首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 153 毫秒
1.
The human genome encodes six proteins of family 18 glycosyl hydrolases, two active chitinases and four chitinase-like lectins (chi-lectins) lacking catalytic activity. The present article is dedicated to homology modeling of 3D structure of human chitinase 3-like 2 protein (CHI3L2), which is overexpressed in glial brain tumors, and its structural comparison with homologous chi-lectin CHI3L1. Two crystal structures of CHI3L1 in free state (Protein Data Bank codes 1HJX and 1NWR) were used as structural templates for the homology modeling by Modeller 9.7 program, and the best quality model structure was selected from the obtained model ensemble. Analysis of potential oligosaccharide-binding groove structures of CHI3L1 and CHI3L2 revealed significant differences between these two homologous proteins. 8 of 19 amino acid residues important for ligand binding are substituted in CHI3L2: Tyr34/Asp39, Trp69/Lys74, Trp71/Lys76, Trp99/Tyr104, Asn100/Leu105, Met204/Leu210, Tyr206/Phe212 and Arg263/His271. The differences between these residues could influence the structure of the ligand-binding groove and substantially change the ability of CHI3L2 to bind oligosaccharide ligands.  相似文献   

2.
Photo-chemically induced dynamic nuclear polarization (photo-CIDNP) one-dimensional and two-dimensional (2D)1H-NMR techniques have been applied to the study of the kringle 4 domain of human plasminogen both ligand-free and complexed to the antifibrinolytic drugs ɛ-aminocaproic acid and p-benzylaminesulfonic acid (BASA). A number of aromatic side-chains (His3, Trp72, Tyr41, Tyr50 and Tyr74) appear to be exposed and accessible to 3-N-car☐ymethyl-lumiflavin, the photopolarizing flavin dye, both in the presence and in the absence of ligands. A lesser exposure is observed for the Trp25 and Trp62 indole groups in the presence of BASA. The spin-spin (J-coupling) and dipolar (Overhauser) connectivities in the 2D experiments afford absolute assignment of aromatic resonances for the above residues, as well as of those stemming from the Trp72 ring in the presence of BASA. Moreover, a number of Hβ resonances can be identified and sorted according to specific types of amino acid residues.  相似文献   

3.
Flax secoisolariciresinol diglucoside (SDG) lignan is a natural phytoestrogen for which a positive role in metabolic diseases is emerging. Until recently however, much less was known about SDG and its monoglucoside (SMG) biosynthesis. Lately, flax UGT74S1 was identified and characterized as an enzyme sequentially glucosylating secoisolariciresinol (SECO) into SMG and SDG when expressed in yeast. However, the amino acids critical for UGT74S1 glucosyltransferase activity were unknown. A 3D structural modeling and docking, site-directed mutagenesis of five amino acids in the plant secondary product glycosyltransferase (PSPG) motif, and enzyme assays were conducted. UGT74S1 appeared to be structurally similar to the Arabidopsis thaliana UGT72B1 model. The ligand docking predicted Ser357 and Trp355 as binding to the phosphate and hydroxyl groups of UDP-glucose, whereas Cys335, Gln337 and Trp355 were predicted to bind the 7-OH, 2-OCH3 and 17-OCH3 of SECO. Site-directed mutagenesis of Cys335, Gln337, His352, Trp355 and Ser357, and enzyme assays revealed an alteration of these binding sites and a significant reduction of UGT74S1 glucosyltransferase catalytic activity towards SECO and UDP-glucose in all mutants. A complete abolition of UGT74S1 activity was observed when Trp355 was substituted to Ala355 and Gly355 or when changing His352 to Asp352, and an altered metabolite profile was observed in Cys335Ala, Gln337Ala, and Ser357Ala mutants. This study provided for the first time evidence that Trp355 and His352 are critical for UGT74S1’s glucosylation activity toward SECO and suggested the possibility for SMG production in vitro.  相似文献   

4.
Like the translational elongation factor EF-Tu, RNase P interacts with a large number of substrates where RNase P with its RNA subunit generates tRNAs with matured 5′ termini by cleaving tRNA precursors immediately 5′ of the residue at +1, i.e. at the position that corresponds to the first residue in tRNA. Most tRNAs carry a G+1C+72 base pair at the end of the aminoacyl acceptor-stem whereas in tRNAGln G+1C+72 is replaced with U+1A+72. Here, we investigated RNase P RNA-mediated cleavage as a function of having G+1C+72 versus U+1A+72 in various substrate backgrounds, two full-size tRNA precursors (pre-tRNAGln and pre-tRNATyrSu3) and a model RNA hairpin substrate (pATSer). Our data showed that replacement of G+1C+72 with U+1A+72 influenced ground state binding, cleavage efficiency under multiple and single turnover conditions in a substrate-dependent manner. Interestingly, we observed differences both in ground state binding and rate of cleavage comparing two full-size tRNA precursors, pre-tRNAGln and pre-tRNATyrSu3. These findings provide evidence for substrate discrimination in RNase P RNA-mediated cleavage both at the level of binding, as previously observed for EF-Tu, as well as at the catalytic step. In our experiments where we used model substrate derivatives further indicated the importance of the +1/+72 base pair in substrate discrimination by RNase P RNA. Finally, we provide evidence that the structural architecture influences Mg2+ binding, most likely in its vicinity.  相似文献   

5.
The α-l-rhamnosidase catalyzes the hydrolytic release of rhamnose from polysaccharides and glycosides and is widely used due to its applications in a variety of industrial processes. Our previous work reported that a wild-type α-l-rhamnosidase (RhaL1) from Alternaria sp. L1 could synthesize rhamnose-containing chemicals (RCCs) though reverse hydrolysis reaction with inexpensive rhamnose as glycosyl donor. To enhance the yield of reverse hydrolysis reaction and to determine the amino acid residues essential for the catalytic activity of RhaL1, site-directed mutagenesis of 11 residues was performed in this study. Through rationally designed mutations, the critical amino acid residues which may form direct or solvent-mediated hydrogen bonds with donor rhamnose (Asp252, Asp257, Asp264, Glu530, Arg548, His553, and Trp555) and may form the hydrophobic pocket in stabilizing donor (Trp261, Tyr302, Tyr316, and Trp369) in active-site of RhaL1 were analyzed, and three positive mutants (W261Y, Y302F, and Y316F) with improved product yield stood out. From the three positive variants, mutant W261Y accelerated the reverse hydrolysis with a prominent increase (43.7 %) in relative yield compared to the wild-type enzyme. Based on the 3D structural modeling, we supposed that the improved yield of mutant W261Y is due to the adjustment of the spatial position of the putative catalytic acid residue Asp257. Mutant W261Y also exhibited a shift in the pH-activity profile in hydrolysis reaction, indicating that introducing of a polar residue in the active site cavity may affect the catalysis behavior of the enzyme.  相似文献   

6.
Histamine dehydrogenase (HADH) isolated from Nocardioides simplex catalyzes the oxidative deamination of histamine to imidazole acetaldehyde. HADH is highly specific for histamine, and we are interested in understanding the recognition mode of histamine in its active site. We describe the first crystal structure of a recombinant form of HADH (HADH) to 2.7-Å resolution. HADH is a homodimer, where each 76-kDa subunit contains an iron-sulfur cluster ([4Fe-4S]2+) and a 6-S-cysteinyl flavin mononucleotide (6-S-Cys-FMN) as redox cofactors. The overall structure of HADH is very similar to that of trimethylamine dehydrogenase (TMADH) from Methylotrophus methylophilus (bacterium W3A1). However, some distinct differences between the structure of HADH and TMADH have been found. Tyr60, Trp264, and Trp355 provide the framework for the “aromatic bowl” that serves as a trimethylamine-binding site in TMADH is comprised of Gln65, Trp267, and Asp358, respectively, in HADH. The surface Tyr442 that is essential in transferring electrons to electron-transfer flavoprotein (ETF) in TMADH is not conserved in HADH. We use this structure to propose the binding mode for histamine in the active site of HADH through molecular modeling and to compare the interactions to those observed for other histamine-binding proteins whose structures are known.  相似文献   

7.
Human DNA polymerases mu (Polµ) and lambda (Polλ) are X family members involved in the repair of double-strand breaks in DNA during non-homologous end joining. Crucial abilities of these enzymes include bridging of the two 3′ single-stranded overhangs and trans-polymerization using one 3′ end as primer and the other as template, to minimize sequence loss. In this context, we have studied the importance of a previously uncharacterised sequence (‘brooch’), located at the N-terminal boundary of the Polß-like polymerase core, and formed by Tyr141, Ala142, Cys143, Gln144 and Arg145 in Polµ, and by Trp239, Val240, Cys241, Ala242 and Gln243 in Polλ. The brooch is potentially implicated in the maintenance of a closed conformation throughout the catalytic cycle, and our studies indicate that it could be a target of Cdk phosphorylation in Polµ. The brooch is irrelevant for 1 nt gap filling, but of specific importance during end joining: single mutations in the conserved residues reduced the formation of two ended synapses and strongly diminished the ability of Polµ and polymerase lambda to perform non-homologous end joining reactions in vitro.  相似文献   

8.
ADP-glucose pyrophosphorylase is the enzyme responsible for the regulation of glycogen synthesis in bacteria. The enzyme N-terminal domain has a Rossmann-like fold with three neighbor loops facing the substrate ATP. In the Escherichia coli enzyme, one of those loops also faces the regulatory site containing Lys39, a residue involved in binding of the allosteric activator fructose-1,6-bisphosphate and its analog pyridoxal-phosphate. The other two loops contain Trp113 and Gln74, respectively, which are highly conserved among all the ADP-glucose pyrophosphorylases. Molecular modeling of the E. coli enzyme showed that binding of ATP correlates with conformational changes of the latter two loops, going from an open to a closed (substrate-bound) form. Alanine mutants of Trp113 or Gln74 did not change apparent affinities for the substrates, but they became insensitive to activation by fructose-1,6-bisphosphate. By capillary electrophoresis we found that the mutant enzymes still bind fructose-1,6-bisphosphate, with similar affinity as the wild type enzyme. Since the mutations did not alter binding of the activator, they must have disrupted the communication between the regulatory and the substrate sites. This agrees with a regulatory mechanism where the interaction with the allosteric activator triggers conformational changes at the level of loops containing residues Trp113 and Gln74.  相似文献   

9.
Syntheses by conventional procedures of the three analogs corresponding to the porcine secretin sequence crossed at position 6 by the N-terminal hexapeptide sequences of VIP, GIP, and glucagon are described, viz., Ala4,Val5-, Tyr1,Ala2,Glu3-, and Gln3-secretin (VIP-SN, GIP-SN, and GLU-SN). The analog Phe1,Phe2,Trp3,Lys4-secretin (SOMA-SN), designed on the basis of the surprising homology of the sequence portions 10–13 of somatostatin and 5–8 of secretin, was also prepared. Finally, the synthesis of Nα-3-(4-hydroxyphenyl)propionyl-β-alanyl-secretin (DATA-SN), a tracer suitable for secretin radioimmunoassay and as an N-terminus modified secretin analog, is reported. The analogs are compared, in terms of their biological and immunological properties in different assay systems, with pure synthetic secretin.  相似文献   

10.
We have earlier characterized Saccharomyces cerevisiae strains with mutations of essential SUP45 and SUP35, which code for translation termination factors eRF1 and eRF3, respectively. In this work, the sup45 and sup35 nonsense mutants were compared with respect to the levels of eight tRNAs: tRNATyr, tRNAGln, tRNATrp, tRNALeu, tRNAArg (described as potential suppressor tRNAs), tRNAPro, tRNAHis, and tRNAGly. The mutants did not display a selective increase in tRNAs, capable of a noncanonical read-through at stop codons. Most of the mutations increased the level of all tRNAs under study. The mechanisms providing for the viability of the sup45 and sup35 nonsense mutants are discussed.  相似文献   

11.
Alginate lyases play important roles in alginate degradation in the ocean. Although a large number of alginate lyases have been characterized, little is yet known about those in extremely cold polar environments, which may have unique mechanisms for environmental adaptation and for alginate degradation. Here, we report the characterization of a novel PL7 alginate lyase AlyC3 from Psychromonas sp. C-3 isolated from the Arctic brown alga Laminaria, including its phylogenetic classification, catalytic properties, and structure. We propose the establishment of a new PM-specific subfamily of PL7 (subfamily 6) represented by AlyC3 based on phylogenetic analysis and enzymatic properties. Structural and biochemical analyses showed that AlyC3 is a dimer, representing the first dimeric endo-alginate lyase structure. AlyC3 is activated by NaCl and adopts a novel salt-activated mechanism; that is, salinity adjusts the enzymatic activity by affecting its aggregation states. We further solved the structure of an inactive mutant H127A/Y244A in complex with a dimannuronate molecule and proposed the catalytic process of AlyC3 based on structural and biochemical analyses. We show that Arg82 and Tyr190 at the two ends of the catalytic canyon help the positioning of the repeated units of the substrate and that His127, Tyr244, Arg78, and Gln125 mediate the catalytic reaction. Our study uncovers, for the first time, the amino acid residues for alginate positioning in an alginate lyase and demonstrates that such residues involved in alginate positioning are conserved in other alginate lyases. This study provides a better understanding of the mechanisms of alginate degradation by alginate lyases.  相似文献   

12.
GPX is a mammalian antioxidant selenoenzyme which protects biomembranes and other cellular components from oxidative damage by catalyzing the reduction of a variety of hydroperoxides (ROOH), using Glutathione (GSH) as the reducing substrate. The single-chain Fv fragment of the monoclonal antibody 2F3 (scFv2F3) can be converted into the selenium-containing Se-scFv2F3 by chemical modification of the serine. The new selenium-containing catalytic antibody Se-scFv2F3 acts as a glutathione peroxidase (GPX) mimic with high catalytic efficiency.In order to investigate which residue of scFv2F3 is converted into selenocysteine and to describe the proper reaction site of GSH to Se-scFv2F3, a three-dimensional structure of scFv2F3 is built by means of homology modeling. The 3D model is assessed by molecular dynamics (MD) simulation to determine its stability and by comparison with those of known protein structures. After the serine in the scFv2F3 is modified to selenocysteine, a catalytic antibody (abzyme) is obtained. From geometrical considerations, the solvent-accessible surface of the protein is examined. The computer-aided docking and energy minimization (EM) calculations of the abzyme–GSH complex are then carried out to explore the possible active site of the glutathione peroxidase mimic Se-scFv2F3. The structural information from the theoretically modeled complex can help us to further understand the catalytic mechanism of GPX.  相似文献   

13.
A spermidine excretion protein in Escherichia coli was looked for among 33 putative drug exporters thus far identified. Cell toxicity and inhibition of growth due to overaccumulation of spermidine were examined in an E. coli strain deficient in spermidine acetyltransferase, an enzyme that metabolizes spermidine. Toxicity and inhibition of cell growth by spermidine were recovered in cells transformed with pUCmdtJI or pMWmdtJI, encoding MdtJ and MdtI, which belong to the small multidrug resistance family of drug exporters. Both mdtJ and mdtI are necessary for recovery from the toxicity of overaccumulated spermidine. It was also found that the level of mdtJI mRNA was increased by spermidine. The spermidine content in cells cultured in the presence of 2 mM spermidine was decreased, and excretion of spermidine from cells was enhanced by MdtJI, indicating that the MdtJI complex can catalyze excretion of spermidine from cells. It was found that Tyr4, Trp5, Glu15, Tyr45, Tyr61, and Glu82 in MdtJ and Glu5, Glu19, Asp60, Trp68, and Trp81 in MdtI are involved in the excretion activity of MdtJI.  相似文献   

14.
The antioxidant effect of selenium-containing single-chain Fv catalytic antibody (Se-scFv2F3), a new mimic of glutathione peroxidase, was confirmed using a model system in which cultured rat skin epidermal cells were injured by ultraviolet B (UVB). The cell damage was characterized in terms of lipid peroxidation of the cells, cell viability, and cell membrane integrity. The injury effects of UVB and protection effects of Se-scFv2F3 on the cells were studied using the model system. UVB can damage the cells severely. Upon precultivation of the cells with 0.4U/ml Se-scFv2F3, however, the damage was significantly reduced as shown by the increase in cell viability, the decrease in the malondialdehyde and hydrogen peroxide levels, and the normalization of lactate dehydrogenase activity. In addition, a novel finding that Se-scFv2F3 can stimulate cultured epidermal cells to proliferate under certain conditions was observed.  相似文献   

15.
Triacylglycerols (TGs) stored in lipid droplets (LDs) are hydrolyzed in a highly regulated metabolic process called lipolysis to free fatty acids that serve as energy substrates for β-oxidation, precursors for membrane lipids and signaling molecules. Comparative gene identification-58 (CGI-58) stimulates the enzymatic activity of adipose triglyceride lipase (ATGL), which catalyzes the hydrolysis of TGs to diacylglycerols and free fatty acids. In adipose tissue, protein-protein interactions between CGI-58 and the LD coating protein perilipin 1 restrain the ability of CGI-58 to activate ATGL under basal conditions. Phosphorylation of perilipin 1 disrupts these interactions and mobilizes CGI-58 for the activation of ATGL. We have previously demonstrated that the removal of a peptide at the N terminus (residues 10–31) of CGI-58 abrogates CGI-58 localization to LDs and CGI-58-mediated activation of ATGL. Here, we show that this tryptophan-rich N-terminal peptide serves as an independent LD anchor, with its three tryptophans serving as focal points of the left (harboring Trp21 and Trp25) and right (harboring Trp29) anchor arms. The solution state NMR structure of a peptide comprising the LD anchor bound to dodecylphosphocholine micelles as LD mimic reveals that the left arm forms a concise hydrophobic core comprising tryptophans Trp21 and Trp25 and two adjacent leucines. Trp29 serves as the core of a functionally independent anchor arm. Consequently, simultaneous tryptophan alanine permutations in both arms abolish localization and activity of CGI-58 as opposed to tryptophan substitutions that occur in only one arm.  相似文献   

16.
Oligopeptidase A (OpdA) belongs to the M3A subfamily of bacterial peptidases with catalytic and structural properties similar to mammalian thimet-oligopeptidase (TOP) and neurolysin (NEL). The three enzymes have four conserved Tyr residues on a flexible loop in close proximity to the catalytic site. In OpdA, the flexible loop is formed by residues 600-614 (600SHIFAGGYAAGYYSY614). Modeling studies indicated that in OpdA the Tyr607 residue might be involved in the recognition of the substrate with a key role in catalysis. Two mutants were constructed replacing Tyr607 by Phe (Y607F) or Ala (Y607A) and the influence of the site-directed mutagenesis in the catalytic process was examined. The hydrolysis of Abz-GXSPFRQ-EDDnp derivatives (Abz = ortho-aminobenzoic acid; EDDnp N-[2,4-dinitrophenyl]-ethylenediamine; X = different amino acids) was studied to compare the activities of wild-type OpdA (OpdA WT) and those of Y607F and Y607A mutants The results indicated that OpdA WT cleaved all the peptides only on the X-S bond whereas the Y607F and Y607A mutants were able to hydrolyze both the X-S and the P-F bonds. The kinetic parameters showed the importance of Tyr607 in OpdA catalytic activity as its substitution promoted a decrease in the kcat/Km value of about 100-fold with Y607F mutant and 1000-fold with Y607A. Both mutations, however, did not affect protein folding as indicated by CD and intrinsic fluorescence analysis. Our results indicate that the OpdA Tyr607 residue plays an important role in the enzyme-substrate interaction and in the hydrolytic activity.  相似文献   

17.
The binding and biological activities of neurotensin and two analogues, [Trp11]-neurotensin and xenopsin, in which a tryptophan replaces the neurotensin residue Tyr11, were compared in rat and guinea-pig. The binding activity of the three peptides was measured as their ability to inhibit the binding of [3H]neurotensin to rat and guinea-pig brain synaptic membranes. Their biological activities were measured as their effects on the contractility of rat and guinea-pig ileal smooth muscle preparations. In binding as well as biological assays, it was found that [Trp11]-neurotensin and xenopsin were as potent as neurotensin in the rat. In contrast, the two analogues were about 10 times less potent than neurotensin in the guinea-pig. These findings reveal differences between rat and guinea-pig neurotensin receptors. Such species-related differences in neurotensin receptors should be considered when comparing the activity of neurotensin analogues in assays using tissue preparations from various animal species.  相似文献   

18.
Selenocysteine (Sec) is translationally incorporated into proteins in response to the UGA codon. The tRNA specific to Sec (tRNASec) is first ligated with serine by seryl-tRNA synthetase (SerRS). In the present study, we determined the 3.1 Å crystal structure of the tRNASec from the bacterium Aquifex aeolicus, in complex with the heterologous SerRS from the archaeon Methanopyrus kandleri. The bacterial tRNASec assumes the L-shaped structure, from which the long extra arm protrudes. Although the D-arm conformation and the extra-arm orientation are similar to those of eukaryal/archaeal tRNASecs, A. aeolicus tRNASec has unique base triples, G14:C21:U8 and C15:G20a:G48, which occupy the positions corresponding to the U8:A14 and R15:Y48 tertiary base pairs of canonical tRNAs. Methanopyrus kandleri SerRS exhibited serine ligation activity toward A. aeolicus tRNASec in vitro. The SerRS N-terminal domain interacts with the extra-arm stem and the outer corner of tRNASec. Similar interactions exist in the reported tRNASer and SerRS complex structure from the bacterium Thermus thermophilus. Although the catalytic C-terminal domain of M. kandleri SerRS lacks interactions with A. aeolicus tRNASec in the present complex structure, the conformational flexibility of SerRS is likely to allow the CCA terminal region of tRNASec to enter the SerRS catalytic site.  相似文献   

19.
Mishra S  Meuwly M 《Biophysical journal》2010,99(12):3969-3978
In this work we use transition network analysis for the first time to investigate ligand migration in truncated hemoglobin (trHbN) and obtain kinetic information about the docking-site dynamics in the protein. A comparison with explicit water molecular dynamics simulations (100 ns in total) shows that the rate constants derived from the network analysis are realistic. The transition network analysis provides 1) The time-resolved connectivity network in the protein; 2) The half-lives of the docking sites; 3) The transition timescales between two given docking sites; and 4) The extent of population transfer among different docking sites of the protein as a function of lag time. We investigate the role of the Tyr33 and Gln58 residues in ligand migration by studying ligand migration in four mutants of trHbN. The mutation study suggests that residues Tyr33 and Gln58 stabilize the NO ligand in the Xe2 docking site of trHbN, thus facilitating the efficiency of the NO detoxification reaction.  相似文献   

20.
The conformational behavior of the biologically active [Trp4,Met5]-enkephalin was elucidated by evaluation of intramolecular energy transfer between Tyr1 and Trp4. Identical transfer efficiencies and tyrosine fluorescence quantum yields were observed in aqueous solution at pH 1.5 and 5.5 and the use of these parameters in Förster's equation resulted in the same average Tyr-Trp separation (9.3 Å) under these two conditions. The invariability of these sensitive parameters indicates the existence of very similar types of a folded conformation in the cationic and zwitterionic form of the analog at low concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号