首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
A quantitative bioluminescence assay for rapid and sensitive microRNA (miRNA) expression analysis was developed. The assay uses miRNA directly as a primer for binding to a circular single-stranded DNA template, followed by rolling circle amplification. The detection of inorganic pyrophosphate (PPi) molecules released during the DNA polymerization and amplification process is performed by a multi-enzyme system. PPi is converted to ATP by ATP-sulfurylase, which provides energy for luciferase to oxidize luciferin and produce light. Experimental results show that the assay has a dynamic range exceeding three orders of magnitude and the ability to discriminate miRNAs with high-homology sequences. Quantification of nine miRNAs in human heart tissues demonstrated high cross-platform consistency between this assay and the TaqMan real-time polymerase chain reaction (PCR) assay with R(2)=0.941. The assay requires fewer reagents, can be performed at an isothermal condition without thermal cycling, and is capable of detecting miRNAs in less than 1h. Compared with the real-time PCR and microarray-based detection methods, this assay provides a simpler, faster, and less expensive platform for miRNA quantification in life science research, drug discovery, and clinical diagnosis.  相似文献   

2.
3.
4.
Recent studies indicate that microRNA (miRNA) is contained within exosome. Here we sought to optimize the methodologies for the isolation and quantification of urinary exosomal microRNA as a prelude to biomarker discovery studies. Exosomes were isolated through ultracentrifugation and characterized by immunoelectron microscopy. To determine the RNA was confined inside exosomes, the pellet was treated with RNase before RNA isolation. The minimum urine volume, storage conditions for exosomes and exosomal miRNA was evaluated. The presence of miRNAs in patients with various kidney diseases was validated with real-time PCR. The result shows that miRNAs extracted from the exosomal fraction were resistant to RNase digestion and with high quality confirmed by agarose electrophoresis. 16ml of urine was sufficient for miRNA isolation by absolute quantification with 4.15×105 copies/ul for miR-200c. Exosomes was stable at 4℃ 24h for shipping before stored at -80℃ and was stable in urine when stored at -80°C for 12months. Exosomal miRNA was detectable despite 5 repeat freeze-thaw cycles. The detection of miRNA by quantitative PCR showed high reproducibility (>94% for intra-assay and >76% for inter-assay), high sensitivity (positive call 100% for CKD patients), broad dynamic range (8-log wide) and good linearity for quantification (R2>0.99). miR-29c and miR-200c showed different expression in different types of kidney disease. In summary, the presence of urinary exosomal miRNA was confirmed for patients with a diversity of chronic kidney disease. The conditions of urine collection, storage and miRNA detection determined in this study may be useful for future biomarker discovery efforts.  相似文献   

5.

Background

The spatiotemporal expression patterns of microRNAs (miRNAs) are important to the verification of their predicted function. RT-qPCR is the accepted technique for the quantification of miRNA expression; however, stem-loop RT-PCR and poly(T)-adapter assay, the two most frequently used methods, are not very convenient in practice and have poor specificity, respectively.

Results

We have developed an optimal approach that integrates these two methods and allows specific and rapid detection of tiny amounts of sample RNA and reduces costs relative to other techniques. miRNAs of the same sample are polyuridylated and reverse transcribed into cDNAs using a universal poly(A)-stem-loop RT primer and then used as templates for SYBR® Green real-time PCR. The technique has a dynamic range of eight orders of magnitude with a sensitivity of up to 0.2 fM miRNA or as little as 10 pg of total RNA. Virtually no cross-reaction is observed among the closely-related miRNA family members and with miRNAs that have only a single nucleotide difference in this highly specific assay. The spatial constraint of the stem-loop structure of the modified RT primer allowed detection of miRNAs directly from cell lysates without laborious total RNA isolation, and the poly(U) tail made it possible to use multiplex RT reactions of mRNA and miRNAs in the same run.

Conclusions

The cost-effective RT-qPCR of miRNAs with poly(A)-stem-loop RT primer is simple to perform and highly specific, which is especially important for samples that are precious and/or difficult to obtain.  相似文献   

6.
Chikungunya is one of the most important emerging arboviral infections of public health significance. Due to lack of a licensed vaccine, rapid diagnosis plays an important role in early management of patients. In this study, a QC-RT–PCR assay was developed to quantify Chikungunya virus (CHIKV) RNA by targeting the conserved region of E1 gene. A competitor molecule containing an internal insertion was generated, which provided a stringent control of the quantification process. The introduction of 10-fold serially diluted competitor in each reaction was further used to determine sensitivity. The applicability of this assay for quantification of CHIKV RNA was evaluated with human clinical samples, and the results were compared with real-time quantitative RT–PCR. The sensitivity of this assay was estimated to be 100 RNA copies per reaction with a dynamic detection range of 102 to 1010 copies. Specificity was confirmed using closely related alpha and flaviviruses. The comparison of QC-RT–PCR result with real-time RT–PCR revealed 100% concordance for the detection of CHIKV in clinical samples. These findings demonstrated that the reported assay is convenient, sensitive and accurate method and has the potential usefulness for clinical diagnosis due to simultaneous detection and quantification of CHIKV in acute-phase serum samples.  相似文献   

7.
The robust and reliable detection of small microRNAs (miRNAs) is important to understand the functional significance of miRNAs. Several methods can be used to quantify miRNAs. Selectively quantifying mature miRNAs among miRNA precursors, pri-miRNAs, and other miRNA-like sequences is challenging because of the short length of miRNAs. In this study, we developed a two-step miRNA quantification system based on pincer probe capture and real-time PCR amplification. The performance of the method was tested using synthetic mature miRNAs and clinical RNA samples. Results showed that the method demonstrated dynamic range of seven orders of magnitude and sensitivity of detection of hundreds of copies of miRNA molecules. The use of pincer probes allowed excellent discrimination of mature miRNAs from their precursors with five Cq (quantification cycle) values difference. The developed method also showed good discrimination of highly homologous family members with cross reaction less than 5%. The pincer probe-based approach is a potential alternative to currently used methods for mature miRNA quantification.  相似文献   

8.
9.
Aims: The development and evaluation of a sensitive and specific TaqMan® real-time polymerase chain reaction (PCR) for the detection and identification of Pantoea stewartii on maize. Methods and Results: A TaqMan®-based real-time PCR assay targeting the cpsD gene enabling specific detection of P. stewartii in maize leaves and seeds was developed. Under optimal conditions, the selected primers and probe were specific for the detection of all 14 reference P. stewartii strains by real-time PCR. The 32 non-Panteoa and eight other Pantoea strains tested negative. The TaqMan® PCR assay detected 1 pg of purified DNA and 104P. stewartii colony forming units per millilitre (10 cells per reaction) in pure cultures consisting of 92·0% intact (viable) cells. Direct processing of leaf lesions and seeds by the real-time PCR detected 10 and 50 P. stewartii cells per reaction respectively. TaqMan® real-time PCR results were validated by dilution plating of macerates and PCR-based subcloning followed by DNA sequencing. Conclusions: The real-time PCR assay described is a rapid, reliable and more sensitive tool for the detection of P. stewartii. Significance and Impact of the study: This real-time PCR assay would avoid false-negative results and reduce the time required for certifying maize seed shipments.  相似文献   

10.
11.
In the present study, we developed a highly sensitive and convenient biosensor consisting of gold nanoparticle(Au NP) probes and a gene chip to detect micro RNAs(mi RNAs). Specific oligonucleotides were attached to the glass surface as capture probes for the target mi RNAs, which were then detected via hybridization to the Au NP probes. The signal was amplified via the reduction of HAu Cl4 by H2O2. The use of a single Au NP probe detected 10 pmol L?1 of target mi RNA. The recovery rate for mi R-126 from fetal bovine serum was 81.5%–109.1%. The biosensor detection of mi R-126 in total RNA extracted from lung cancer tissues was consistent with the quantitative PCR(q PCR) results. The use of two Au NP probes further improved the detection sensitivity such that even 1 fmol L?1 of target mi R-125a-5p was detectable. This assay takes less than 1 h to complete and the results can be observed by the naked eye. The platform simultaneously detected lung cancer related mi R-126 and mi R-125a-5p. Therefore, this low cost, rapid, and convenient technology could be used for ultrasensitive and robust visual mi RNA detection.  相似文献   

12.

Background

We profiled the expression of circulating microRNAs (miRNAs) in mice using Illumina small RNA deep sequencing in order to identify the miRNAs that may potentially be used as biomarkers to distinguish between gram-negative and gram-positive bacterial infections.

Results

Recombinant-specific gram-negative pathogen Escherichia coli (Xen14) and gram-positive pathogen Staphylococcus aureus (Xen29) were used to induce bacterial infection in mice at a concentration of 1 × 108 bacteria/100 μL of phosphate buffered saline (PBS). Small RNA libraries generated from the serum of mice after exposure to PBS, Xen14, Xen29, and Xen14 + Xen29 via the routes of subcutaneous injection (I), cut wound (C), or under grafted skin (S) were analyzed using an Illumina HiSeq2000 Sequencer. Following exposure to gram-negative bacteria alone, no differentially expressed miRNA was found in the injection, cut, or skin graft models. Exposure to mixed bacteria induced a similar expression pattern of the circulating miRNAs to that induced by gram-positive bacterial infection. Upon gram-positive bacterial infection, 9 miRNAs (mir-193b-3p, mir-133a-1-3p, mir-133a-2-3p, mir-133a-1-5p, mir-133b-3p, mir-434-3p, mir-127-3p, mir-676-3p, mir-215-5p) showed upregulation greater than 4-fold with a p-value < 0.01. Among them, mir-193b-3p, mir-133a-1-3p, and mir-133a-2-3p presented the most common miRNA targets expressed in the mice exposed to gram-positive bacterial infection.

Conclusions

This study identified mir-193b-3p, mir-133a-1-3p, and mir-133a-2-3p as potential circulating miRNAs for gram-positive bacterial infections.

Electronic supplementary material

The online version of this article (doi:10.1186/s12929-014-0106-y) contains supplementary material, which is available to authorized users.  相似文献   

13.
We have developed a highly sensitive, specific and reproducible method for microRNA (miRNA) expression profiling, using the BeadArray™ technology. This method incorporates an enzyme-assisted specificity step, a solid-phase primer extension to distinguish between members of miRNA families. In addition, a universal PCR is used to amplify all targets prior to array hybridization. Currently, assay probes are designed to simultaneously analyse 735 well-annotated human miRNAs. Using this method, highly reproducible miRNA expression profiles were generated with 100–200 ng total RNA input. Furthermore, very similar expression profiles were obtained with total RNA and enriched small RNA species (R2 ≥ 0.97). The method has a 3.5–4 log (105–109 molecules) dynamic range and is able to detect 1.2- to 1.3-fold-differences between samples. Expression profiles generated by this method are highly comparable to those obtained with RT–PCR (R2 = 0.85–0.90) and direct sequencing (R = 0.87–0.89). This method, in conjunction with the 96-sample array matrix should prove useful for high-throughput expression profiling of miRNAs in large numbers of tissue samples.  相似文献   

14.
15.
Liu G  Min H  Yue S  Chen CZ 《PloS one》2008,3(10):e3592

Background

Mature miRNAs can often be classified into large families, consisting of members with identical seeds (nucleotides 2 through 7 of the mature miRNAs) and highly homologous ∼21-nucleotide (nt) mature miRNA sequences. However, it is unclear whether members of a miRNA gene family, which encode identical or nearly identical mature miRNAs, are functionally interchangeable in vivo.

Methods and Findings

We show that mir-181a-1, but not mir-181c, can promote CD4 and CD8 double-positive (DP) T cell development when ectopically expressed in thymic progenitor cells. The distinct activities of mir-181a-1 and mir-181c are largely determined by their unique pre-miRNA loop nucleotides—not by the one-nucleotide difference in their mature miRNA sequences. Moreover, the activity of mir-181a-1 on DP cell development can be quantitatively influenced by nucleotide changes in its pre-miRNA loop region. We find that both the strength and the functional specificity of miRNA genes can be controlled by the pre-miRNA loop nucleotides. Intriguingly, we note that mutations in the pre-miRNA loop regions affect pre-miRNA and mature miRNA processing, but find no consistent correlation between the effects of pre-miRNA loop mutations on the levels of mature miRNAs and the activities of the mir-181a-1/c genes.

Conclusions

These results demonstrate that pre-miRNA loop nucleotides play a critical role in controlling the activity of miRNA genes and that members of the same miRNA gene families could have evolved to achieve different activities via alterations in their pre-miRNA loop sequences, while maintaining identical or nearly identical mature miRNA sequences.  相似文献   

16.
17.
microRNAs (miRNAs) are a new class of non-protein-coding, endogenous, small RNAs. They are important regulatory molecules in animals and plants. miRNA regulates gene expression by translational repression, mRNA cleavage, and mRNA decay initiated by miRNA-guided rapid deadenylation. Recent studies show that some miRNAs regulate cell proliferation and apoptosis processes that are important in cancer formation. By using multiple molecular techniques, which include Northern blot analysis, real-time PCR, miRNA microarray, up- or down-expression of specific miRNAs, it was found that several miRNAs were directly involved in human cancers, including lung, breast, brain, liver, colon cancer, and leukemia. In addition, some miRNAs may function as oncogenes or tumor suppressors. More than 50% of miRNA genes are located in cancer-associated genomic regions or in fragile sites, suggesting that miRNAs may play a more important role in the pathogenesis of a limited range of human cancers than previously thought. Overexpressed miRNAs in cancers, such as mir-17-92, may function as oncogenes and promote cancer development by negatively regulating tumor suppressor genes and/or genes that control cell differentiation or apoptosis. Underexpressed miRNAs in cancers, such as let-7, function as tumor suppressor genes and may inhibit cancers by regulating oncogenes and/or genes that control cell differentiation or apoptosis. miRNA expression profiles may become useful biomarkers for cancer diagnostics. In addition, miRNA therapy could be a powerful tool for cancer prevention and therapeutics.  相似文献   

18.
Here we describe a protocol for the detection of the microRNA (miRNA) expression profile of a single cell by stem-looped real-time PCR, which is specific to mature miRNAs. A single cell is first lysed by heat treatment without further purification. Then, 220 known miRNAs are reverse transcribed into corresponding cDNAs by stem-looped primers. This is followed by an initial PCR step to amplify the cDNAs and generate enough material to permit separate multiplex detection. The diluted initial PCR product is used as a template to check individual miRNA expression by real-time PCR. This sensitive technique permits miRNA expression profiling from a single cell, and allows analysis of a few cells from early embryos as well as individual cells (such as stem cells). It can also be used when only nanogram amounts of rare samples are available. The protocol can be completed in 7 d.  相似文献   

19.
Real-time PCR quantification of precursor and mature microRNA   总被引:9,自引:0,他引:9  
microRNAs (miRNAs) are challenging molecules to amplify by PCR because the miRNA precursor consists of a stable hairpin and the mature miRNA is roughly the size of a standard PCR primer. Despite these difficulties, successful real-time RT-PCR technologies have been developed to amplify and quantify both the precursor and mature microRNA. An overview of real-time PCR technologies developed by us to detect precursor and mature microRNAs is presented here. Protocols describe presentation of the data using relative (comparative C(T)) and absolute (standard curve) quantification. Real-time PCR assays were used to measure the time course of precursor and mature miR-155 expression in monocytes stimulated by lipopolysaccharide. Protocols are provided to configure the assays as low density PCR arrays for high throughput gene expression profiling. By profiling over 200 precursor and mature miRNAs in HL60 cells induced to differentiate with 12-O-tetradecanoylphorbol-13-acetate, it was possible to identify miRNAs who's processing is regulated during differentiation. Real-time PCR has become the gold standard of nucleic acid quantification due to the specificity and sensitivity of the PCR. Technological advancements have allowed for quantification of miRNA that is of comparable quality to more traditional RNAs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号