首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Relatively little research has been conducted on how climate change may affect the structure and function of arid to semiarid ecosystems of the American Southwest. Along the slopes of the San Francisco Peaks of Arizona, USA, I transferred intact soil cores from a spruce‐fir to a ponderosa pine forest 730 m lower in elevation to assess the potential impacts of climate change on soil N cycling and trace gas fluxes. The low‐elevation site has a mean annual soil temperature about 2.5°C higher than the high‐elevation site. Net rates of N transformations and trace gas fluxes were measured in high‐elevation soil cores incubated in situ and soil cores transferred to the low‐elevation site. Over a 13‐month period, volumetric soil water content was similar in transferred soil cores relative to soil cores incubated in situ. Net N mineralization and nitrification increased over 80% in transferred soil cores compared with in situ soil cores. Soil transfer significantly increased net CO2 efflux (120%) and net CH4 consumption (90%) relative to fluxes of these gases from soil cores incubated in situ. Soil net N2O fluxes were relatively low and were not generally altered by soil transfer. Although the soil microbial biomass as a whole decreased in transferred soil cores compared with in situ soil cores after the incubation period, active bacterial biomass increased. Transferring soil cores from the low‐elevation to the high‐elevation site (i.e. simulated global cooling) commonly, but not consistently, resulted in the opposite effects on soil pools and processes. In general, soil containment (root trenching) did not significantly affect soil measurements. My results suggest that small increases in mean annual temperature can have large impacts on soil N cycling, soil–atmosphere trace gas exchanges, and soil microbial communities even in ecosystems where water availability is a major limiting resource.  相似文献   

2.
陈洁  骆土寿  周璋  许涵  陈德祥  李意德 《生态学报》2020,40(23):8528-8538
近年来,高速的城市化和工业化建设导致全球大气氮沉降量逐年递增,其中热带亚热带地区氮沉降量显著高于全球平均水平,而大部分热带亚热带森林土壤趋近氮饱和状态,氮沉降增加将持续向土壤输入外源活性氮,极易导致土壤氮过剩,进而破环整个森林生态系统氮循环的平衡。我国热带亚热带地区经济发展快速,氮沉降增加导致的土壤养分失衡和林地退化等生态问题日益凸显,森林土壤氮循环对大气氮沉降的响应及适应机制已引起了学术界的广泛关注。研究表明氮循环各环节均由特定的功能微生物驱动完成,明确氮沉降增加对热带亚热带森林土壤氮循环功能微生物及其介导的关键过程的影响,对评价未来氮沉降增加背景下全球森林土壤氮循环的响应及驱动机制有重要作用,可为促进我国热带亚热带地区森林修复、生态环境的改善与提升提供科学支撑。鉴于此,本文综述了热带亚热带森林土壤氮循环主要过程(如固氮、硝化、反硝化、厌氧氨氧化等)及其功能微生物群落丰度、活性、组成等对氮沉降增加的响应,同时分析了这些功能微生物的群落特征与主要环境因子(如NH4+、NO3-、有机碳、pH、含水量等)的关联性。在此基础上探讨了氮沉降增加下功能微生物对热带亚热带森林土壤氮循环的调控作用,重点探讨了功能微生物如何通过改变丰度与群落组成而影响氮循环过程,并对目前研究中存在的主要问题与未来研究重点进行了简要剖析。  相似文献   

3.
Global changes such as variations in plant net primary production are likely to drive shifts in leaf litterfall inputs to forest soils, but the effects of such changes on soil carbon (C) cycling and storage remain largely unknown, especially in C‐rich tropical forest ecosystems. We initiated a leaf litterfall manipulation experiment in a tropical rain forest in Costa Rica to test the sensitivity of surface soil C pools and fluxes to different litter inputs. After only 2 years of treatment, doubling litterfall inputs increased surface soil C concentrations by 31%, removing litter from the forest floor drove a 26% reduction over the same time period, and these changes in soil C concentrations were associated with variations in dissolved organic matter fluxes, fine root biomass, microbial biomass, soil moisture, and nutrient fluxes. However, the litter manipulations had only small effects on soil organic C (SOC) chemistry, suggesting that changes in C cycling, nutrient cycling, and microbial processes in response to litter manipulation reflect shifts in the quantity rather than quality of SOC. The manipulation also affected soil CO 2 fluxes; the relative decline in CO 2 production was greater in the litter removal plots (?22%) than the increase in the litter addition plots (+15%). Our analysis showed that variations in CO 2 fluxes were strongly correlated with microbial biomass pools, soil C and nitrogen (N) pools, soil inorganic P fluxes, dissolved organic C fluxes, and fine root biomass. Together, our data suggest that shifts in leaf litter inputs in response to localized human disturbances and global environmental change could have rapid and important consequences for belowground C storage and fluxes in tropical rain forests, and highlight differences between tropical and temperate ecosystems, where belowground C cycling responses to changes in litterfall are generally slower and more subtle.  相似文献   

4.
 Three-year-old Norway spruce trees were planted into a low-nitrogen mineral forest soil and supplied either with two different levels of mineral nitrogen (NH4NO3) or with a slow-release form of organic nitrogen (keratin). Supply of mineral nitrogen increased the concentrations of ammonium and nitrate in the soil solution and in CaCl2-extracts of the rhizosphere and bulk soil. In the soil solution, in all treatments nitrate concentrations were higher than ammonium concentrations, while in the soil extracts ammonium concentrations were often higher than nitrate concentrations. After 7 months of growth, 15N labelled ammonium or nitrate was added to the soil. Plants were harvested 2 weeks later. Keratin supply to the soil did not affect growth and nitrogen accumulation of the trees. In contrast, supply of mineral nitrogen increased shoot growth and increased the ratio of above-ground to below-ground growth. The proportion of needle biomass to total above-ground biomass was not increased by mineral N supply. The atom-% 15N was higher in younger needles than in older needles, and in younger needles higher in plants supplied with 15N-nitrate than in plants supplied with 15N-ammonium. The present data show that young Norway spruce plants take up nitrate even under conditions of high plant internal N levels. Received: 1 April 1998 / Accepted: 9 October 1998  相似文献   

5.
Zhang W  Mo J M  Fang Y T  Lu X K  Wang H 《农业工程》2008,28(5):2309-2319
Nitrogen (N) deposition can alter the rates of microbial N- and C- turnover, and thus can affect the fluxes of greenhouse gases (GHG, e.g., CO2, CH4, and N2O) from forest soils. The effects of N deposition on the GHG fluxes from forest soils were reviewed in this paper. N deposition to forest soils have shown variable effects on the soil GHG fluxes from forest, including increases, decreases or unchanged rates depending on forest type, N status of the soil, and the rate and type of atmospheric N deposition. In forest ecosystems where biological processes are limited by N supply, N additions either stimulate soil respiration or have no significant effect, whereas in “N saturated” forest ecosystems, N additions decrease CO2 emission, reduce CH4 oxidation and elevate N2O flux from the soil. The mechanisms and research methods about the effects of N deposition on GHG fluxes from forest soils were also reviewed in this paper. Finally, the present and future research needs about the effects of N deposition on the GHG fluxes from forest soils were discussed.  相似文献   

6.
Microorganisms are largely responsible for soil nutrient cycling and energy flow in terrestrial ecosystems. Although soil microorganisms are affected by topography and grazing, little is known about how these two variables may interact to influence microbial processes. Even less is known about how these variables influence microorganisms in systems that contain large populations of free-roaming ungulates. In this study, we compared microbial biomass size and activity, as measured by in situ net N mineralization, inside and outside 35- to 40-year exclosures across a topographic gradient in northern Yellowstone National Park. The objective was to determine the relative effect of topography and large grazers on microbial biomass and nitrogen mineralization. Microbial C and N varied by almost an order of magnitude across sites. Topographic depressions that contained high plant biomass and fine-textured soils supported the greatest microbial biomass. We found that plant biomass accurately predicted microbial biomass across our sites suggesting that carbon inputs from plants constrained microbial biomass. Chronic grazing neither depleted soil C nor reduced microbial biomass. We hypothesize that microbial populations in grazed grasslands are sustained mainly by inputs of labile C from dung deposition and increased root turnover or root exudation beneath grazed plants. Mineral N fluxes were affected more by grazing than topography. Net N mineralization rates were highest in grazed grassland and increased from dry, unproductive to mesic, highly productive communities. Overall, our results indicate that topography mainly influences microbial biomass size, while mineral N fluxes (microbial activity) are affected more by grazing in this grassland ecosystem. Received: 4 June 1997 / Accepted: 16 December 1997  相似文献   

7.
氮沉降和放牧是影响草地碳循环过程的重要环境因子,但很少有研究探讨这些因子交互作用对生态系统呼吸的影响。在西藏高原高寒草甸地区开展了外源氮素添加与刈割模拟放牧实验,测定了其对植物生物量分配、土壤微生物碳氮和生态系统呼吸的影响。结果表明:氮素添加显著促进生态系统呼吸,而模拟放牧对其无显著影响,且降低了氮素添加的刺激作用。氮素添加通过提高微生物氮含量和土壤微生物代谢活性,促进植物地上生产,从而增加生态系统的碳排放;而模拟放牧降低了微生物碳含量,且降低了氮素添加的作用,促进根系的补偿性生长,降低了氮素添加对生态系统碳排放的刺激作用。这表明,放牧压力的存在会抑制氮沉降对高寒草甸生态系统碳排放的促进作用,同时外源氮输入也会缓解放牧压力对高寒草甸生态系统生产的负面影响。  相似文献   

8.
Evaluating, and possibly ameliorating, the effects of base cation depletion in forest soils caused by acid deposition is an important topic in the northeastern United States. We added 850 kg Ca ha−1 as wollastonite (CaSiO3) to an 11.8-ha watershed at the Hubbard Brook Experimental Forest (HBEF), a northern hardwood forest in New Hampshire, USA, in fall 1999 to replace calcium (Ca) leached from the ecosystem by acid deposition over the past 6 decades. Soil microbial biomass carbon (C) and nitrogen (N) concentrations, gross and potential net N mineralization and nitrification rates, soil solution and stream chemistry, soil:atmosphere trace gas (CO2, N2O, CH4) fluxes, and foliar N concentrations have been monitored in the treated watershed and in reference areas at the HBEF before and since the Ca addition. We expected that rates of microbial C and N cycle processes would increase in response to the treatment. By 2000, soil pH was increased by a full unit in the Oie soil horizon, and by 2002 it was increased by nearly 0.5 units in the Oa soil horizon. However, there were declines in the N content of the microbial biomass, potential net and gross N mineralization rates, and soil inorganic N pools in the Oie horizon of the treated watershed. Stream, soil solution, and foliar concentrations of N showed no response to treatment. The lack of stimulation of N cycling by Ca addition suggests that microbes may not be stimulated by increased pH and Ca levels in the naturally acidic soils at the HBEF, or that other factors (for example, phosphorus, or Ca binding of labile organic matter) may constrain the capacity of microbes to respond to increased pH in the treated watershed. Possible fates for the approximately 10 kg N ha−1 decline in microbial and soil inorganic pools include components of the plant community that we did not measure (for example, seedlings, understory shrubs), increased fluxes of N2 and/or N storage in soil organic matter. These results raise questions about the factors regulating microbial biomass and activity in northern hardwood forests that should be considered in the context of proposals to mitigate the depletion of nutrient cations in soil.  相似文献   

9.
The microbial conversion of organic nitrogen (N) to plant available forms is a critical determinant of plant growth and carbon sequestration in forests worldwide. In temperate zones, microbial activity is coupled to variations in temperature, yet at the ecosystem level, microbial N mineralization seems to play a minor role in determining patterns of N loss. Rather, N losses often appear to vary with seasonality in hydrology and plant demand, while exports over longer periods are thought to be associated with increasing rates of anthropogenic N deposition. We analyzed long‐term (21–32 years) time series of climate and stream and atmospheric chemistry from two temperate deciduous forest watersheds in the southeastern USA to understand the sensitivity of internal forest N cycles to climate variation and atmospheric deposition. We evaluated the time series with a simple analytical model that incorporates key biotic constraints and mechanisms of N limitation and cycling in plant–soil systems. Through maximum likelihood analysis, we derive biologically realistic estimates of N mineralization and its temperature sensitivity (Q10). We find that seasonality and long‐term trends in stream nitrate (NO3) concentrations can in large part be explained by the dynamics of internal biological cycling responding to climate rather than external forcing from atmospheric chemistry. In particular, our model analysis suggests that much of the variation in N cycling in these forests results from the response of microbial activity to temperature, causing NO3 losses to peak in the growing season and to accelerate with recent warming. Extrapolation of current trends in temperature and N deposition suggests that the upturn in temperature may increase future N export by greater than threefold more than from increasing deposition, revealing a potential direct effect of anthropogenic warming on terrestrial N cycles.  相似文献   

10.
Nitrogen inputs, fluxes, internal generation and consumption, and outputs were monitored in a subalpine spruce-fir forest at approximately 1000-m elevation on Whiteface Mountain in the Adirondacks of New York, USA. Nitrogen in precipitation, cloudwater and dry deposition was collected on an event basis and quantified as an input. Throughfall, stemflow, litterfall and soil water were measured to determine fluxes within the forest. Nitrogen mineralization in the forest floor was estimated to determine internal sources of available N. Lower mineral horizon soil water was used to estimate output from the ecosystem. Vegetation and soil N pools were determined.During four years of continuous monitoring, an average of 16 kg N ha–1 yr–1 was delivered to the forest canopy as precipitation, cloudwater and dry deposition from the atmosphere. Approximately 30% of the input was retained by the canopy. Canopy retention is likely the result of both foliar uptake and immobilization by bark, foliage and microorganisms. Approximately 40 kg of N was made available within the forest floor from mineralization of organic matter. Virtually all the available ammonium (mineralized plus input from throughfall) is utilized in the forest floor, either by microorganisms or through uptake by vegetation. The most abundant N component of soil water solutions leaving the system was nitrate. Net ecosystem fluxes indicate accumulation of both ammonium and nitrate. There is a small net loss of organic N from the ecosystem. Some nitrate leaves the bottom of the B horizon throughout the year. Comparisons with other temperate coniferous sites and examination of the ecosystem N mass balance indicate that N use efficiency is less at our site, which suggests that the site is not severely limited by N.  相似文献   

11.
低频率的氮添加使内蒙古草原土壤微生物生物量碳出现更大幅度下降 土壤微生物生物量在生物地球化学循环过程中至关重要,是土壤碳固持的前体物质。人为氮输入深刻地改变了草地土壤微生物生物量。然而,传统氮沉降模拟实验仅通过低频率的氮添加进行,与持续高频率的自然氮沉降相比,对土壤微生物生物量的影响可能存在差异。不同频率的氮添加对土壤微生物生物量的影响尚缺乏可靠的数据支撑。本研究通过在不同的氮添加速率(0–50 g N m−2 yr−1)下,控制氮添加频率(每年2次和12次),研究了土壤微生物生物量碳对不同氮添加频率的响应。研究结果表明,在两种氮添加频率下,随着施氮水平的提高,土壤微生物生物量碳逐渐降低。然而,在低施氮频率下,土壤微生物生物量的下降幅度更大,这说明传统的氮添加实验可能高估了氮沉降对土壤微生物生物量的影响。在低施氮频率下,土壤酸化、无机氮积累、碳氮失衡、地下净初级生产力分配减少和真菌细菌比例降低等情况加剧,导致微生物生物量出现较大幅度下降。在未来研究中,为可靠预测氮沉降对草地生态系统土壤微生物功能和碳循环的影响,不仅要考虑氮添加的剂量,还需要考虑氮添加的频率。  相似文献   

12.
Numerous studies reported that inorganic nitrogen (N) deposition strongly affected forest ecosystems. However, organic N is also an important component of atmospheric N deposition. The influence of organic N deposition on soil microbial biomass and extracellular enzymatic activities (EEA) in subtropical forests remains unclear. Coniferous forest (CF) and broad-leaved forest (BF) were chosen from the Zijin Mountain in China. Five forms of organic N (urea, glycine, serine, nonylamine, and a mixture of all four) were used to fertilize the soils in CF and BF every month for 1 year. Soil samples were collected every 2 months. Subsequently, soil microbial biomass and EEA were assayed. Results showed that the microbial biomass and EEA of soils fertilized with urea and amino acids increased significantly, whereas those fertilized with nonylamine and mixed N decreased significantly. Urea and amino acid fertilizations had a more positive influence on EEA of BF than on those of CF. Nonylamine fertilization had a more negative influence on EEA of CF than on those of BF. Organic N fertilization shifted soil microbial biomass away from the excretion of N-degrading enzymes and toward the excretion of C-degrading enzymes. These results suggest that organic N type is an important factor that affects soil microbial biomass, EEA, and their relationship. Organic N deposition may seriously affect soil C and N cycling, as well as carbon dioxide releasing from the soils by influencing microbial activities and biomass. This study thereby provides evidence that soil microorganisms have strong feedback to different forms of organic N deposition.  相似文献   

13.
陈智  尹华军  卫云燕  刘庆 《植物生态学报》2010,34(11):1254-1264
开展亚高山针叶林典型林地土壤有效氮和微生物特性对气候变化的响应研究, 对预测未来气候变化背景下亚高山针叶林生态系统C、N的源/汇功能具有重要意义。该文采用红外辐射加热器模拟增温结合外施氮肥的方法, 研究了川西亚高山针叶林下土壤化学特性、有效氮含量以及微生物生物量对夜间增温和施氮的短期响应。结果表明: 在模拟增温试验期间(2009年4月-2010年4月), 空气平均温度和5 cm土壤平均温度分别比对照提高了1.93和4.19 ℃, 增温幅度分别以夏季和冬季最为显著。增温对土壤pH值、有机碳、全氮和微生物生物量无显著影响。增温在试验前期降低了土壤NH4 +-N含量, 增加了NO3 --N含量, 其影响程度随着增温时间的延长而下降。施氮显著增加了有效氮和微生物生物量氮, 降低了土壤pH值, 使土壤表现出明显的酸化现象。与单独的增温和施氮处理相比, 增温和施氮联合处理对林下土壤的有效氮和微生物特性有显著的交互作用, 显著增加了土壤的有机碳、有效氮及土壤微生物生物量氮含量, 并导致土壤进一步酸化。结果说明, 川西亚高山针叶林的土壤有效氮和微生物特性对土壤氮素状况的变化反应敏感, 而林下土壤有效氮和微生物特性对单独的温度升高表现出一定的适应性, 但更对增温和施氮双因素结合处理反应敏感且表现出不同的响应方式。因此, 该区域在未来全球变化下的氮沉降状况及气候变化的多因素协同效应值得长期深入的探讨。  相似文献   

14.
南亚热带森林土壤微生物量碳对氮沉降的响应   总被引:5,自引:0,他引:5  
研究了鼎湖山自然保护区3种森林生态系统土壤微生物量碳对氮沉降增加的响应.选取南亚热带代表性森林类型马尾松林、混交林和季风常绿阔叶林(季风林)建立野外模拟氮沉降试验样地.2003年7月开始每月进行氮处理.这些处理分别为对照、低氮处理、中氮处理和高氮处理,即0、50、100 kg N hm-2 a-1 和150 kg N hm-2 a-1.在2004年11月和2006年6月用氯仿熏蒸浸提法分别测定土壤微生物量碳和土壤可浸提有机碳.土壤微生物量碳和可浸提有机碳含量均表现为2006年6月高于2004年11月;季风林高于马尾松林和混交林.随着氮沉降增加季风林土壤微生物量碳减少,但可浸提有机碳含量则增加,且此趋势在高氮处理下表现明显.然而,氮沉降增加对马尾松林和混交林土壤微生物量碳和可浸提有机碳含量的影响不显著.以上结果表明,氮沉降增加可能提高季风林土壤有机碳的固持能力.  相似文献   

15.
Exotic Earthworm Invasion and Microbial Biomass in Temperate Forest Soils   总被引:11,自引:0,他引:11  
Invasion of north temperate forest soils by exotic earthworms has the potential to alter microbial biomass and activity over large areas of North America. We measured the distribution and activity of microbial biomass in forest stands invaded by earthworms and in adjacent stands lacking earthworms in sugar maple-dominated forests in two locations in New York State, USA: one with a history of cultivation and thin organic surface soil horizons (forest floors) and the other with no history of cultivation and a thick (3–5 cm) forest floor. Earthworm invasion greatly reduced pools of microbial biomass in the forest floor and increased pools in the mineral soil. Enrichment of the mineral soil was much more marked at the site with thick forest floors. The increase in microbial biomass carbon (C) and nitrogen (N) in the mineral soil at this site was larger than the decrease in the forest floor, resulting in a net increase in total soil profile microbial biomass in the invaded plots. There was an increase in respiration in the mineral soil at both sites, which is consistent with a movement of organic matter and microbial biomass into the mineral soil. However, N-cycle processes (mineralization and nitrification) did not increase along with respiration. It is likely that the earthworm-induced input of C into the mineral soil created a microbial sink for N, preventing an increase in net mineralization and nitrification and conserving N in the soil profile.  相似文献   

16.
土壤微生物生物量在森林生态系统中充当具有生物活性的养分积累和储存库。土壤微生物转化有机质为植物提供可利用养分, 与植物的相互作用维系着陆地生态系统的生态功能。同时, 土壤微生物也与植物争夺营养元素, 在季节交替过程和植物的生长周期中呈现出复杂的互利-竞争关系。综合全球数据对温带、亚热带和热带森林土壤微生物生物量碳(C)、氮(N)、磷(P)含量及其化学计量比值的季节动态进行分析, 发现温带和亚热带森林的土壤微生物生物量C、N、P含量均呈现夏季低、冬季高的格局。热带森林四季的土壤微生物生物量C、N、P含量都低于温带和亚热带森林, 且热带森林土壤微生物生物量C含量、N含量在秋季相对最低, 土壤微生物生物量P含量四季都相对恒定。温带森林的土壤微生物生物量C:N在春季显著高于其他两个森林类型; 热带森林的土壤微生物生物量C:N在秋季显著高于其他2个森林类型。温带森林土壤微生物生物量N:P和C:P在四季都保持相对恒定, 而热带森林土壤微生物生物量N:P和C:P在夏季高于其他3个季节。阔叶树的土壤微生物生物量C含量、N含量、N:P、C:P在四季都显著高于针叶树; 而针叶树的土壤微生物生物量P含量在四季都显著高于阔叶树。在春季和冬季时, 土壤微生物生物量C:N在阔叶树和针叶树之间都没有显著差异; 但是在夏季和秋季, 针叶树的土壤微生物生物量C:N显著高于阔叶树。对于土壤微生物生物量的变化来说, 森林类型是主要的显著影响因子, 季节不是显著影响因子, 暗示土壤微生物生物量的季节波动是随着植物其内在固有的周期变化而变化。植物和土壤微生物密切作用表现出来的对养分的不同步吸收是保留养分和维持生态功能的一种权衡机制。  相似文献   

17.
Assessing the status of soil nutrients with their corresponding microbial communities provides important information about degraded soils during the restoration of coastal wet pine forests. Net nitrogen mineralization, nitrogen‐oxidizing bacteria (NOB), and soil microbial biomass were compared with patch‐derived volume along a 110‐year longleaf pine (Pinus palustris Mill.) chronosequence for identifying a trajectory and ecological benchmark during forest restoration. Net nitrogen mineralization rates decreased significantly in the maturing‐aged, pine patches, driven by a larger drop in net nitrification. Net nitrification and abundance of NOB were higher in young pine patches compared to soils from the maturing (86–110 years) pine patches. Gross nitrate fluxes followed the nonfungal portion of the soil microbial biomass along the chronosequence, declining in 64‐year‐old pine patches. Microbial biomass peaked in patches 17–34 years of age, but significantly declined in the older patches. Fungal biomass leveled off without decline. Ammonium was the major source of nitrogen within the maturing pine patches as well as the wetland patches, indicating that ammonium maintains longleaf pine during growth‐limiting conditions. Nitrate dominated during rapid tree growth, optimally in mesic conditions. The relative amounts of available ammonium to nitrate can be used to model nitrogen cycling in facultative‐wetland pine forests of the coastal United States as soils alternate between wet and mesic conditions. A key restoration benchmark occurred after 86 years of pine development when pine patch growth rates slowed, with lower numbers of NOB, when the nonfungal biomass leveled off, and net nitrification rates are at a minimum, during pine maturation.  相似文献   

18.
土壤微生物生物量氮及其在氮素循环中作用   总被引:11,自引:0,他引:11  
简述了土壤微生物生物量氮的含量及其影响因素,阐述了其在土壤氮素循环中的重要作用,着重讨论了其与可矿化氮、矿质氮、有机氮和固定态铵之间的关系,指出土壤微生物生物量氮与供氮因子间的关系在氮素循环研究中有非常重要的作用,可为调控土壤氮素的供应状况,减少氮素损失,提高氮肥利用率提供科学依据,并提出了需要深入研究的问题。  相似文献   

19.
为理解模拟氮沉降对华西雨屏区天然常绿阔叶林土壤微生物生物量碳(MBC)和氮(MBN)的影响,通过一年野外模拟氮(NH4NO3)沉降试验,氮沉降水平分别为对照(CK, 0 g N·m-2·a-1)、低氮沉降(L, 5 g N·m-2·a-1)、中氮沉降(M, 15 g N·m-2·a-1)和高氮沉降(H, 30 g N·m-2·a-1),研究了氮沉降对天然常绿阔叶林土壤MBC和MBN的影响.结果表明: 氮沉降显著降低了0~10 cm土层MBC和MBN,且随氮沉降量的增加,下降幅度增大;L和M处理对10~20 cm土层MBC和MBN无显著影响,H处理显著降低了10~20 cm土层土壤MBC和MBN;氮沉降对MBC和MBN的影响随土壤深度的增加而减弱.MBC和MBN具有明显的季节变化,在0~10和10~20 cm土层均表现为秋季最高,夏季最低.0~10和10~20 cm土层土壤微生物生物量C/N分别介于10.58~11.19和9.62~12.20,表明在华西雨屏区天然常绿阔叶林土壤微生物群落中真菌占据优势.  相似文献   

20.
土壤微生物作为土壤养分的生物驱动因素,氮沉降会改变其活性和生物量,从而打破土壤养分循环动态平衡。氮沉降对热带、亚热带森林以及温带原始林生态系统土壤微生物量影响的研究较多,但对温带天然次生林影响的研究鲜有报道。于2016年5月(春)、7月(夏)和9月(秋)分别对长白山模拟10年氮沉降的控制试验样地——白桦山杨次生林进行了野外调查。控制试验分为3个氮添加处理,对照(CK 0 kg N hm~(-2)a~(-1))、低氮(LN 25 kg N hm~(-2)a~(-1))和高氮(HN 50 kg N hm~(-2)a~(-1)),按照土壤层(0—10 cm和10—20 cm)分别测试了不同处理的土壤微生物量碳(MBC)和氮(MBN)、土壤全碳(TC)、全氮(TN)和全磷(TP)、p H、土壤可溶性有机碳(DOC)和氮(DON)等指标。结果表明:1)土壤p H在氮沉降的作用下显著降低;上层土壤TC、TN在氮沉降下变化较小,下层土壤TC、TN的含量显著增加;氮沉降下春、夏两季土壤TP含量上升,LN处理在秋季对TP有抑制作用;氮沉降对DOC、DON的影响不显著。2)上层土壤MBC春季到秋季呈现递减的趋势,下层土壤呈现先升后降的趋势,HN对MBC有抑制作用,LN对下层土壤MBC有促进作用;土壤MBN由春季到秋季呈现递减的趋势,且上、下层土壤MBN差异显著;氮处理对春、秋两季MBN有促进作用,夏季有抑制作用;氮沉降使春、秋两季MBC/MBN降低,夏季土壤MBC/MBN升高。3)氮处理、季节变化和土层深度对MBC、MBN存在显著影响,其交互影响也显著。总之,长期氮沉降在生长季对土壤微生物量的影响具有季节性差异,且受到土层深度的影响。未来研究在重视年际变化的同时,也要注重时空动态对氮沉降作用表现出的差异性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号