首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
2.
3.
水稻MicroRNA的预测及实验验证   总被引:1,自引:0,他引:1  
根据已报道水稻pre-miRNA的序列与结构信息,利用支持向量机(support vector machine, SVM)方法在miRNA前体上预测成熟区,产生一个模型——mature-SVM.它预测水稻成熟区的敏感性和特异性分别为86.7% 和100%;然后,用这个模型对从水稻基因组中筛选出的46.501条pre-miRNA进行成熟链预测,此外再根据miRNA的作用原理用blast程序所进一步的筛选,得到了127条pre-miRNA及成熟miRNA;除去其中已知的21条,最后得到106条候选的新的水稻miRNA. 从中随机挑取10条进行Northern验证,结果有4条miRNA得到确认.  相似文献   

4.
Quantitation of microRNAs using a modified Invader assay   总被引:9,自引:0,他引:9       下载免费PDF全文
The short lengths of microRNAs (miRNAs) present a significant challenge for detection and quantitation using conventional methods for RNA analysis. To address this problem, we developed a quantitative, sensitive, and rapid miRNA assay based on our previously described messenger RNA Invader assay. This assay was used successfully in the analysis of several miRNAs, using as little as 50-100 ng of total cellular RNA or as few as 1,000 lysed cells. Its specificity allowed for discrimination between miRNAs differing by a single nucleotide, and between precursor and mature miRNAs. The Invader miRNA assay, which can be performed in unfractionated detergent lysates, uses fluorescence detection in microtiter plates and requires only 2-3 h incubation time, allowing for parallel analysis of multiple samples in high-throughput screening analyses.  相似文献   

5.
Real-time quantification of microRNAs by stem-loop RT-PCR   总被引:17,自引:0,他引:17       下载免费PDF全文
A novel microRNA (miRNA) quantification method has been developed using stem-loop RT followed by TaqMan PCR analysis. Stem-loop RT primers are better than conventional ones in terms of RT efficiency and specificity. TaqMan miRNA assays are specific for mature miRNAs and discriminate among related miRNAs that differ by as little as one nucleotide. Furthermore, they are not affected by genomic DNA contamination. Precise quantification is achieved routinely with as little as 25 pg of total RNA for most miRNAs. In fact, the high sensitivity, specificity and precision of this method allows for direct analysis of a single cell without nucleic acid purification. Like standard TaqMan gene expression assays, TaqMan miRNA assays exhibit a dynamic range of seven orders of magnitude. Quantification of five miRNAs in seven mouse tissues showed variation from less than 10 to more than 30,000 copies per cell. This method enables fast, accurate and sensitive miRNA expression profiling and can identify and monitor potential biomarkers specific to tissues or diseases. Stem-loop RT-PCR can be used for the quantification of other small RNA molecules such as short interfering RNAs (siRNAs). Furthermore, the concept of stem-loop RT primer design could be applied in small RNA cloning and multiplex assays for better specificity and efficiency.  相似文献   

6.
Real-time PCR quantification of precursor and mature microRNA   总被引:9,自引:0,他引:9  
microRNAs (miRNAs) are challenging molecules to amplify by PCR because the miRNA precursor consists of a stable hairpin and the mature miRNA is roughly the size of a standard PCR primer. Despite these difficulties, successful real-time RT-PCR technologies have been developed to amplify and quantify both the precursor and mature microRNA. An overview of real-time PCR technologies developed by us to detect precursor and mature microRNAs is presented here. Protocols describe presentation of the data using relative (comparative C(T)) and absolute (standard curve) quantification. Real-time PCR assays were used to measure the time course of precursor and mature miR-155 expression in monocytes stimulated by lipopolysaccharide. Protocols are provided to configure the assays as low density PCR arrays for high throughput gene expression profiling. By profiling over 200 precursor and mature miRNAs in HL60 cells induced to differentiate with 12-O-tetradecanoylphorbol-13-acetate, it was possible to identify miRNAs who's processing is regulated during differentiation. Real-time PCR has become the gold standard of nucleic acid quantification due to the specificity and sensitivity of the PCR. Technological advancements have allowed for quantification of miRNA that is of comparable quality to more traditional RNAs.  相似文献   

7.
8.
9.
10.
11.
Direct and sensitive miRNA profiling from low-input total RNA   总被引:9,自引:2,他引:7  
We have developed a sensitive, accurate, and multiplexed microRNA (miRNA) profiling assay that is based on a highly efficient labeling method and novel microarray probe design. The probes provide both sequence and size discrimination, yielding in most cases highly specific detection of closely related mature miRNAs. Using a simple, single-vial experimental protocol, 120 ng of total RNA is directly labeled using Cy3 or Cy5, without fractionation or amplification, to produce precise and accurate measurements that span a linear dynamic range from 0.2 amol to 2 fmol of input miRNA. The results can provide quantitative estimates of the miRNA content for the tissues studied. The assay is also suitable for use with formalin-fixed paraffin-embedded clinical samples. Our method allows rapid design and validation of probes for simultaneous quantitative measurements of all human miRNA sequences in the public databases and to new miRNA sequences as they are reported.  相似文献   

12.
A novel microRNA (miRNA) quantification method has been developed using stem–loop RT followed by TaqMan PCR analysis. Stem–loop RT primers are better than conventional ones in terms of RT efficiency and specificity. TaqMan miRNA assays are specific for mature miRNAs and discriminate among related miRNAs that differ by as little as one nucleotide. Furthermore, they are not affected by genomic DNA contamination. Precise quantification is achieved routinely with as little as 25 pg of total RNA for most miRNAs. In fact, the high sensitivity, specificity and precision of this method allows for direct analysis of a single cell without nucleic acid purification. Like standard TaqMan gene expression assays, TaqMan miRNA assays exhibit a dynamic range of seven orders of magnitude. Quantification of five miRNAs in seven mouse tissues showed variation from less than 10 to more than 30000 copies per cell. This method enables fast, accurate and sensitive miRNA expression profiling and can identify and monitor potential biomarkers specific to tissues or diseases. Stem–loop RT–PCR can be used for the quantification of other small RNA molecules such as short interfering RNAs (siRNAs). Furthermore, the concept of stem–loop RT primer design could be applied in small RNA cloning and multiplex assays for better specificity and efficiency.  相似文献   

13.
MicroRNAs (miRNAs) constitute an important class of small regulatory RNAs that are derived from distinct hairpin precursors (pre-miRNAs). In contrast to mature miRNAs, which have been characterized in numerous genome-wide studies of different organisms, research on global profiling of pre-miRNAs is limited. Here, using massive parallel sequencing, we have performed global characterization of both mouse mature and precursor miRNAs. In total, 87 369 704 and 252 003 sequencing reads derived from 887 mature and 281 precursor miRNAs were obtained, respectively. Our analysis revealed new aspects of miRNA/pre-miRNA processing and modification, including eight Ago2-cleaved pre-miRNAs, eight new instances of miRNA editing and exclusively 5′ tailed mirtrons. Furthermore, based on the sequences of both mature and precursor miRNAs, we developed a miRNA discovery pipeline, miRGrep, which does not rely on the availability of genome reference sequences. In addition to 239 known mouse pre-miRNAs, miRGrep predicted 41 novel ones with high confidence. Similar as known ones, the mature miRNAs derived from most of these novel loci showed both reduced abundance following Dicer knockdown and the binding with Argonaute2. Evaluation on data sets obtained from Caenorhabditis elegans and Caenorhabditis sp.11 demonstrated that miRGrep could be widely used for miRNA discovery in metazoans, especially in those without genome reference sequences.  相似文献   

14.
15.
16.
滚环扩增(rolling circle amplification, RCA)是一种基于病毒DNA复制而发明的新技术。近些年,RCA技术已经被广泛应用于微小核糖核酸(micro ribonucleic acid, miRNA)的检测。在miRNA检测研究领域中,鉴别高度同源的家族miRNAs成为该研究领域的瓶颈。本研究引入新型的RCA技术来增加鉴别的灵敏度和特异性,进一步提高家族miRNA鉴别的灵敏度,滚环扩增的程度用相对荧光强度来表示。研究结果显示,T4 RNA连接酶2可在RCA的环化过程中实现最大的环化效率,从而提高RCA的检测特异性。本文利用优化的RCA技术,实现对let 7高度同源的家族miRNAs高灵敏度的鉴别,灵敏度可达5 fmol。let 7a的滚环探针对Let 7a这一miRNA扩增后的相对荧光强度为1 550,而对其他的家族miRNA相对荧光强度仅为260。其他的家族miRNA探针在鉴别时相对荧光强度也显示了较大的差异。而依靠传统的RT-qPCR方法的鉴别灵敏度是4 pmol,与本研究相比,灵敏度低了近1 000倍。本研究的结果表明,利用RCA技术鉴别高度同源性miRNAs是高效灵敏的,此前未见相关研究的报道。RCA技术可能被应用于miRNA高灵敏度检测和鉴别的相关研究中。  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号