首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 284 毫秒
1.
异柠檬酸脱氢酶-1(Isocitrate dehydrogenase-1,IDH1)突变是脑胶质瘤中基因突变所导致的代谢物生成异常,突变型胶质瘤与普通型胶质瘤具有不同的分子生物学特征,并常与患者良好预后相关。MGMT(O6-methylguanine-DNA methyltransferase)启动子甲基化能够降低胶质瘤中DNA修复蛋白MGMT的表达,提高患者对化疗药物烷化剂治疗的敏感性。IDH1突变和MGMT启动子甲基化在胶质瘤的生长过程中存在关联,二者的联合检测对胶质瘤的预后及治疗方式具有一定的提示作用,在胶质瘤的分子病理学诊断方面具有很大的应用前景。目前IDH1突变和MGMT启动子甲基化的检测已逐渐应用于临床,但其诊断方式及治疗指导意义有待进一步研究探讨。本文就IDH1基因突变及MGMT启动子甲基化在胶质瘤诊断及治疗方面的研究进展进行综述。  相似文献   

2.
Isocitrate dehydrogenase 1 (IDH1), one member of the IDH family can convert isocitrate to α-ketoglutarate (α-KG) via oxidative decarboxylation. IDH1 and IDH2 mutations have been identified in multiple tumor types and the mutations confer neomorphic activity in the mutant protein, resulting in the conversion of α-KG to the oncometabolite, D-2-hydroxyglutarate (2-HG). The subsequent accumulation of 2-HG results in epigenetic dysregulation via inhibition of α-KG-dependent histone and DNA demethylase. And the glutamate levels are reduced in IDH mutant cells compared to wild-type. We have known that diffuse gliomas contain a high frequency of mutations in the IDH1 gene. However, the expression of IDH1 and its roles in Intracranial hemorrhage (ICH) remain largely unknown. We observed increased expression of IDH1 in neurons after intracerebral hemorrhage. Up-regulation of IDH1 was found to be accompanied by the increased expression of active caspase-3 and pro-apoptotic Bcl-2-associated X protein and decreased expression of anti-apoptotic protein B cell lymphoma-2 in vivo and vitro studies. So we hypothesized that IDH1 was involved in the regulation of neuronal apoptosis. The present research for the first time detected the expression and variation of IDH1 surrounding the hematoma, and all data proved the involvement of IDH1 in neuronal apoptosis following ICH.  相似文献   

3.

Background

Over 70% of low-grade gliomas carry a heterozygous R132H mutation in the gene coding for isocitrate dehydrogenase 1 (IDH1). This confers the enzyme with the novel ability to convert α-ketoglutarate to 2-hydroxyglutarate, ultimately leading to tumorigenesis. The major source of 2-hydroxyglutarate production is glutamine, which, in cancer, is also a source for tricarboxylic acid cycle (TCA) anaplerosis. An alternate source of anaplerosis is pyruvate flux via pyruvate carboxylase (PC), which is a common pathway in normal astrocytes. The goal of this study was to determine whether PC serves as a source of TCA anaplerosis in IDH1 mutant cells wherein glutamine is used for 2-hydroxyglutarate production.

Methods

Immortalized normal human astrocytes engineered to express heterozygous mutant IDH1 or wild-type IDH1 were investigated. Flux of pyruvate via PC and via pyruvate dehydrogenase (PDH) was determined by using magnetic resonance spectroscopy to probe the labeling of [2-13C]glucose-derived 13C-labeled glutamate and glutamine. Activity assays, RT-PCR and western blotting were used to probe the expression and activity of relevant enzymes. The Cancer Genome Atlas (TCGA) data was analyzed to assess the expression of enzymes in human glioma samples.

Results

Compared to wild-type cells, mutant IDH1 cells significantly increased fractional flux through PC. This was associated with a significant increase in PC activity and expression. Concurrently, PDH activity significantly decreased, likely mediated by significantly increased inhibitory PDH phosphorylation by PDH kinase 3. Consistent with the observation in cells, analysis of TCGA data indicated a significant increase in PC expression in mutant IDH-expressing human glioma samples compared to wild-type IDH.

Conclusions

Our findings suggest that changes in PC and PDH may be an important part of cellular adaptation to the IDH1 mutation and may serve as potential therapeutic targets.  相似文献   

4.
Tumor-associated mutations in the isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) genes result in the loss of normal catalytic activity, the production of α-ketoglutarate (α-KG), and gain of a new activity, the production of an oncometabolite, R-2-hydroxylglutarate (R-2-HG). New evidence supports previous findings that R-2-HG acts as an antagonist of α-KG to competitively inhibit the activity of multiple α-KG-dependent dioxygenases, including both histones and DNA demethylases involved in epigenetic control of gene expression and cell differentiation, and also reveals an intriguing new facet of R-2-HG in tumorigenesis.The NADP+-dependent isocitrate dehydrogenase IDH1 and IDH2 catalyze the oxidative decarboxylation of isocitrate to α-ketoglutarate (α-KG). IDH1 and IDH2 are localized in the cytoplasm and mitochondria, respectively, and represent by far the most frequently mutated metabolic enzymes in human cancer1. The tumor-derived mutants of both IDH1 and IDH2 lose their activity in producing α-KG2,3, and gain a surprising new catalytic activity, the production of R-2-hydroxyglutarate (R-2-HG) by reduction of α-KG4. Previous studies have shown that R-2-HG acts as an antagonist of α-KG to competitively inhibit a number of α-KG-dependent dioxygenases, including the JmjC domain-containing histone demethylases (KDMs) and the TET (ten-eleven translocation) family of DNA hydroxylases that catalyze the sequential oxidation of 5-methlycytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC), leading to eventual DNA demethylation (Figure 1)5,6. Three papers recently published in Nature provide additional evidence that α-KG-dependent dioxygenases are the pathophysiological targets of mutant IDH1/2, and further underscore the presumptive role of R-2-HG as the first oncometabolite in contributing to tumorigenesis after IDH1/2 mutations.Open in a separate windowFigure 1Summarization of reported mechanisms linking IDH mutation to tumorigensis. Regulation of α-KG-dependent dioxygenases by R-2-HG is likely to play a major role in the pathophysiology of tumors with IDH mutation.A subset of glioblastoma, known as the proneural subgroup, has previously found to display hypermethylation at a large number of loci and is enriched with IDH1 mutations7. In one of the three Nature papers, Turcan et al.8 determined whether IDH1 mutation alone is sufficient to cause the hypermethylation phenotype by ectopic expression of IDH1R132H mutant in immortalized primary human astrocytes, a cell type from which glioblastoma is believed to develop. The authors found that introduction of mutant IDH1 induced extensive DNA hypermethylation, altered the methylation of specific histones, and reshaped the methylome in a fashion that mirrors the changes observed in IDH1-mutated low-grade gliomas. The observed hypermethylation of DNA and histones can be explained by the direct inhibition of TET methylcytosine hydroxylases and JmjC family histone demethylases by R-2-HG, respectively. In keeping with the notion that TET hydroxylases directly regulate genomic DNA methylation levels and can be inhibited by the R-2-HG accumulated in IDH1/2-mutated cells, Turcan et al. also showed that ectopic expression of TET2 in cultured astrocytes decreased 5mC and increased 5hmC, and that both changes were inhibited by the co-expression of TET2 with mutant IDH1. These results are consistent with the findings made in acute myeloid leukemia (AML) in which IDH1/2 and TET2 genes are mutated in a mutually exclusive manner9. Moreover, Turcan et al. found that expression of wild-type IDH1 decreased the average DNA methylation level in the genome, supporting the notion that the concentration of α-KG may be a rate-limiting factor of TET-catalyzed DNA demethylation5.In the second paper, Lu et al.10 reported that ectopic expression of tumor-derived mutant IDH1/2 or feeding cells with cell-permeable R-2-HG increases histone demethylation and results in blockade of the differentiation of 3T3-L1 adipoblasts to adipocytes. These results indicate that mutation of IDH1/2 and accumulation of R-2-HG can broadly impair cell differentiation beyond the cell types in which IDH1/2 mutations are found to associate with tumorigenesis. The authors further confirmed that IDH1-mutated gliomas have elevated levels of histone methylation compared with gliomas retaining the wild-type IDH15,6. As previously reported5,6, multiple KDMs that are inhibited by 2-HG, including KDM4C/JMJD2C, which causes repressive histone H3K9 di- and trimethylation and, when suppressed by RNA interference, blocks the 3T3-L1 adipogenesis. It remains to be determined whether collective inhibition of multiple KDMs or a few individual ones, such as KDM4C, is responsible for altering cell differentiation in IDH1/2-mutated cells. The authors also noted that expression of mutant IDH1 increased histone methylation prior to the increase of DNA methylation, raising an intriguing possibility that histone methylation status may affect DNA methylation.In the third paper, Koivunen et al.11 proposed an enantiomer-specific mechanism of 2-HG in tumorigenesis. The authors reported two surprising findings. They showed first that immortalized human astrocytes stably expressing tumor-derived IDH1R132H mutant proliferate faster during late passages than those expressing either wild-type IDH1 or IDH1R132H/3DN mutant that lacks 2-HG-producing activity. Ectopic expression of R132H mutant IDH1 has previously been reported to decrease the growth of D54 glioblastoma cells12, raising an intriguing possibility that the mutation of IDH1/2 may exhibit different effects on cell growth in a cell context-dependent manner. More surprisingly, they found that R-2-HG, but not its enantiomer S-2-HG, substitutes for α-KG as a co-substrate, as opposed to an inhibitor, of EGLN, an α-KG-dependent prolylhydroxylase responsible for promoting the degradation of hypoxia inducible factor 1α (HIF-1α) (Figure 1). As the result of stimulating EGLN, accumulation of R-2-HG was found to associate with diminished, instead of increased, HIF-1α levels in cells expressing mutant IDH1/2. At first glance, these observations appear to be at odds with the generally accepted role of both enantiomers of 2-HG as inhibitors of α-KG-dependent dioxygenases, and HIF-1α as an oncogene in tumorigenesis, but may at least in part explain the apparent selection for IDH mutations to produce R-, but not S-2-HG in cancer. This data, also for the first time, reveals a qualitatively different property of two 2-HG enantiomers with respect to α-KG-dependent dioxygenases. It will be interesting to determine the strutural basis of this enantimoer-specific effect of 2-HG toward different α-KG-dependent dixoygenases. The observation that ectopic increase of R-2-HG reduces HIF-1α suggests that endogenous α-KG is limiting for HIF-1α hydroxylation by EGLN. The study by Koivunen et al. also suggests the complexity of EGLN regulation by R-2-HG and subsequent downregulation of HIF-1α. It remains to be determined genetically whether a reduction or fluctuation of HIF-1α levels contributes to gliomagenesis in IDH1/2-mutated cells, because elevated HIF-1α generally contributes to cancer development. The only piece of genetic evidece—IDH1/2 mutation occurs in a mutually exclusive manner with TET2 mutation in AML—supports the notion that epigenetic alteration plays a direct and perhaps a key role in IDH1/2 mutation-associated tumorigenesis.IDH1/2 mutation has rapidly emerged as a favorable diagnostic and prognostic marker for certain tumors, such as low-grade gliomas and benign cartilaginous tumors. While the full mechanism linking IDH mutation to tumorigenesis is incompletely understood, regulation of α-KG-dependent dioxygenases by 2-HG is likely to play a major role in the pathophysiology of tumors with IDH mutation. These recent reports also highlight the impact of altered metabolism and metabolites on the epigenetic modification of cell differentiation and tumorigenesis.  相似文献   

5.
6.
BackgroundMutations in isocitrate dehydrogenase (IDH) 1 have been reported in over 70% of low-grade gliomas and secondary glioblastomas. IDH1 is the enzyme that catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate while mutant IDH1 catalyzes the conversion of α-ketoglutarate into 2-hydroxyglutarate. These mutations are associated with the accumulation of 2-hydroxyglutarate within the tumor and are believed to be one of the earliest events in the development of low-grade gliomas. The goal of this work was to determine whether the IDH1 mutation leads to additional magnetic resonance spectroscopy (MRS)–detectable changes in the cellular metabolome.MethodsTwo genetically engineered cell models were investigated, a U87-based model and an E6/E7/hTERT immortalized normal human astrocyte (NHA)-based model. For both models, wild-type IDH1 cells were generated by transduction with a lentiviral vector coding for the wild-type IDH1 gene while mutant IDH1 cells were generated by transduction with a lentiviral vector coding for the R132H IDH1 mutant gene. Metabolites were extracted from the cells using the dual-phase extraction method and analyzed by 1H-MRS. Principal Component Analysis was used to analyze the MRS data.ResultsPrincipal Component Analysis clearly discriminated between wild-type and mutant IDH1 cells. Analysis of the loading plots revealed significant metabolic changes associated with the IDH1 mutation. Specifically, a significant drop in the concentration of glutamate, lactate and phosphocholine as well as the expected elevation in 2-hydroxyglutarate were observed in mutant IDH1 cells when compared to their wild-type counterparts.ConclusionThe IDH1 mutation leads to several, potentially translatable MRS-detectable metabolic changes beyond the production of 2-hydroxyglutarate.  相似文献   

7.

Background

Isocitrate dehydrogenase isoforms 1 and 2 (IDH1 and IDH2) mutations have received considerable attention since the discovery of their relation with human gliomas. The predictive value of IDH1 and IDH2 mutations in gliomas remains controversial. Here, we present the results of a meta-analysis of the associations between IDH mutations and both progression-free survival (PFS) and overall survival (OS) in gliomas. The interrelationship between the IDH mutations and MGMT promoter hypermethylation, EGFR amplification, codeletion of chromosomes 1p/19q and TP53 gene mutation were also revealed.

Methodology and Principal Findings

An electronic literature search of public databases (PubMed, Embase databases) was performed. In total, 10 articles, including 12 studies in English, with 2,190 total cases were included in the meta-analysis. The IDH mutations were frequent in WHO grade II and III glioma (59.5%) and secondary glioblastomas (63.4%) and were less frequent in primary glioblastomas (7.13%). Our study provides evidence that IDH mutations are tightly associated with MGMT promoter hypermethylation (P<0.001), 1p/19q codeletion (P<0.001) and TP53 gene mutation (P<0.001) but are mutually exclusive with EGFR amplification (P<0.001). This meta-analysis showed that the combined hazard ratio (HR) estimate for overall survival and progression-free survival in patients with IDH mutations was 0.33 (95% CI: 0.25–0.42) and 0.38 (95% CI: 0.21–0.68), compared with glioma patients whose tumours harboured the wild-type IDH. Subgroup analyses based on tumour grade also revealed that the presence of IDH mutations was associated with a better outcome.

Conclusion

Our study suggests that IDH mutations, which are closely linked to the genomic profile of gliomas, are potential prognostic biomarkers for gliomas.  相似文献   

8.
Recurrence and progression to higher grade lesions are characteristic behaviorsof gliomas. Though IDH1 mutation frequently occurs and is considered as an early event in gliomagenesis, little is known about its role in the recurrence and progression of gliomas. We therefore analysed IDH1 and IDH2 statusat codon 132 of IDH1 and codon 172 of IDH2 by direct sequencing and anti-IDH1-R132H immunohistochemistry in 53 paired samples and their recurrences, including 29 low- grade gliomas, 16 anaplastic gliomas and 8 Glioblastomas. IDH1/IDH2 mutation was detected in 32 primarytumors, with 25 low- grade gliomas and 6 anaplastic gliomas harboring IDH1 mutation and 1 low- grade glioma harboring IDH2 mutation. All of the paired tumors showed consistent IDH1 and IDH2 status. Patients were analyzed according to IDH1 status and tumor-related factors. Malignant progression at recurrence was noted in 22 gliomas and was not associated with IDH1 mutation. Survival analysis revealed patients with IDH1 mutated gliomas had a significantly longer progression-free survival (PFS) and overall survival (OS). In conclusion, this study demonstrated a strong tendency of IDH1/IDH2 status being consistent during progression of glioma. IDH1 mutation was not a predictive marker for malignant progression and it was a potential prognostic marker for gliomas of Chinese patients.  相似文献   

9.
Genetic subgrouping of gliomas has been emphasized recently, particularly after the finding of isocitrate dehydrogenase 1 (IDH1) mutations. In a previous study, we investigated whole-chromosome copy number aberrations (CNAs) of gliomas and have described genetic subgrouping based on CNAs and IDH1 mutations. Subsequently, we classified gliomas using simple polymerase chain reaction (PCR)-based methods to improve the availability of genetic subgrouping. We selected IDH1/2 and TP53 as markers and analyzed 237 adult supratentorial gliomas using Sanger sequencing. Using these markers, we classified gliomas into three subgroups that were strongly associated with patient prognoses. These included IDH mutant gliomas without TP53 mutations, IDH mutant gliomas with TP53 mutations, and IDH wild-type gliomas. IDH mutant gliomas without TP53 mutations, which mostly corresponded to gliomas carrying 1p19q co-deletions, showed lower recurrence rates than the other 2 groups. In the other high-recurrence groups, the median progression-free survival (PFS) and overall survival (OS) of patients with IDH mutant gliomas with TP53 mutations were significantly longer than those of patients with IDH wild-type gliomas. Notably, most IDH mutant gliomas with TP53 mutations had at least one of the CNAs +7q, +8q, −9p, and −11p. Moreover, IDH mutant gliomas with at least one of these CNAs had a significantly worse prognosis than did other IDH mutant gliomas. PCR-based mutation analyses of IDH and TP53 were sufficient for simple genetic diagnosis of glioma that were strongly associated with prognosis of patients and enabled us to detect negative CNAs in IDH mutant gliomas.  相似文献   

10.
This study aims to establish the best and simplified panel of molecular markers for prognostic stratification of glioblastomas (GBMs). One hundred fourteen cases of GBMs were studied for IDH1, TP53, and TERT mutation by Sanger sequencing; EGFR and PDGFRA amplification by fluorescence in situ hybridization; NF1expression by quantitative real time polymerase chain reaction (qRT-PCR); and MGMT promoter methylation by methylation-specific PCR. IDH1 mutant cases had significantly longer progression-free survival (PFS) and overall survival (OS) as compared to IDH1 wild-type cases. Combinatorial assessment of MGMT and TERT emerged as independent prognostic markers, especially in the IDH1 wild-type GBMs. Thus, within the IDH1 wild-type group, cases with only MGMT methylation (group 1) had the best outcome (median PFS: 83.3 weeks; OS: not reached), whereas GBMs with only TERT mutation (group 3) had the worst outcome (PFS: 19.7 weeks; OS: 32.8 weeks). Cases with both or none of these alterations (group 2) had intermediate prognosis (PFS: 47.6 weeks; OS: 89.2 weeks). Majority of the IDH1 mutant GBMs belonged to group 1 (75%), whereas only 18.7% and 6.2% showed group 2 and 3 signatures, respectively. Interestingly, none of the other genetic alterations were significantly associated with survival in IDH1 mutant or wild-type GBMs.Based on above findings, we recommend assessment of three markers, viz., IDH1, MGMT, and TERT, for GBM prognostication in routine practice. We show for the first time that IDH1 wild-type GBMs which constitute majority of the GBMs can be effectively stratified into three distinct prognostic subgroups based on MGMT and TERT status, irrespective of other genetic alterations.  相似文献   

11.
《Translational oncology》2020,13(10):100819
BackgroundMalignant gliomas have disproportionally high morbidity and mortality. Heterozygous mutations in the isocitrate dehydrogenase 1 (IDH1) gene are most common in glioma, resulting in predominantly arginine to histidine substitution at codon 132. Because IDH1R132H requires a wild-type allele to produce (D)-2-hydroxyglutarate for epigenetic reprogramming, loss of IDH1R132H heterozygosity is associated with glioma progression in an IDH1-wildtype-like phenotype. Although previous studies have reported that transgenic IDH1R132H induces the expression of nestin—a neural stem-cell marker, the underlying mechanism remains unclear. Furthermore, this finding seems at odds with better outcome of IDH1R132H glioma because of a negative association of nestin with overall survival.MethodsGene expression was compared between IDH1R132H-hemizygous and IDH1R132H-heterozygous glioma cells under adherent and spheroid growth conditions. The results were validated for (D)-2-hydroxyglutarate responsiveness by pharmacologic agents, associations with DNA methylation by bioinformatic analysis, and associations with overall survival. Bisulfite DNA sequencing, chromatin immunoprecipitation, and pharmacological approach were used.FindingsNeural stem-cell marker genes, including CD44, NES, and PROM1, are generally downregulated in IDH-mutant gliomas and IDH1R132H-heterozygous spheroid growth compared respectively with IDH-wildtype gliomas and IDH1R132H-hemizygous spheroid growth, in agreement with their negative associations with patient outcome. In contrast, CD24 is specifically upregulated and apparently associated with better survival. CD24 and NES expression respond differentially to alteration of (D)-2-hydroxyglutarate levels. CD24 upregulation is associated with histone and DNA demethylation as opposed to hypermethylation in the downregulated genes.InterpretationThe better outcome of IDH-mutant glioma is orchestrated exquisitely through epigenetic reprogramming that directs bidirectional expression of neural stem-cell marker genes.  相似文献   

12.
Mutations in the metabolic enzyme isocitrate dehydrogenase 1 (IDH1) are commonly found in gliomas. AGI-5198, a potent and selective inhibitor of the mutant IDH1 enzyme, was radiolabeled with radioiodine and fluorine-18. These radiotracers were evaluated as potential probes for imaging mutant IDH1 expression in tumors with positron emission tomography (PET). Radioiodination of AGI-5198 was achieved using a tin precursor in 79?±?6% yield (n?=?9), and 18F-labeling was accomplished by the Ugi reaction in a decay-corrected radiochemical yield of 2.6?±?1.6% (n?=?5). The inhibitory potency of the analogous nonradioactive compounds against mutant IDH1 (IDH1-R132H) was determined in enzymatic assays. Cell uptake studies using radiolabeled AGI-5198 analogues revealed somewhat higher uptake in IDH1-mutated cells than that in wild-type IDH1 cells. The radiolabeled compounds displayed favorable tissue distribution characteristics in vivo, and good initial uptake in IDH1-mutated tumor xenografts; however, tumor uptake decreased with time. Radioiodinated AGI-5198 exhibited higher tumor-to-background ratios compared with 18F-labeled AGI-5198; unfortunately, similar results were observed in wild-type IDH1 tumor xenografts as well, indicating lack of selectivity for mutant IDH1 for this tracer. These results suggest that AGI-5198 analogues are not a promising platform for radiotracer development. Nonetheless, insights gained from this study may help in design and optimization of novel chemical scaffolds for developing radiotracers for imaging the mutant IDH1 enzyme.  相似文献   

13.
14.
《Genomics》2022,114(2):110289
Notch signalling pathway, particularly its ligand delta-ligand 3 (DLL3), is important in glioma, however, little is known about DLL3 regulation and prognostic effects. Immunohistochemistry on a cohort of 163 gliomas revealed DLL3 upregulation in IDH1 mutant gliomas, where it was associated with a favourable prognosis (HR[95% CI]: 0.28[0.09–0.87]; p = 0.021). We investigated the epigenetic regulation of DLL3, and identified individual CpG sites correlating with DLL3 mRNA expression, which were significant prognostic markers in LGG. In silico analysis revealed that infiltrating immune cells significantly correlated with DLL3 expression, methylation and somatic copy number alterations. The prognostic effects of DLL3 expression was significantly affected by infiltration of immune cells. RNA Sequencing of 83 LGGs and GO Term analysis of differentially expressed genes showed that low DLL3 expression was related to ciliogenesis, which was confirmed by TCGA LGG analysis. Thus, DLL3 may play an important role in the immune microenvironment and prognosis of LGGs.  相似文献   

15.
16.
Malignant gliomas are aggressive and highly invasive tumors. Various genetic and epigenetic changes are common for these tumors. Mostly they concern the genes involved in cell-cycle regulation, apoptotic pathways, cell invasion, angiogenesis, and cell metabolism. The role of epigenetic mechanisms in glioma malignant transformation, despite recent progress, is uncertain and remains under intense study. This review describes the mechanisms of epigenetic regulation of gene expression, including posttranslational modifications of histones, DNA methylation in promoter regions, and microRNA regulation. The genetic and epigenetic factors driving the pathogenesis of gliomas in their possible mutual influence and the potential epigenetic targets that can be used for diagnostics and new therapeutic approaches are also discussed.  相似文献   

17.
18.
《Translational oncology》2020,13(2):125-134
The isocitrate dehydrogenase (IDH1/2) mutations are frequent genetic abnormalities in the majority of WHO grade II/III glioma and secondary GBM. IDH1-mutated (IDH1Mut) glioma exhibits distinctive patterns in cancer biology and metabolism. In the present study, we showed that bone morphogenetic proteins (BMP4) are significantly upregulated in IDH1Mut glioma. Further, we demonstrated that cancer-associated BMP4 is secreted to tumor microenvironment, which enhances the tumor migration and invasion through an autocrine manner. Mechanistically, BMP4 activates its receptor and concomitant SMAD1/5/8 signaling, which potentiates Wnt/β-catenin signaling by enhancing Frizzled receptor expression. LDN-193189, a selective BMP receptor inhibitor, prolonged the overall survival of mice bearing IDH1-mutated intracranial xenografts by limiting BMP/catenin signaling. These findings demonstrate the pivotal role of BMP4 on tumor aggressiveness in IDH1Mut gliomas, suggesting a possible therapeutic strategy for this type of malignancy.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号