首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to explore the importance of indigenous agroforestry systems for biodiversity conservation, we compared the abundance, species richness and diversity of dung beetles and terrestrial mammals across a gradient of different land use types from agricultural monocultures (plantains) to agroforestry systems (cocoa and banana) and forests in the BriBri and Cabécar indigenous reserves in Talamanca, Costa Rica. A total of 132,460 dung beetles of 52 species and 913 tracks of 27 terrestrial mammal species were registered. Dung beetle species richness and diversity were greatest in the forests, intermediate in the agroforestry systems and lowest in the plantain monocultures, while dung beetle abundance was greatest in the plantain monocultures. The number of mammal tracks per plot was significantly higher in forests than in plantain monocultures, whereas mammal species richness was higher in forests than in either cocoa agroforestry systems or plantain monocultures. Species composition of both terrestrial mammals and dung beetles also varied across the different land use types. Our study indicates that indigenous cocoa and banana agroforestry systems maintain an intermediate level of biodiversity (which is less than that of the original forest but significantly greater than that of plantain monocultures) and provide suitable habitat for a number of forest-dependent species. Although the agroforestry systems appear to serve as favorable habitats for many terrestrial mammal species, their potential positive contribution to mammal conservation is being offset by heavy hunting pressure in the reserves. As in other agricultural landscapes, the conservation of biodiversity in Talamanca will depend not only on maintaining the existing forest patches and reducing the conversion of traditional agroforestry systems to monocultures, but also on reducing hunting pressure.  相似文献   

2.
We evaluated the effects of different land-use systems on the ability of dung beetles to control the population of detritus-feeding flies. We tested the hypotheses that intensification of land use will reduce dung beetles richness, abundance and biomass and, consequently, their dung burial ability, affecting the interaction between dung beetles and flies and reducing its effectiveness as a natural biological control. In the Brazilian Amazon we sampled dung beetles, fly larvae and adults; and recorded the rate of dung removal by dung beetles across a gradient of land-use intensity from primary forest, secondary forest, agroforestry, agriculture to pasture. Our results provide evidence that land-use intensification results in a reduction of the richness, abundance and biomass of dung beetles, and this in turn results in lower rates of dung removal in the most simplified systems. We found no significant differences in the abundance of fly larvae between the different systems of land use. However, the number of adult flies differed significantly between land-use systems, presenting higher abundance in those sites with greater intensity of use (pasture and agriculture) and a lower abundance of adult flies in forested systems (primary and secondary forests, and agroforestry). Information-theoretic model selection based on AICc revealed strong support for the influence of land-use systems, dung removal rates and dung beetle abundance, biomass and richness on adult dung-fly abundance. Our results also reveal that dung beetles are not solely responsible for fly control and that other factors linked to land use are influencing the populations of these detritus-feeding insects.  相似文献   

3.
In this paper we address the effects of anthropogenic disturbance and replacement of Brazilian Coastal sandy vegetation (restingas) on dung beetles communities. We sampled dung beetles in the four main vegetative physiognomies of Guriri Island, Espírito Santo State: forest restinga, restinga Clusia, disturbed restinga (from burning events), and pastures. We placed four sets of two pitfall traps (baited with horse and human dung) in four independent areas of each vegetation type, and collected 14,534 individuals of 13 dung beetle species. Neither log10 of individuals nor log10 of species richness were good predictors of restinga disturbance. However, a significant amount of variation in dung beetle abundance and richness could be explained by bait type. Ordination of these sites using hybrid multidimensional scaling revealed a gradient of habitat disturbance from undisturbed restinga samples to pasture. Dung beetle communities along this gradient demonstrated a complete turnover in species composition, from restinga‐specialists to invasive and generalists species respectively. This complete turnover signals the local extirpation of forest‐adapted species in disturbed and converted areas. Only a single dung beetle species in preserved restingas is protected by Brazilian law (Dichotomius schiffleri). Given the extent of the clearing of restinga habitat, the conservation status of dung beetles associated with restinga forest gives cause for concern.  相似文献   

4.
Tropical landscapes are dominated by agroecosystems, but the potential value of agroecosystems for the survival of species is often overlooked. In agroecosystems, species conservation is especially important when functional groups such as predators are affected. In Central Sulawesi, we sampled arthropods on cocoa in a gradient of land-use intensity from extensively used forest gardens to intensively used agroforestry systems. The abundance and diversity of all arthropods did not correlate with land-use intensity, so human impact was not followed by high species losses. However, the number of species and abundance of the phytophagous arthropods increased and that of the entomophagous arthropods decreased with land-use intensity. The reduced predator–prey ratio in intensified systems can be related to their reduced species richness of shade trees and the changed microclimate (increased temperature, decreased humidity and canopy cover). In conclusion, transformation of traditional into intensified agroforestry systems had a great impact on arthropod community structure on cocoa. Since predator–prey ratios decreased with increasing land-use intensity, local farmers should have least pest problems in the traditionally diversified agroforestry systems.  相似文献   

5.
Although there is increasing interest in the effects of habitat disturbance on community attributes and the potential consequences for ecosystem functioning, objective approaches linking biodiversity loss to functional loss are uncommon. The objectives of this study were to implement simultaneous assessment of community attributes (richness, abundance and biomass, each calculated for total-beetle assemblages as well as small- and large-beetle assemblages) and three ecological functions of dung beetles (dung removal, soil perturbation and secondary seed dispersal), to compare the effects of habitat disturbance on both sets of response variables, and their relations. We studied dung beetle community attributes and functions in five land-use systems representing a disturbance gradient in the Brazilian Amazon: primary forest, secondary forest, agroforestry, agriculture and pasture. All response variables were affected negatively by the intensification of habitat disturbance regimes, but community attributes and ecological functions did not follow the same pattern of decline. A hierarchical partitioning analysis showed that, although all community attributes had a significant effect on the three ecological functions (except the abundance of small beetles on all three ecological functions and the biomass of small beetles on secondary dispersal of large seed mimics), species richness and abundance of large beetles were the community attributes with the highest explanatory value. Our results show the importance of measuring ecological function empirically instead of deducing it from community metrics.  相似文献   

6.
The ongoing destruction of tropical rainforests has increased the interest in the potential value of tropical agroforests for the conservation of biodiversity. Traditional, shaded agroforests may support high levels of biodiversity, for some groups even approaching that of undisturbed tropical forests. However, it is unclear to what extent forest fauna is represented in this diversity and how management affects forest fauna in agroforests. We studied lower canopy ant and beetle fauna in cacao agroforests and forests in Central Sulawesi, Indonesia, a region dominated by cacao agroforestry. We compared ant and beetle species richness and composition in forests and cacao agroforests and studied the impact of two aspects of management intensification (the decrease in shade tree diversity and in shade canopy cover) on ant and beetle diversity. The agroforests had three types of shade that represented a decrease in tree diversity (high, intermediate and low diversity). Species richness of ants and beetles in the canopies of the cacao trees was similar to that found in lower canopy forest trees. However, the composition of ant and beetle communities differed greatly between the agroforest and forest sites. Forest beetles suffered profoundly from the conversion to agroforests: only 12.5% of the beetle species recorded in the forest sites were also found in the agroforests and those species made up only 5% of all beetles collected from cacao. In contrast, forest ants were well represented in agroforests, with 75% of all species encountered in the forest sites also occurring on cacao. The reduction of shade tree diversity had no negative effect on ants and beetles on cacao trees. Beetle abundances and non-forest ant species richness even increased with decreasing shade tree diversity. Thinning of the shade canopy was related to a decrease in richness of forest ant species on cacao trees but not of beetles. The contrasting responses of ants and beetles to shade tree management emphasize that conservation plans that focus on one taxonomic group may not work for others. Overall ant and beetle diversity can remain high in shaded agroforests but the conservation of forest ants and beetles in particular depends primarily on the protection of natural forests, which for forest ants can be complemented by the conservation of adjacent shaded cacao agroforests.  相似文献   

7.
Land-use systems (LUS), placed in originally forested areas, represent different degrees of opportunity for species conservation. In this study, we examined the dung beetle communities in order to identify the conservation value of different LUS: primary forest, old secondary forest, young secondary forest, agroforestry, agriculture and pasture in Western Amazon. The LUS were sampled in two campaigns during the highest precipitation period and dryest period. The primary forest has a high number of total and exclusive species. Large beetles show a continuous decreasing in richness and abundance from primary forest to pastures, while small ones are not sensible to intermediate systems (secondary forest to agriculture) in terms of species richness and exhibit a increase in abundance at agroforest and agriculture when contrasted to secondary forest and pasture The beetle community composition was not sensible to secondary forest recovering time. Secondary forests and agroforestry stood out as harboring many species shared with primary forests. Cloud-point dispersion (average dissimilarity) increased from primary forest towards LUS’s submitted to more intense use. The higher sampling points similarity observed in primary forest might be the result of the relative stability of this system, given that environmental impacts might increase variability in community structure and beta diversity. Increase in beta diversity as expressed by greater dispersion of sites in multivariate space suggests that these areas are dependent on nearby species pools, possibly primary forests, and harbor a higher spatial heterogeneity in species composition. This high variability can overestimate the importance of occasional species, thus biasing the actual value of alternative LUS for biodiversity conservation.  相似文献   

8.
Philip Nyeko 《Biotropica》2009,41(4):476-484
Very little is known about the diversity of arthropods in the fast-disappearing fragments of natural forests in sub-Saharan Africa. This study investigated: (1) the influence of forest fragment characteristics on dung beetle species richness, composition, abundance, and diversity; and (2) the relationship between dung beetle assemblages and rainfall pattern. Beetles were sampled through 12 mo using dung baited pitfall traps. A total of 18,073 dung beetles belonging to three subfamilies and 45 species were captured. The subfamily Scarabaeinae was the most abundant (99%) and species rich (89%). Fast-burying tunnellers (paracoprids) were the most dominant functional group. Catharsius sesostris, Copris nepos , and Heliocopris punctiventris were the three most abundant species, and had the highest contributions to dissimilarities between forests. With few exceptions, dung beetle abundance, species richness, and diversity were generally higher in larger forest fragments (100–150 ha) than in smaller ones (10–50 ha) and the nature reserve (1042 ha). Forest fragment size had a highly significant positive relationship with beetle abundance, but only when the nature reserve is excluded in the analysis. Dung beetle abundance and species richness showed direct weak relationships with litter depth (positive) and groundcover (negative) but not tree density, tree species richness, and fragment isolation distance. Dung beetle abundance and species richness were strongly correlated with monthly changes in rainfall. Results of this study indicate that forest fragments on agricultural lands in the Budongo landscape, especially medium-sized (100–150 ha) ones, represent important conservation areas for dung beetles.  相似文献   

9.
Traditional agro-pastoral practices are in decline over much of the Alps, resulting in the complete elimination of livestock grazing in some areas. Natural reforestation following pastoral abandonment may represent a significant threat to alpine biodiversity, especially that associated with open habitats. This study presents the first assessment of the potential effects of natural reforestation on dung beetles by exploring the relationships between the beetle community (abundance, diversity, species turnover and assemblage structure) and the vegetation stages of ecological succession following pastoral abandonment. A hierarchical sampling design was used in the montane belt of the Sessera Valley (north-western Italian Alps). Dung beetles were sampled across 16 sampling sites set in four habitat types corresponding to four different successional stages (pasture, shrub, pioneer forest and beech forest) at two altitudinal levels. The two habitats at the extremes of the ecological succession, i.e. pasture and beech forest, had the greatest effect on the structure of local dung beetle assemblages. Overall, dung beetle abundance was greater in beech forest, whereas species richness, Shannon diversity and taxonomic diversity were significantly higher in pasture, hence suggesting this latter habitat can be considered as a key conservation habitat. Forests and pastures shared a lower number of species than the other pairs of habitats (i.e. species turnover between these two habitats was the highest). The two intermediate seral stages, i.e. shrub and pioneer forest, showed low dung beetle abundance and diversity values. Local dung beetle assemblages were also dependent on season and altitude; early-arriving species were typical of pastures of high elevation, whereas late-arriving species were typical of beech forests. It is likely that grazing in the Alps will continue to decrease in the future leading to replacement of open habitats by forest. This study suggests therefore that, at least in the montane belt, reforestation may have potentially profound and negative effects on dung beetle diversity. Maintaining traditional pastoral activities appears to be the most promising approach to preserve open habitats and adjacent beech forests, resulting in the conservation of species of both habitats.  相似文献   

10.
Land-use intensification in Mediterranean agro-forest systems became a pressure on biodiversity, concerning particularly the woodland sensitive species. In 2001, the effects of a land-use gradient from old-growth cork-oak forest to a homogeneous agricultural area were assessed using rove beetles as indicators in a Mediterranean landscape. The aim was to find which species were negatively affected by land-use intensification at the landscape level and whether they benefited from cork-oak patches occurring along the land-use gradient. A total of 3,196 rove beetles from 88 taxa were sampled from all landscape types. Agricultural area recorded significantly higher numbers of abundance and species richness in relation to the cork-oak mosaics, i.e. the old-growth forest and the managed agro-forest landscapes (montados). Moreover, 70% of rove beetle indicator species common enough to be tested by IndVal displayed their highest indicator value for agriculture, showing a lower number of woodland indicators in comparison to ground beetles. Nevertheless, one rove beetle taxon was considered a specialist of closed woodland mosaics while no specialist ground beetle was found for that landscape typology. Some rare rove beetle species were also important in typifying diversity patterns of old-growth cork-oak forests. Hence, future management in Mediterranean landscapes should take into account not only indicator species common enough to be tested by IndVal, but also rare and endemic species. Considering the added value of cork-oak woodland cover for sensitive rove and ground beetle diversity, the strengthening of cork-oak woodland connectivity seems to be a crucial management that is required in agricultural Mediterranean landscapes.  相似文献   

11.
Conservation efforts are often aimed at one or a few species. However, habitat sustainability relies on ecological interactions among species, such as seed dispersal. Thus, a community-scale conservation strategy may be more valuable in some settings. We describe communities of primary (primates) and secondary (dung beetles) seed dispersers from 5 sites in the Brazilian Amazon. We estimate community biomass of these taxa and, using multivariate ordination, examine the potential for natural reforestation at each site, given the communities of seed dispersers present. Since disturbed habitat is increasingly common and increasingly the focus of conservation efforts, we also examine differences among seed disperser communities between primary forest and secondary growth at each site. Analyses of faunal biomass in different localities and habitats indicate that secondary growth receives nearly as much use by primates as primary forest; given the dominant groups of dung beetles in secondary growth, disturbed habitat should show a pattern of seed burial that is clumped and deep. Areas with high biomass of Alouatta spp. and the large nocturnal dung beetle species may have the greatest potential for natural reforestation of secondary growth particularly for large seeded species. The data suggest that knowledge of the biomass of primary and secondary dispersing fauna facilitates predictions for the likelihood of disturbed habitat to regenerate and comparisons of sites in broader geographical areas e.g., Neotropical vs. Paleotropical forests.  相似文献   

12.
1. The habitat heterogeneity hypothesis predicts that heterogeneous habitats may provide more niches and diverse ways of exploiting environmental resources, thereby allowing more species to coexist, persist and diversify. 2. We aimed to investigate how an edge-interior gradient related to forest complexity influences species composition, abundance and richness of dung beetles in the western Amazon rainforest. We expected dung beetle abundance and richness to increase along the forest edge-interior gradient, in accordance with the habitat heterogeneity hypothesis. We also expected strong changes in species composition driven by species turnover in the forest interior and nestedness along the forest edges. We sampled dung beetles using baited pitfall traps across an edge-interior gradient. We also assessed the variation in forest features along the edge-interior gradient to identify changes in forest complexity. 3. Both species richness and abundance of dung beetles increased along the forest edge-interior, following the gradient of forest complexity. The Sorensen dissimilarity of dung beetle assemblages was higher among sampling units placed near the forest edge, although neither turnover, nor nestedness was different between the extremes of the forest edge-interior gradient. There was a clear compositional change along the edge-interior gradient mostly driven by species turnover. Individual indicator value analysis revealed that species were strongly associated with the forest interior conditions. 4. The simplification of the Amazon rainforest near clearings causes compositional changes in dung beetle assemblages. These changes are characterised by species-poor and low-abundance assemblages and may impair dung beetle ecological functions and therefore forest recovery.  相似文献   

13.
Dung beetles highly depend on the ephemeral microhabitat dung which is food resource and larval habitat at the same time. Environmental conditions surrounding a dung pad, such as vegetation structure, have an impact on dung beetle assemblages. We investigated the influence of dung conditions and surrounding habitat characteristics on Mediterranean dung beetle assemblages in a permanently grazed landscape in northern Sardinia. We sampled the dung beetle assemblages of donkey and horse dung in three different vegetation types and assessed species richness and abundance of dung beetles. Species richness was determined by dung and surrounding habitat conditions, whereas abundance was solely affected by dung conditions. However, species richness and abundance decreased with increasing dung density. The effect of dung density on species richness varied depending on vegetation type, with dry grassland exhibiting the highest number of dung beetles species at high dung density. Species composition in dung pads was influenced by abiotic factors with dwellers being negatively affected by increasing dung-pad temperature. Our results underline the importance of diverse vegetation, particularly with respect to the complexity of vegetation which interrelates with the microclimate. Furthermore, our findings illustrate the negative effect of high dung densities on dung beetle assemblages, suggesting that the degree of the intensity of use by grazing animals is important when considering measures for the conservation of dung beetles.  相似文献   

14.
Throughout the tropics, agroforests are often the only remaining habitat with a considerable tree cover. Agroforestry systems can support high numbers of species and are therefore frequently heralded as the future for tropical biodiversity conservation. However, anthropogenic habitat modification can facilitate species invasions that may suppress native fauna. We compared the ant fauna of lower canopy trees in natural rainforest sites with that of cacao trees in agroforests in Central Sulawesi, Indonesia in order to assess the effects of agroforestry on occurrence of the Yellow Crazy Ant Anoplolepis gracilipes, a common invasive species in the area, and its effects on overall ant richness. The agroforests differed in the type of shade-tree composition, tree density, canopy cover, and distance to the village. On average, 43% of the species in agroforests also occurred in the lower canopy of nearby primary forest and the number of forest ant species that occurred on cacao trees was not related to agroforestry characteristics. However, A. gracilipes was the most common non-forest ant species, and forest ant richness decreased significantly with the presence of this species. Our results indicate that agroforestry may have promoted the occurrence of A. gracilipes, possibly because tree management in agroforests negatively affects ant species that depend on trees for nesting and foraging, whereas A. gracilipes is a generalist when it comes to nesting sites and food preference. Thus, agroforestry management that includes the thinning of tree stands can facilitate ant invasions, thereby threatening the potential of cultivated land for the conservation of tropical ant diversity.  相似文献   

15.
Riparian forests provide important habitat for many wildlife species and are sensitive to landscape change. Among terrestrial invertebrates, dung beetles have been used to investigate the effects of environmental disturbances on forest structure and diversity. Since many studies demonstrated a negative response of dung beetle communities to increasing forest fragmentation, and that most dung beetle species had a more pronounced occurrence during warmest seasons, three hypotheses were tested: (1) Scarabaeinae richness, abundance, diversity and evenness are lower in thinner riparian zone widths than in wider widths during the warmest seasons; (2) Scarabaeinae richness and abundance are positively influenced by leaf litter coverage and height and canopy cover; and (3) Scarabaeinae composition varies with the reduction in riparian vegetation and among annual seasons. We selected four fragments with different riparian zone widths in three secondary streams in southern Brazil. In each fragment, four sampling periods were carried out seasonally between spring 2010 and winter 2011. We collected dung beetles using pitfall traps with two types of bait. We collected 1289 specimens distributed among 29 species. In spring and summer, dung beetle richness was higher in fragments with the widest riparian zone than in those with a thinner riparian zone, and it did not vary between fragments in fall and winter seasons. Dung beetle abundance did not differ among fragments with different riparian zone widths, but it was higher in spring and summer than fall and winter. Richness and abundance were positively influenced by leaf litter. While dung beetle diversity was higher in fragments with wider riparian zone widths than in those with thinner widths, the evenness was similar among fragments. Dung beetle composition differed between the fragments with the widest and thinnest riparian zones, and it also varied among the seasons. Our results suggest that decreased riparian zones affect negatively to dung beetle community structure in southern Brazil. Fragments with thinner riparian zones had lower beetle richness in warmest seasons and an altered community composition. In this sense, the dung beetles are potentially good indicators of riparian forest fragmentation since some species were indicators of a particular riparian zone width. From a conservation perspective, our results demonstrate that the new Brazilian Forest Code will greatly jeopardize not only the terrestrial and aquatic biodiversity of these ecosystems, but also countless other ecological functions.  相似文献   

16.
17.
The loss of natural habitats is one of the main drivers of biodiversity decline. Anthropogenic land uses preserving biotic and abiotic conditions of the native ecosystem are more suitable to preserve the native biodiversity. In this study, we explored changes in species richness and composition in different land uses of the southern Atlantic forest, considering three independent factors: (1) canopy (presence–absence), (2) type of vegetation (native–exotic) and (3) livestock (presence–absence). We expected a gradient of response in the richness and composition of the native forest dung beetle community, from land uses preserving canopy and native vegetation to open land uses with exotic vegetation. Dung beetles were sampled in protected native forests and four land uses, using two potential food resources: human dung and carrion. The species richness and composition of each habitat, as well as differences in composition and the influence of factors over diversity, were then analyzed. As expected, our results showed that land uses preserving canopy and native vegetation maintain the dung beetle diversity of the native forest. Moreover, while the three factors analyzed influenced dung beetle diversity, canopy cover was the main driver of dung beetle diversity loss. The main conclusion of this study is that the conservation of canopy (either native or exotic) is determinant to preserve highly diverse dung beetle communities and subsequently, the ecological functions performed by this taxon. However, the ecophysiological mechanism behind the response of dung beetles to habitat disturbance is poorly understood.  相似文献   

18.
1. Dung beetles perform relevant ecological functions in pastures, such as dung removal and parasite control. Livestock farming is the main economic activity in the Brazilian Pantanal. However, the impact of cattle grazing on the Pantanal's native dung beetle community, and functions performed by them, is still unknown. 2. This study evaluated the effects of cattle activity on dung beetle community attributes (richness, abundance, biomass, composition, and functional group) as well as their ecological functions (dung removal and soil bioturbation) in the Pantanal. In January/February 2016, dung beetles were sampled and their ecological functions measured in 16 sites of native grasslands in Aquidauana, Mato Grosso do Sul, Brazil, 10 areas regularly grazed by cattle and six control ungrazed areas (> 20 years of abandonment). 3. In all, 1169 individuals from 30 species of dung beetles were collected. Although abundance, species richness, and biomass did not differ between grasslands with and without cattle activity, species composition and functional groups differed among systems. Large roller beetles were absent from non‐cattle grasslands, and the abundance, richness, and biomass of medium roller beetles was higher in those systems. 4. Despite causing changes in species/functional group composition, the results of this study show that a density compensation of functional groups in cattle‐grazed natural grasslands seems to have conserved the ecological functions (dung removal and soil bioturbation), with no significant differences between systems. 5. Therefore, these results provide evidence that cattle breeding in natural grasslands of the Brazilian Pantanal can integrate livestock production with the conservation of the dung beetle community and its ecological functions.  相似文献   

19.
Insect communities of mammal dung have been known as excellent model ecosystems for scientific study. Ecological surveys of diversity and seasonal patterns of coprophilous rove beetles in relation to wild mammals have rarely been conducted, although the high potential species diversity and abundance of the rove beetles are known. In order to investigate biodiversity of these beetles, we analyzed species composition, abundance, feeding guild and seasonality of rove beetles that were attracted to sika deer Cervus nippon dung by using dung‐baited pitfall traps for a 1.5‐year study in two plantations (cypress, cedar) and one secondary natural forest (pine) in Fukuoka Prefecture, southwest Japan. Consequently, saprophagous Anotylus sp. (Oxytelinae) was dominant in all forests. Analyses of feeding guild structure showed the number of individuals were dominated by saprophagous beetles, but the number of species were dominated by predatory beetles. Seasonal effects suggested that the species richness and abundance of rove beetles are possibly regulated by scarabaeoid dung beetles. These findings feature one example of a coprophilous rove beetle community.  相似文献   

20.
Protected forest areas of Sulawesi are gradually being replaced by intensively used agroforestry systems and farmland, especially in lowland and sub-montane regions. Studies on the impact of these man-induced changes on biodiversity are of urgent conservation concern. We compared the fruit-feeding butterfly assemblage of a natural hill forest to that of a disturbed hill forest, representing a mosaic of old secondary forest and recently abandoned or active subsistence farms. Overall, species richness seemed highest in the disturbed site, but both abundance and diversity of endemic butterflies were significantly higher in the natural forest. Although the butterfly assemblage showed a clear vertical structure in the natural forest, vertical stratification was no longer pronounced at the disturbed site. Comparative studies based on diversity estimates from ground samples should consider not only the scale at which sampling is carried out and influences from nearby habitat patches in the surrounding landscape mosaic, but also possible behavioural changes in stratified species after forest modification. This study shows that higher overall species richness does not imply higher species distinctiveness, and indicates that the contribution of land-use systems to global biodiversity should be evaluated with caution, even when relatively high species richness estimates are found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号