首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
2.
3.
4.
5.
6.
《遗传学报》2020,47(8):451-465
Meiosis is a specialized cell division for producing haploid gametes in sexually reproducing organisms. In this study, we have independently identified a novel meiosis protein male meiosis recombination regulator (MAMERR)/4930432K21Rik and showed that it is indispensable for meiosis prophase I progression in male mice. Using super-resolution structured illumination microscopy, we found that MAMERR functions at the same double-strand breaks as the replication protein A and meiosis-specific with OB domains/spermatogenesis associated 22 complex. We generated a Mamerr-deficient mouse model by deleting exons 3–6 and found that most of Mamerr−/− spermatocytes were arrested at pachynema and failed to progress to diplonema, although they exhibited almost intact synapsis and progression to the pachytene stage along with XY body formation. Further mechanistic studies revealed that the recruitment of DMC1/RAD51 and heat shock factor 2–binding protein in Mamerr−/− spermatocytes was only mildly impaired with a partial reduction in double-strand break repair, whereas a substantial reduction in ubiquitination on the autosomal axes and on the XY body appeared as a major phenotype in Mamerr−/− spermatocytes. We propose that MAMERR may participate in meiotic prophase I progression by regulating the ubiquitination of key meiotic proteins on autosomes and XY chromosomes, and in the absence of MAMERR, the repressed ubiquitination of key meiotic proteins leads to pachytene arrest and cell death.  相似文献   

7.
8.
During the male meiotic prophase in mouse and man, pairing and recombination of homologous chromosomes is accompanied by changes in chromatin structure. In this review, the dynamics of assembly and disassembly of the chromatin-associated complexes that mediate sister chromatid cohesion (cohesin) and maintain chromosome pairing (the synaptonemal complex) are described. Special features of the meiotic S phase are discussed, and also the dynamics of several key players that act together after the S phase at sites of meiotic double-strand break DNA repair. Current knowledge on histone modifications that occur during the male meiotic prophase is discussed, with special attention for the inactive chromatin of the X and Y chromosomes that constitutes the sex body. Finally, it is discussed that in the future, it will be possible to view the true chromatin dynamics during male meiosis in time, in living cells, through analysis of fluorescent-tagged proteins expressed in transgenic mice, using advanced fluorescent microscopy techniques.  相似文献   

9.
10.
11.
12.
During male meiosis in mammals the X and Y chromosomes become condensed to form the sex body (XY body), which is the morphological manifestation of the process of meiotic sex chromosome inactivation (MSCI). An increasing number of sex body located proteins are being identified, but their functions in relation to MSCI are unclear. Here we demonstrate that assaying male sex body located proteins during XY female mouse meiosis, where MSCI does not take place, is one way in which to begin to discriminate between potential functions. We show that a newly identified protein, "Asynaptin" (ASY), detected in male meiosis exclusively in association with the X and Y chromatin of the sex body, is also expressed in pachytene oocytes of XY females where it coats the chromatin of the asynapsed X in the absence of MSCI. Furthermore, in pachytene oocytes of females carrying a reciprocal autosomal translocation, ASY associates with asynapsed autosomal chromatin. Thus the location of ASY to the sex body during male meiosis is likely to be a response to the asynapsis of the non-homologous regions [outside the pseudoautosomal region (PAR)] of the heteromorphic X-Y bivalent, rather than being related to MSCI. In contrast to ASY, the previously described sex body protein XY77 proved to be male sex body specific. Potential functions for MSCI and the sex body are discussed together with the possible roles of these two proteins.  相似文献   

13.
The condensation behaviour of the human Y chromosome in germ cells and Sertoli cells of pre- and post-pubertal testes was followed by fluorescence in situ hybridisation using probes for three different regions of the Y chromosome. Patterns of expansion or contraction of signal are taken to reflect degrees of condensation of the related Y chromatin and hence its potential for genetic activity. For probe pHY2.1, which labels the distal non-fluorescent and fluorescent heterochromatin of the Y chromosome (Yq12), an expanded signal seen in gonocytes of the prepubertal testis is superseded by a condensed signal seen in adult germ cells at all but the zygotene stage of meiotic prophase when meiotic pairing takes place. In contrast, Sertoli cells show a condensed signal pre-pubertally but a greatly expanded signal in the adult testis. A totally condensed pHY2.1 signal is found in a chromosomally normal man with Sertoli-cell-only syndrome. It is hypothesised that control over at least some facets of spermatogenesis may not, in the adult, be autonomous to the germ cells, but rather may emanate from the Sertoli cells. Chromatin expansion at zygotene could, however, be important for pairing and crossing over in the XY bivalent, successful synapsis ensuring survival of spermatocytes into the post-meiotic stages.  相似文献   

14.
15.
In mammalian male gametogenesis the sex chromosomes are distinctive in both gene activity and epigenetic strategy. At first meiotic prophase the heteromorphic X and Y chromosomes are placed in a separate chromatin domain called the XY body. In this process, X,Y chromatin becomes highly phosphorylated at S139 of H2AX leading to the repression of gonosomal genes, a process known as meiotic sex chromosome inactivation (MSCI), which has been studied best in mice. Post-meiotically this repression is largely maintained. Disturbance of MSCI in mice leads to harmful X,Y gene expression, eventuating in spermatocyte death and sperm heterogeneity. Sperm heterogeneity is a characteristic of the human male. For this reason we were interested in the efficiency of MSCI in human primary spermatocytes. We investigated MSCI in pachytene spermatocytes of seven probands: four infertile men and three fertile controls, using direct and indirect in situ methods. A considerable degree of variation in the degree of MSCI was detected, both between and within probands. Moreover, in post-meiotic stages this variation was observed as well, indicating survival of spermatocytes with incompletely inactivated sex chromosomes. Furthermore, we investigated the presence of H3K9me3 posttranslational modifications on the X and Y chromatin. Contrary to constitutive centromeric heterochromatin, this heterochromatin marker did not specifically accumulate on the XY body, with the exception of the heterochromatic part of the Y chromosome. This may reflect the lower degree of MSCI in man compared to mouse. These results point at relaxation of MSCI, which can be explained by genetic changes in sex chromosome composition during evolution and candidates as a mechanism behind human sperm heterogeneity.  相似文献   

16.
When the Y chromosome of a Mus musculus domesticus male mouse (caught in Tirano, Italy) is placed on a C57BL/6J genetic background, approximately half of the XY (B6.YTIR) progeny develop into normal-appearing but infertile females. We have previously reported that the primary cause of infertility can be attributed to their oocytes. To identify the primary defect in the XY oocyte, we examined the onset and progress of meiotic prophase in the B6.YTIR fetal ovary. Using bromo-deoxyuridine incorporation and culture, we determined that the germ cells began to enter meiosis at the developmental ages and in numbers comparable to those in the control XX ovary. Furthermore, the meiotic prophase appeared to progress normally until the late zygotene stage. However, the oocytes that entered meiosis early in the XY ovary failed to complete the meiotic prophase. On the other hand, a considerable number of oocytes entered meiosis at late developmental stages and completed the meiotic prophase in the XY ovary. We propose that the timing of entry into meiosis and the XY chromosomal composition influence the survival of oocytes during meiotic prophase in the fetal ovary.  相似文献   

17.
In mammals, the X and Y chromosomes are subject to meiotic sex chromosome inactivation (MSCI) during prophase I in the male germline, but their status thereafter is currently unclear. An abundance of X-linked spermatogenesis genes has spawned the view that the X must be active . On the other hand, the idea that the imprinted paternal X of the early embryo may be preinactivated by MSCI suggests that silencing may persist longer . To clarify this issue, we establish a comprehensive X-expression profile during mouse spermatogenesis. Here, we discover that the X and Y occupy a novel compartment in the postmeiotic spermatid and adopt a non-Rabl configuration. We demonstrate that this postmeiotic sex chromatin (PMSC) persists throughout spermiogenesis into mature sperm and exhibits epigenetic similarity to the XY body. In the spermatid, 87% of X-linked genes remain suppressed postmeiotically, while autosomes are largely active. We conclude that chromosome-wide X silencing continues from meiosis to the end of spermiogenesis, and we discuss implications for proposed mechanisms of imprinted X-inactivation.  相似文献   

18.
Antibodies against human Rad51 protein were used to examine the distribution of Rad51 on meiotic chromatin in mouse spermatocytes and oocytes as well as chicken oocytes during sequential stages of meiosis. We observed the following dynamic changes in distribution of Rad51 during meiosis: (1) in early leptotene nuclei there are multiple apparently randomly distributed, foci that by late leptonema become organized into tracks of foci. (2) These foci persist into zygonema, but most foci are now localized on Rad51-positive axes that correspond to lateral elements of the synaptonemal complex. As homologs synapse foci from homologous axes fuse. The distribution and involvement of Rad51 foci as contact points between homologs suggest that they may be components to early recombination nodules. (3) As pachynema progresses the number of foci drops dramatically; the temporal occurrence (mice) and physical and numerical distribution of foci on axes (chickens) suggest that they may be a component of late recombination nodules. (4) In early pachynema there are numerous Rad51 foci on the single axis of the X (mouse spermatocytes) or the Z (chiken oocytes) chromosomes that neither pair, nor recombine. (5) In late pachynema in mouse spermatocytes, but not oocytes, the Rad51 signal is preferentially enhanced at both ends of all the bivalents. As bivalents in spermatocytes, but not oocytes, begin to desynapse at diplonema they are often held together at these Rad51-positive termini. These observations parallel observations that recombination rates are exceptionally high near chromosome ends in male but not female eutherian mammals. (6) From diakinesis through metaphase I, Rad51 protein is detected as low-intensity fluorescent doublets that localize with CREST-specific antigens (kinetochores), suggesting that Rad51 participates, at least as a structural component of the materials involved, in sister kinetochore cohesiveness. Finally, the changes in Rad51 distribution during meiosis do not appear to be species specific, but intrinsic to the meiotic process.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号