exotic species than the two new ones. Thus the exotic species seem to replace more of the native species in the long run because of management practices and local preferences. The cabrucas presented also a high capacity for the regeneration of tree species richness after abandonment. Simple alterations in management practices could improve the recruitment of late successional species in these areas. Economic incentives may be necessary for the farmers to adopt management practices to retain native species which bring no economic returns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号