首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Changes in cytokinin pool and cytokinin oxidase/dehydrogenase activity (CKX EC: 1.5.99.12) in response to increasing abscisic acid (ABA) concentrations (0.5–10 μM) were assessed in the last fully expanded leaves and secondary roots of two pea (Pisum sativum) varieties with different vegetation periods. Certain organ diversity in CKX response to exogenous ABA was observed. Treatment provoked altered cytokinin pool in the aboveground parts of both studied cultivars. Specific CKX activity was influenced significantly basically in roots of the treated plants. Results suggest that ABA-mediated cytokinin pool changes are leaf-specific and involve certain root signals in which CKX activity presents an important link. This enzymatic activity most probably regulates vascular transport of active cytokinins from roots to shoots.  相似文献   

2.
Cytokinin metabolism in plants is very complex. More than 20 cytokinins bearing isoprenoid and aromatic side chains were identified by high performance liquid chromatography-mass spectrometry (HPLC-MS) in pea (Pisum sativum L. cv. Gotik) leaves, indicating diverse metabolic conversions of primary products of cytokinin biosynthesis. To determine the potential involvement of two enzymes metabolizing cytokinins, cytokinin oxidase/dehydrogenase (CKX, EC 1.5.99.12) and zeatin reductase (ZRED, EC 1.3.1.69), in the control of endogenous cytokinin levels, their in vitro activities were investigated in relation to the uptake and metabolism of [2−3H]trans-zeatin ([2−3H]Z) in shoot explants of pea. Trans-zeatin 9-riboside, trans-zeatin 9-riboside-5′-monophosphate and cytokinin degradation products adenine and adenosine were detected as predominant [2−3H]Z metabolites during 2, 5, 8, and 24 h incubation. Increasing formation of adenine and adenosine indicated extensive degradation of [2−3H]Z by CKX. High CKX activity was confirmed in protein preparations from pea leaves, stems, and roots by in vitro assays. Inhibition of CKX by dithiothreitol (15 mM) in the enzyme assays revealed relatively high activity of ZRED catalyzing conversion of Z to dihydrozeatin (DHZ) and evidently competing for the same substrate cytokinin (Z) in protein preparations from pea leaves, but not from pea roots and stems. The conversion of Z to DHZ by pea leaf enzyme was NADPH dependent and was significantly inhibited or completely suppressed in vitro by diethyldithiocarbamic acid (DIECA; 10 mM). Relations of CKX and ZRED in the control of cytokinin levels in pea leaves with respect to their potential role in establishment and maintenance of cytokinin homeostasis in plants are discussed.  相似文献   

3.
Cytokinin oxidase/dehydrogenase (EC 1.5.99.12) specific activity was determined in leaves and roots of two P. sativum cultivars (cv. Scinado and cv. Manuela) during vegetative development and the effect of UV-B irradiation or elevated temperature was assessed. The measurement of CKX activity during development showed localisation of this enzyme to roots. The reduction in CKX activity in leaves after UV-B irradiation and the increased levels of the enzyme in high temperature-treated plants suggests that the enzymes from the CKX gene family have a different expression during stress responses provoked by different factors and probably are tissue specific. Differences regarding cytokinin oxidase/dehydrogenase activity stress response were observed between the two pea cultivars.  相似文献   

4.
The enzymatic and biochemical properties of the proteins encoded by five potato cytokinin oxidase/dehydrogenase (CKX)-like genes functionally expressed in yeast and the effects of tuber dormancy progression on StCKX expression and cytokinin metabolism were examined in lateral buds isolated from field-grown tubers. All five putative StCKX genes encoded proteins with in vitro CKX activity. All five enzymes were maximally active at neutral to slightly alkaline pH with 2,6-dichloro-indophenol as the electron acceptor. In silico analyses indicated that four proteins were likely secreted. Substrate dependence of two of the most active enzymes varied; one exhibiting greater activity with isopentenyl-type cytokinins while the other was maximally active with cis-zeatin as a substrate. [3H]-isopentenyl-adenosine was readily metabolized by excised tuber buds to adenine/adenosine demonstrating that CKX was active in planta. There was no change in apparent in planta CKX activity during either natural or chemically forced dormancy progression. Similarly although expression of individual StCKX genes varied modestly during tuber dormancy, there was no clear correlation between StCKX gene expression and tuber dormancy status. Thus although CKX gene expression and enzyme activity are present in potato tuber buds throughout dormancy, they do not appear to play a significant role in the regulation of cytokinin content during tuber dormancy progression.  相似文献   

5.
The expression of cytokinin oxidase/dehydrogenase (CKX EC: 1.5.99.12) is subject to fine regulation and it provides a rapid turnover of cytokinins, which serves as a signal for triggering developmental events during plant growth. The activity of this enzyme is believed to be responsible for the changes in cytokinin pool under adverse environmental conditions. CKX gene-specific assay to measure the expression in response to different stress treatments in the tissues of Pisum sativum plants was developed. Pea CKX genes were amplified and sequenced using primers designed from the sequences of Medicago truncatula CKX genes. Expression of two P. sativum CKX genes was assessed using relative-quantification in real time two-step RT-PCR, in leaves and roots of drought-, glufosinate- and atrazine-treated cv. Manuela pea plants. Varied CKX responses support the existence of complicated regulating mechanism of cytokinin oxidase/ dehydrogenase gene expression.  相似文献   

6.
Changes in endogenous cytokinin (CK) content and cytokinin oxidase/dehydrogenase activity (CKX) in response to gibberellic acid (GA3) in two pea cultivars with different life span were assessed. The control leaves of cv. Scinado, which developed faster, had higher initial cytokinin content and lower CKX activity, while opposite trend was observed in cv. Manuela with longer life span. Increased CKX and decreased CK content were detected in leaves of cv. Scinado after treatments with 0.5, 1 and 5 μM GA3. Changes in CK content and CKX activity in GA3-treated cv. Manuela leaves were reciprocal to those in cv. Scinado. CK content and CKX activity in roots were not significantly influenced by the application of GA3. The slight repression of CKX activity in some of the root samples was accompanied by increased isopentenyladenine and isopentenyladenine riboside content. Obtained results suggest that CKX was responsible for the changes in endogenous cytokinin pool in GA3-treated plants and most probably this enzyme represents an important link in GA/cytokinin cross talk.  相似文献   

7.
The recalcitrant nature and increased regenerative capacity in relation to in vitro subcultures in two cactus genera Rhipsalidopsis (Easter cactus) and Schlumbergera (Christmas cactus) were studied by examining the endogenous concentrations of several endogenous phytohormones and enzyme activities. Leaf tissue from greenhouse-grown mother plants, in vitro subcultures 1 and 3, and callus tissues were analyzed and correlated with regenerative ability. The cytokinins present in the two cacti genera were mainly isopentenyl-type derivatives. The total content of isopentenyl-type cytokinins in greenhouse-grown leaves of Rhipsalidopsis was more than twice the amount found in greenhouse-grown leaves of Schlumbergera. The total cytokinin content decreased during subculturing. Cytokinin oxidase/dehydrogenase (CKX, EC 1.4.3.18/1.5.99.12) activity increased during subculturing. In Schlumbergera there is no effect of subculturing on CKX and related cytokinin homeostasis. The total peroxidase (POX, EC 1.11.1.7) activity in greenhouse-grown leaves of both genera was low, and the activity increased significantly during subculturing, more specifically in the tissue of Rhipsalidopsis. The results clearly indicated that an enhanced auxin metabolism (biosynthesis, conjugation/deconjugation, and POX activity), in combination with an enhanced CKX activity, shifts the auxin and cytokinin pool, favoring adventitious shoot formation in Rhipsalidopsis, whereas the low level of POX activity, together with auxin autotrophy/conjugation, makes Schlumbergera more recalcitrant. S. S. and E. P. contributed equally to this work  相似文献   

8.
9.
The impact of water deficit progression on cytokinin (CK), auxin and abscisic acid (ABA) levels was followed in upper, middle and lower leaves and roots of Nicotiana tabacum L. cv. Wisconsin 38 plants [wild type (WT)]. ABA content was strongly increased during drought stress, especially in upper leaves. In plants with a uniformly elevated total CK content, expressing constitutively the trans -zeatin O-glucosyltransferase gene ( 35S::ZOG1 ), a delay in the increase of ABA was observed; later on, ABA levels were comparable with those of WT.
As drought progressed, the bioactive CK content in leaves gradually decreased, being maintained longer in the upper leaves of all tested genotypes. Under severe stress (11 d dehydration), a large stimulation of cytokinin oxidase/dehydrogenase (CKX) activity was monitored in lower leaves, which correlated well with the decrease in bioactive CK levels. This suggests that a gradient of bioactive CKs in favour of upper leaves is established during drought stress, which might be beneficial for the preferential protection of these leaves.
During drought, significant accumulation of CKs occurred in roots, partially because of decreased CKX activity. Simultaneously, auxin increased in roots and lower leaves. This indicates that both CKs and auxin play a role in root response to severe drought, which involves the stimulation of primary root growth and branching inhibition.  相似文献   

10.
New insights into the biology of cytokinin degradation   总被引:9,自引:0,他引:9  
A survey of recent results is presented concerning the role of cytokinin degradation in plants, which is catalyzed by cytokinin oxidase/dehydrogenase (CKX) enzymes. An overview of Arabidopsis CKX gene expression suggests that their differential regulation by biotic and abiotic factors contributes significantly to functional specification. Here, we show using reporter gene and semiquantitative RT-PCR analyses regulation of individual CKX genes by cytokinin, auxin, ABA, and phosphate starvation. Partially overlapping expression domains of CKX genes and cytokinin-synthesizing IPT genes in meristematic tissues and endo-reduplicating cells lend support for a locally restricted function of cytokinin. On the other hand, their expression in vascular tissue suggests a function in controlling transported cytokinin. Recent studies led to a model for the biochemical reaction mechanism of CKX-mediated catalysis, which was refined on the basis of the three-dimensional enzyme structure. Last but not least, the developmental functions of CKX enzymes are addressed. The recent identification of the rice OSCKX2 gene as an important novel breeding tool is highlighted. Together the results corroborate the relevance of metabolic control in determining cytokinin activity.  相似文献   

11.
The responses of antioxidant enzymes (AOE) ascorbate peroxidase (APX), glutathione reductase (GR), superoxide dismutase (SOD), and catalase (CAT) in soluble protein extracts from leaves and roots of tobacco (Nicotiana tabacum L. cv. Samsun NN) plants to the drought stress, salinity and enhanced zinc concentration were investigated. The studied tobacco included wild-type (WT) and transgenic plants (AtCKX2) harbouring the cytokinin oxidase/dehydrogenase gene under control of 35S promoter from Arabidopsis thaliana (AtCKX2). The transgenic plants exhibited highly enhanced CKX activity and decreased contents of cytokinins and abscisic acid in both leaves and roots, altered phenotype, retarded growth, and postponed senescence onset. Under control conditions, the AtCKX2 plants exhibited noticeably higher activity of GR in leaves and APX and SOD in roots. CAT activity in leaves always decreased upon stresses in WT while increased in AtCKX2 plants. On the contrary, the SOD activity was enhanced in WT but declined in AtCKX2 leaves. In roots, the APX activity prevailingly increased in WT while mainly decreased in AtCKX2 in response to the stresses. Both WT and AtCKX2 leaves as well as roots exhibited elevated abscisic acid content and increased CKX activity under all stresses while endogenous CKs and IAA contents were not much affected by stress treatments in either WT or transgenic plants.  相似文献   

12.
The effects of three N(6)-substituted aminopurine derivatives containing either allenic or acetylenic side-chains on in vitro and in vivo cytokinin dehydrogenase (CKX; EC 1.5.99.12) activities were determined. At concentrations < or = 100 microM, the acetylenic derivative (HA-2) had no effect on in vitro CKX activity. In contrast, the two allenic derivatives (HA-1, HA-8) inhibited in vitro CKX activity in a dose-dependent manner with 50% inhibition occurring at HA-1 and HA-8 concentrations of 9.0 and 0.4 microM (respectively). HA-8 inhibited the degradation of both the free bases and ribosides of N6-(2-isopentenyl)adenine and zeatin. Pretreatment with HA-8 inhibited CKX activity in both a time- and concentration-dependent manner. In contrast to the reversible phenylurea inhibitor N-(chloro-4-pyridyl)-N'-phenylurea, inhibition of CKX activity by HA-8 was not relieved by 24 h of dialysis. Both HA-1 and HA-8 (but not HA-2) inhibited the metabolism of exogenous [3H]-N(6)-(2-isopentenyl)adenosine in excised aseptic potato (Solanum tuberosum) leaves. These results demonstrate that HA-8 is a mechanism-based irreversible (suicide) inhibitor of CKX and indicate that it may be useful in determining the role of CKX in cytokinin homeostasis in planta.  相似文献   

13.
Transgenic tobacco plants overexpressing single Arabidopsis thaliana cytokinin dehydrogenase (CKX, EC 1.5.99.12) genes AtCKX1, AtCKX2, AtCKX3, AtCKX4, AtCKX5, AtCKX6, and AtCKX7 under the control of a constitutive 35S promoter were tested for CKX-enzymatic activity with varying pH, electron acceptors, and substrates. This comparative analysis showed that out of these, only AtCKX2 and AtCKX4 were highly active enzymes in reaction with isoprenoid cytokinins (N 6 -(2-isopentenyl)adenine (iP), zeatin (Z)) and their ribosides using the artificial electron acceptors 2,6-dichlorophenol indophenol (DCPIP) or 2,3-dimethoxy-5-methyl-1,4-benzoquinone (Q0). Turnover rates of these cytokinins by four other AtCKX isoforms (AtCKX1, AtCKX3, AtCKX5, and AtCKX7) were substantially lower, whereas activity of AtCKX6 was almost undetectable. The isoenzymes AtCKX1 and AtCKX7 showed significant preference for cytokinin glycosides, especially N 6 -(2-isopentenyl)adenine 9-glucoside, under weakly acidic conditions. All enzymes preferentially cleave isoprenoid cytokinins in the presence of an electron acceptor, but aromatic cytokinins are not resistant and are degraded with lower reaction rates as well. Cytokinin nucleotides, considered as resistant to CKX attack until now, were found to be potent substrates for some of the CKX isoforms. Substrate specificity of AtCKXs is discussed in this study with respect to the structure of the CKX active site. Further biochemical characterization of the AtCKX1, AtCKX2, AtCKX4 and AtCKX7 enzymes showed pH-dependent activity profiles.  相似文献   

14.
15.
Shao X  Yang R  Wang J  Fang Q  Yao B  Wang Y  Sun Y  Li X 《遗传学报》2012,39(3):139-148
Cytokinins are a class of essential plant hormones regulating plant growth and development.Although the two-component phosphorelay pathway of cytokinin has been well characterized,the intact cytokinin responses regulation picture still needs to be fully depicted.Here we report a new mutant,long life span 1(lls1),which displays dwarf stature,curled leaves,numerous axillary branches and nearly 5-month life span.Exogenous cytokinin could not recover the phenotypes of the mutant.Moreover,mutation in lls1 suppressed the cytokinin-responsive phenotypes,including root and hypocotyl growth inhibition,anthocyanin accumulation,metaxylem promotion in primary root development.The induction of cytokinin-responsive genes,ARR5,AHP5,and CKX3,was also suppressed in lls1.According to quantitative RT-PCR(qRT-PCR) and microarray results,the basal expression of positive factors AHP5,ARR1,and ARR10 were down-regulated,while the negative factors ARR4 and ARR5 were up-regulated.Our results suggested that LLS1 gene might be involved in the regulation of cytokinin signaling.It was mapped to chromosome 4 where no other cytokinin relevant gene has been reported.  相似文献   

16.
H. Maaß  D. Klämbt 《Planta》1981,151(4):353-358
Roots of intact bean plants were supplied with [14C]adenine by pulse-chase experiments. The rate of incorporation of radioactivity into tRNA and oligonucleotides of roots as well as the content of radioactive labeled cytokinin nucleotides in these RNA fractions were determined. On the average, 1/70 of the radioactivity incorporated into tRNA was localized in N6(2isopentenyl)adenosine. The half life of tRNA was estimated to be 65–70 h. Shortly after the pulse period, oligonucleotides contained zeatin riboside at a ratio of 1:800, on the basis of radioactivity. The half life of these oligonucleotides was determined to be about 8 h. The main free radioactive cytokinin of roots and leaves was zeatin. Comparing the rate of degradation of 14C-labeled tRNA and the oligonucleotides of roots and the rate of appearance of radioactive cytokinins in roots and leaves, we found strong indications for their dependency. The results contradict the hypothesis of de novo synthesis of cytokinins in roots of intact bean plants.Abbreviations AMP adenosine monophosphate - IPA N6(2isopentenyl)adenosine - IPAde N6(2isopentenyl)adenosine - Z zeatin - ZR zeatinriboside - TLC thin-layer chromatography - HPLC high performance liquid chromatography Part of the doctoral thesis, Bonn 1980  相似文献   

17.
Cytokinin-like activity in extracts of leaf laminae, petioles, shoots, roots and flowers of young plants of the water hyacinth, Eichhornia crassipes S. was analyzed following Sephadex LH-20 column chromatography using the soybean callus bioassay. In all plant parts analyzed, two prominent peaks of cytokinin activity having elution volumes similar to zeatin and zeatin riboside were detected. Putative cytokinin gluco-side-like activity was detected only in leaves and flowers. The cytokinin complements of the leaves and the roots were qualitatively different. It would appear that cytokinins supplied by the roots are metabolized in the leaves or certain cytokinins are synthesized in the leaves themselves. The possible significance and distribution of cytokinins in different plant parts in relation to roots is discussed.  相似文献   

18.
The role of cytokinin N-glucosylation and degradation by cytokinin oxidase/dehydrogenase (CKX, EC 1.5.99.12) in response to application of exogenous auxins (2,4-dichlorophenoxyacetic acid [2,4-D] and -naphthaleneacetic acid [NAA]) and cytokinins (N 6-benzyladenine [BA] and trans-zeatin [Z]) was investigated in de-rooted seedlings of Raphanus sativus L. cv. Rampouch. Both auxins applied for 24 h at 1 and 10 M concentration increased N-glucosylation of exogenously applied [3H]dihydrozeatin (DHZ) by up to 20%. The level of endogenous 7N-glucosides (of Z, isopentenyladenine [iP] and DHZ) was increased by 2,4-D and NAA at 10 M concentration by 28 and 23%, respectively, the level of Z being decreased by 90 and 59%, respectively. 2,4-D and NAA suppressed CKX activity ca. by half. Exogenous cytokinins Z and BA applied at 1 and 10 M concentration stimulated 7N-glucosylation of [3H]DHZ (by up to 40%). BA both at 1 and 10 M, increased the level of endogenous Z by up to 35% and that of 7N-glucosides by up to 27%. BA application also strongly stimulated CKX activity (by up to 180%). Feeding with 1 and 10 M Z resulted in ca. 100-fold and 2000-fold increase of Z level, respectively. The main metabolite, Z7G, was increased ca. 6-fold and 60-fold, respectively. Levels of Z 9-glucoside (Z9G), trans-zeatin riboside (ZR) and Z O-glucoside (ZOG) were elevated to lesser extent. As compared to BA, Z had only negligible effect on CKX activity. Adenine (1–500 M) was preferentially 7N-glucosylated inhibiting competitively 7N-glucosylation of [3H]DHZ. At high concentrations (100–500 M) it increased endogenous levels of active cytokinins, especially of Z, however, it had no effect on CKX activity. Cytokinin N-glucosylation proved to be involved in down-regulation of active cytokinins in response to auxin and in the re-establishment of cytokinin homeostasis following application of exogenous cytokinins.  相似文献   

19.
Following a study of the relationship between cytokinin oxidase/dehydrogenase (CKX) and senescence in darkened barley leaf segments, we have now investigated the influence of light on the in vitro activity of CKX. Seedlings of Hordeum vulgare L. were grown for 8 d under a light/dark regime of 18 h white light and 6 h darkness. Then apical parts of 7 cm length were cut from the first foliage leaves and their bases were placed in water. In segments kept in the dark, the CKX activity measured by cleavage of N6-(Δ2-isopentenyl)adenine rose from 0.1 pkat (g FW)−1 to 0.8 pkat (g initial FW)−1 within the first 4 d of incubation. In contrast, in segments kept under the light/dark regime it reached a value of 8.6 pkat (g initial FW)−1 over the same time period. The chlorophyll a content declined slightly slower during light/dark cycling than in darkness. In contrast to segments and isolated laminae, corresponding attached laminae exhibited less CKX activity after 2 d under light/dark conditions than after 2 d in the dark. The activity in attached laminae of first foliage leaves of plants growing in light/dark cycling increased strongly only when the plants were older than 4 weeks. In line with this, the CKX activity in attached laminae of flag leaves of barley growing in fields increased in a late developmental state. The senescence of darkened isolated laminae of Zea mays L. and Phragmites australis (Cav.) Trin. ex Steudel was associated with an enhancement of CKX activity too. Because in most cases a positive correlation between CKX activity and senescence was found, it is likely that the enzyme promotes senescence by destroying cytokinins, which help to keep Poaceae leaves green. Light may promote not only cytokinin degradation but also the formation of bioactive cytokinins in leaf segments.  相似文献   

20.
We studied changes in physiological parameters of whole leaves and in antioxidant protection of chloroplasts during ageing and senescence of tobacco (Nicotiana tabacum L. cv. Samsun NN) leaves with enhanced cytokinin oxidase/dehydrogenase activity (CKX) or without it (WT). Old leaves of CKX plants maintained higher pigment content and photosystem 2 activity compared to WT leaves of the same age. Chloroplasts of old CKX plants showed better antioxidant capacity represented by higher superoxide dismutase, dehydroascorbate reductase and glutathione reductase activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号