首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rap1b is activated by platelet agonists and plays a critical role in integrin α(IIb)β(3) inside-out signaling and platelet aggregation. Here we show that agonist-induced Rap1b activation plays an important role in stimulating secretion of platelet granules. We also show that α(IIb)β(3) outside-in signaling can activate Rap1b, and integrin outside-in signaling-mediated Rap1b activation is important in facilitating platelet spreading on fibrinogen and clot retraction. Rap1b-deficient platelets had diminished ATP secretion and P-selectin expression induced by thrombin or collagen. Importantly, addition of low doses of ADP and/or fibrinogen restored aggregation of Rap1b-deficient platelets. Furthermore, we found that Rap1b was activated by platelet spreading on immobilized fibrinogen, a process that was not affected by P2Y(12) or TXA(2) receptor deficiency, but was inhibited by the selective Src inhibitor PP2, the PKC inhibitor Ro-31-8220, or the calcium chelator demethyl-1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis. Clot retraction was abolished, and platelet spreading on fibrinogen was diminished in Rap1b-deficient platelets compared with wild-type controls. The defects in clot retraction and spreading on fibrinogen of Rap1b-deficient platelets were not rescued by addition of MnCl(2), which elicits α(IIb)β(3) outside-in signaling in the absence of inside-out signaling. Thus, our results reveal two different activation mechanisms of Rap1b as well as novel functions of Rap1b in platelet secretion and in integrin α(IIb)β(3) outside-in signaling.  相似文献   

2.
Snaclecs are small non-enzymatic proteins present in viper venoms reported to modulate hemostasis of victims through effects on platelets, vascular endothelial, and smooth muscle cells. In this study, we have isolated and functionally characterized a snaclec that we named "rhinocetin" from the venom of West African gaboon viper, Bitis gabonica rhinoceros. Rhinocetin was shown to comprise α and β chains with the molecular masses of 13.5 and 13 kDa, respectively. Sequence and immunoblot analysis of rhinocetin confirmed this to be a novel snaclec. Rhinocetin inhibited collagen-stimulated activation of human platelets in a dose-dependent manner but displayed no inhibitory effects on glycoprotein VI (collagen receptor) selective agonist, CRP-XL-, ADP-, or thrombin-induced platelet activation. Rhinocetin antagonized the binding of monoclonal antibodies against the α2 subunit of integrin α2β1 to platelets and coimmunoprecipitation analysis confirmed integrin α2β1 as a target for this venom protein. Rhinocetin inhibited a range of collagen-induced platelet functions such as fibrinogen binding, calcium mobilization, granule secretion, aggregation, and thrombus formation. It also inhibited integrin α2β1-dependent functions of human endothelial cells. Together, our data suggest rhinocetin to be a modulator of integrin α2β1 function and thus may provide valuable insights into the role of this integrin in physiological and pathophysiological scenarios, including hemostasis, thrombosis, and envenomation.  相似文献   

3.
Talins and kindlins bind to the integrin β3 cytoplasmic tail and both are required for effective activation of integrin αIIbβ3 and resulting high-affinity ligand binding in platelets. However, binding of the talin head domain alone to β3 is sufficient to activate purified integrin αIIbβ3 in vitro. Since talin is localized to the cytoplasm of unstimulated platelets, its re-localization to the plasma membrane and to the integrin is required for activation. Here we explored the mechanism whereby kindlins function as integrin co-activators. To test whether kindlins regulate talin recruitment to plasma membranes and to αIIbβ3, full-length talin and kindlin recruitment to β3 was studied using a reconstructed CHO cell model system that recapitulates agonist-induced αIIbβ3 activation. Over-expression of kindlin-2, the endogenous kindlin isoform in CHO cells, promoted PAR1-mediated and talin-dependent ligand binding. In contrast, shRNA knockdown of kindlin-2 inhibited ligand binding. However, depletion of kindlin-2 by shRNA did not affect talin recruitment to the plasma membrane, as assessed by sub-cellular fractionation, and neither over-expression of kindlins nor depletion of kindlin-2 affected talin interaction with αIIbβ3 in living cells, as monitored by bimolecular fluorescence complementation. Furthermore, talin failed to promote kindlin-2 association with αIIbβ3 in CHO cells. In addition, purified talin and kindlin-3, the kindlin isoform expressed in platelets, failed to promote each other's binding to the β3 cytoplasmic tail in vitro. Thus, kindlins do not promote initial talin recruitment to αIIbβ3, suggesting that they co-activate integrin through a mechanism independent of recruitment.  相似文献   

4.
HNG, a highly potent mutant of the anti‐Alzheimer peptide‐humanin, has been shown to protect against ischaemia‐reperfusion (I/R) injury. However, the underlying mechanism related to platelet activation remains unknown. We proposed that HNG has an effect on platelet function and thrombus formation. In this study, platelet aggregation, granule secretion, clot retraction, integrin activation and adhesion under flow conditions were evaluated. In mice receiving HNG or saline, cremaster arterial thrombus formation induced by laser injury, tail bleeding time and blood loss were recorded. Platelet microtubule depolymerization was evaluated using immunofluorescence staining. Results showed that HNG inhibited platelet aggregation, P‐selectin expression, ATP release, and αIIbβ3 activation and adhesion under flow conditions. Mice receiving HNG had attenuated cremaster arterial thrombus formation, although the bleeding time was not prolonged. Moreover, HNG significantly inhibited microtubule depolymerization, enhanced tubulin acetylation in platelets stimulated by fibrinogen or microtubule depolymerization reagent, nocodazole, and inhibited AKT and ERK phosphorylation downstream of HDAC6 by collagen stimulation. Therefore, our results identified a novel role of HNG in platelet function and thrombus formation potentially through stabilizing platelet microtubules via tubulin acetylation. These findings suggest a potential benefit of HNG in the management of cardiovascular diseases.  相似文献   

5.
Cohen S  Braiman A  Shubinsky G  Isakov N 《FEBS letters》2011,585(20):3208-3215
Members of the protein kinase C (PKC) family of serine/threonine kinases have been implicated in several physiological processes regulating the activation response of platelets. They are involved in processes leading to granule secretion, integrin activation, platelet aggregation and spreading, and procoagulation. The protein kinase C θ (PKCθ) isoform, which was originally identified in T lymphocytes, is also expressed at relatively high levels in platelets, wherein it is involved in the regulation of hemostasis and thrombosis. Recent studies suggest a role for PKCθ in protease-activated receptor (PAR)-, glycoprotein VI (GPVI) receptor- and glycoprotein α(IIb)β(3) integrin receptor-linked signal transduction pathways. The present review focuses on the latest observations relevant to the role of PKCθ in platelet activation.  相似文献   

6.
Disturbances of blood flow play an important role in promoting platelet activation and arterial thrombus formation in stenosed, injured, atherosclerotic arteries. To date, glycoprotein Ib (GPIb) has been considered the primary platelet mechanosensory receptor, responding to increased shear with enhanced adhesive and signaling function. We demonstrate here that von Willebrand factor-GPIb interaction is inefficient at inducing platelet activation even when platelets are exposed to very high wall shear stresses (60 dyn/cm(2)). Rapid platelet activation under flow was only observed under experimental conditions in which transiently adherent platelets were exposed to sudden accelerations in blood flow. Platelet responsiveness to temporal shear gradients was integrin alpha(IIb)beta(3)-dependent and occurred only on a von Willebrand factor substrate, as platelets forming integrin alpha(IIb)beta(3) adhesive contacts with immobilized fibrinogen were unresponsive to sudden increases in shear. The calcium response induced by temporal shear gradients was distinct from previously identified integrin alpha(IIb)beta(3) calcium responses in terms of its transient nature, its requirement for platelet co-stimulation by the P2Y(1) purinergic ADP receptor, and its dependence on the influx of extracellular calcium. Our studies demonstrate a key role for temporal shear gradients in promoting platelet activation. Moreover, they define for the first time the involvement of P2Y receptors in integrin mechanotransduction.  相似文献   

7.
ICAM-4 (LW blood group glycoprotein) is an erythroid-specific membrane component that belongs to the family of intercellular adhesion molecules and interacts in vitro with different members of the integrin family, suggesting a potential role in adhesion or cell interaction events, including hemostasis and thrombosis. To evaluate the capacity of ICAM-4 to interact with platelets, we have immobilized red blood cells (RBCs), platelets, and ICAM-Fc fusion proteins to a plastic surface and analyzed their interaction in cell adhesion assays with RBCs and platelets from normal individuals and patients, as well as with cell transfectants expressing the alpha(IIb)beta(3) integrin. The platelet fibrinogen receptor alpha(IIb)beta(3) (platelet GPIIb-IIIa) in a high affinity state following GRGDSP peptide activation was identified for the first time as the receptor for RBC ICAM-4. The specificity of the interaction was demonstrated by showing that: (i) activated platelets adhered less efficiently to immobilized ICAM-4-negative than to ICAM-4-positive RBCs, (ii) monoclonal antibodies specific for the beta(3)-chain alone and for a complex-specific epitope of the alpha(IIb)beta(3) integrin, and specific for ICAM-4 to a lesser extent, inhibited platelet adhesion, whereas monoclonal antibodies to GPIb, CD36, and CD47 did not, (iii) activated platelets from two unrelated type-I glanzmann's thrombasthenia patients did not bind to coated ICAM-4. Further support to RBC-platelet interaction was provided by showing that dithiothreitol-activated alpha(IIb)beta(3)-Chinese hamster ovary transfectants strongly adhere to coated ICAM-4-Fc protein but not to ICAM-1-Fc and was inhibitable by specific antibodies. Deletion of individual Ig domains of ICAM-4 and inhibition by synthetic peptides showed that the alpha(IIb)beta(3) integrin binding site encompassed the first and second Ig domains and that the G65-V74 sequence of domain D1 might play a role in this interaction. Although normal RBCs are considered passively entrapped in fibrin polymers during thrombus, these studies identify ICAM-4 as the first RBC protein ligand of platelets that may have relevant physiological significance.  相似文献   

8.
A mutual relationship exists between metastasizing tumor cells and components of the coagulation cascade. The exact mechanisms as to how platelets influence blood-borne metastasis, however, remain poorly understood. Here, we used murine B16 melanoma cells to observe functional aspects of how platelets contribute to the process of hematogenous metastasis. We found that platelets interfere with a distinct step of the metastasis cascade, as they promote adhesion of melanoma cells to the endothelium in vitro under shear conditions. Constitutively active platelet receptor GPIIb/IIIa (integrin αIIbβ3) expressed on Chinese hamster ovary cells promoted melanoma cell adhesion in the presence of fibrinogen, whereas blocking antibodies to aνβ3 integrin on melanoma cells or to GPIIb/IIIa significantly reduced melanoma cell adhesion to platelets. Furthermore, using intravital microscopy, we observed functional platelet-melanoma cell interactions, as platelet depletion resulted in significantly reduced melanoma cell adhesion to the injured vascular wall in vivo. Using a mouse model of hematogenous metastasis to the lung, we observed decreased metastasis of B16 melanoma cells to the lung by treatment with a mAb blocking the aν subunit of aνβ3 integrin. This effect was significantly reduced when platelets were depleted in vivo. Thus, the engagement of GPIIb/IIIa with aνβ3 integrin interaction mediates tumor cell-platelet interactions and highlights how this interaction is involved in hematogenous tumor metastasis.  相似文献   

9.
Platelet adhesion to fibrinogen is important for platelet aggregation and thrombus growth. In this study we have examined the mechanisms regulating platelet adhesion on immobilized fibrinogen under static and shear conditions. We demonstrate that integrin alpha IIb beta 3 engagement of immobilized fibrinogen is sufficient to induce an oscillatory calcium response, necessary for lamellipodial formation and platelet spreading. Released ADP increases the proportion of platelets exhibiting a cytosolic calcium response but is not essential for calcium signaling or lamellipodial extension. Pretreating platelets with the Src kinase inhibitor PP2, the inositol 1,4,5-trisphosphate (IP3) receptor antagonist 2-aminoethoxydiphenyl borate (APB-2), or the phospholipase C (PLC) inhibitor U73122 abolished calcium signaling and platelet spreading, suggesting a major role for Src kinase-regulated PLC isoforms in these processes. Analysis of PLC gamma 2-/- mouse platelets revealed a major role for this isoform in regulating cytosolic calcium flux and platelet spreading on fibrinogen. Under flow conditions, platelets derived from PLC gamma 2-/- mice formed less stable adhesive interactions with fibrinogen, particularly in the presence of ADP antagonists. Our studies define an important role for PLC gamma 2 in integrin alpha IIb beta 3-dependent calcium flux, necessary for stable platelet adhesion and spreading on fibrinogen. Furthermore, they establish an important cooperative signaling role for PLC gamma 2 and ADP in regulating platelet adhesion efficiency on fibrinogen.  相似文献   

10.
The inhibition of physiological activation pathways of the platelet adhesion receptor integrin αIIbβ3 may fail to prevent fatal thrombosis, suggesting that the receptor is at risk of activation by yet an unidentified pathway. Here, we report the discovery and characterization of a structural motif that safeguards the receptor by selectively destabilizing its inactive state. At the extracellular membrane border, an overpacked αIIb(W968)-β3(I693) contact prevents αIIb(Gly972) from optimally assembling the αIIbβ3 transmembrane complex, which maintains the inactive state. This destabilization of approximately 1.0 kcal/mol could be mitigated by hydrodynamic forces but not physiological agonists, thereby identifying hydrodynamic forces as pathological activation stimulus. As reproductive life spans are not generally limited by cardiovascular disease, it appears that the evolution of the safeguard was driven by fatal, hydrodynamic force-mediated integrin αIIbβ3 activation in the healthy cardiovascular system. The triggering of the safeguard solely by pathological stimuli achieves an effective increase of the free energy barrier between inactive and active receptor states without incurring an increased risk of bleeding. Thus, integrin αIIbβ3 has evolved an effective way to protect receptor functional states that indicates the availability of a mechanical activation pathway when hydrodynamic forces exceed physiological margins.  相似文献   

11.
Excessive accumulation of platelets at sites of athero-sclerotic plaque rupture leads to the development of arterial thrombi, precipitating clinical events such as the acute coronary syndromes and ischemic stroke. The major platelet adhesion receptor glycoprotein (GP) IIb-IIIa (integrin alpha(IIb)beta3) plays a central role in this process by promoting platelet aggregation and thrombus formation. We demonstrate here a novel mechanism down-regulating integrin alpha(IIb)beta3 adhesive function, involving platelet factor XIII (FXIII) and calpain, which serves to limit platelet aggregate formation and thrombus growth. This mechanism principally occurs in collagen-adherent platelets and is induced by prolonged elevations in cytosolic calcium, leading to dramatic changes in platelet morphology (membrane contraction, fragmentation, and microvesiculation) and a specific reduction in integrin alpha(IIb)beta3 adhesive function. Adhesion receptor signal transduction plays a major role in the process by sustaining cytosolic calcium flux necessary for calpain and FXIII activation. Analysis of thrombus formation on a type I fibrillar collagen substrate revealed an important role for FXIII and calpain in limiting platelet recruitment into developing aggregates, thereby leading to reduced thrombus formation. These studies define a previously unidentified role for platelet FXIII and calpain in regulating integrin alpha(IIb)beta3 adhesive function. Moreover, they demonstrate the existence of an autoregulatory feedback mechanism that serves to limit excessive platelet accumulation on highly reactive thrombogenic surfaces.  相似文献   

12.
After vessel injury, platelets adhere to the subendothelial matrix. Platelet adhesion leads to activation of the platelet integrin alpha(IIb)beta3, which then binds to fibrinogen, leading to platelet aggregation. It has been shown that a beta3-integrin binding protein, beta3-endonexin, can activate the integrin alpha(IIb)beta3 expressed in transfected CHO cells. Several isoforms of beta3-endonexin are known but it is not clear which isoforms are expressed in platelets and what role they may play during haemostasis. Here, we show that the long form of beta3-endonexin (EN-L) can be detected in platelet lysates several hours after thrombus formation, after long-term storage of platelets and after glucose deprivation. After subcellular fractionation, EN-L is found in the detergent insoluble fraction suggesting that it might be associated with the cytoskeleton. EN-L generation is temperature and Ca++ dependent and requires physiological salt concentrations. Proteolysis is responsible for the appearance of EN-L since a calpain inhibitor prevents its formation and the addition of calpain to platelet lysates induces its formation. The appearance of EN-L seems to be linked to apoptotic events occurring during long-term storage of platelets and, possibly, during late steps of haemostasis after thrombus formation.  相似文献   

13.
The novel RGD mimetics with phthalimidine central fragment were synthesized with the use of 4-piperidine-4-yl-butyric, 4-piperidine-4-yl-benzoic, 4-piperazine-4-yl-benzoic and 1,2,3,4-tetrahydroisoquinoline-7-carboxylic acids as surrogates of Arg motif. The synthesized compounds potently inhibited platelet aggregation in vitro and blocked FITC-Fg binding to α(IIb)β(3) integrin in a suspension of washed human platelets. The key α(IIb)β(3) protein-ligand interactions were determined in docking experiments.  相似文献   

14.
Platelet activation at sites of vascular injury is essential for the arrest of bleeding; however, excessive platelet accumulation at regions of atherosclerotic plaque rupture can result in the development of arterial thrombi, precipitating diseases such as acute myocardial infarction and ischemic stroke. Rheological disturbances (high shear stress) have an important role in promoting arterial thrombosis by enhancing the adhesive and signaling function of platelet integrin alpha(IIb)beta(3) (GPIIb-IIIa). In this study we have defined a key role for the Type Ia phosphoinositide 3-kinase (PI3K) p110beta isoform in regulating the formation and stability of integrin alpha(IIb)beta(3) adhesion bonds, necessary for shear activation of platelets. Isoform-selective PI3K p110beta inhibitors have been developed which prevent formation of stable integrin alpha(IIb)beta(3) adhesion contacts, leading to defective platelet thrombus formation. In vivo, these inhibitors eliminate occlusive thrombus formation but do not prolong bleeding time. These studies define PI3K p110beta as an important new target for antithrombotic therapy.  相似文献   

15.
Integrin alpha(IIb)beta(3) activation is critical for platelet physiology and is controlled by signal transduction through kinases and phosphatases. Compared with kinases, a role for phosphatases in platelet integrin alpha(IIb)beta(3) signaling is less understood. We report that the catalytic subunit of protein phosphatase 2A (PP2Ac) associates constitutively with the integrin alpha(IIb)beta(3) in resting platelets and in human embryonal kidney 293 cells expressing alpha(IIb)beta(3). The membrane proximal KVGFFKR sequence within the cytoplasmic domain of integrin alpha(IIb) is sufficient to support a direct interaction with PP2Ac. Fibrinogen binding to alpha(IIb)beta(3) during platelet adhesion decreased integrin-associated PP2A activity and increased the phosphorylation of a PP2A substrate, vasodilator associated phosphoprotein. Overexpression of PP2Ac(alpha) in 293 cells decreased alpha(IIb)beta(3)-mediated adhesion to immobilized fibrinogen. Conversely, small interference RNA mediated knockdown of endogenous PP2Ac(alpha) expression in 293 cells, enhanced extracellular signal-regulated kinase (ERK1/2) and p38 activation, and accelerated alpha(IIb)beta(3) adhesion to fibrinogen and von Willebrand factor. Inhibition of ERK1/2, but not p38 activation, abolished the increased adhesiveness of PP2Ac (alpha)-depleted 293 cells to fibrinogen. Furthermore, knockdown of PP2A(calpha) expression in bone marrow-derived murine megakaryocytes increased soluble fibrinogen binding induced by protease-activated receptor 4-activating peptide. These studies demonstrate that PP2Ac (alpha) can negatively regulate integrin alpha(IIb)beta(3) signaling by suppressing the ERK1/2 signaling pathway.  相似文献   

16.
During platelet activation, fibrinogen binds to its specific platelet receptor, integrin αIIbβ3, thus completing the final common pathway for platelet aggregation. Norcantharidin (NCTD) is a promising anticancer agent in China from medicinal insect blister beetle. In this study, we provided the evidence to demonstrate NCTD (0.1–1.0 μM) possesses very powerful antiplatelet activity in human platelets; nevertheless, it had no effects on surface P‐selectin expression and only slight inhibition on ATP‐release reaction in activated platelets. Moreover, NCTD markedly hindered integrin αIIbβ3 activation by interfering with the binding of FITC‐labelled PAC‐1. It also markedly reduced the number of adherent platelets and the single platelet spreading area on immobilized fibrinogen as well as clot retraction. Additionally, NCTD attenuated phosphorylation of proteins such as integrin β3, Src and FAK in platelets spreading on immobilized fibrinogen. These results indicate that NCTD restricts integrin αIIbβ3‐mediated outside‐in signalling in human platelets. Besides, NCTD substantially prolonged the closure time in human whole blood and increased the occlusion time of thrombotic platelet plug formation and prolonged the bleeding time in mice. In conclusion, NCTD has dual activities, it can be a chemotherapeutic agent for cancer treatment, and the other side it possesses powerful antiplatelet activity for treating thromboembolic disorders.  相似文献   

17.
《Cellular signalling》2014,26(9):2040-2050
Platelet activation and thrombus formation play a critical role in primary hemostasis but also represent a pathophysiological mechanism leading to acute thrombotic vascular occlusions. Besides, platelets modulate cellular processes including inflammation, angiogenesis and neurodegeneration. On the other hand, platelet activation and thrombus formation are altered in different diseases leading to either bleeding complications or pathological thrombus formation. For many years platelets have been considered to play a role in neuroinflammatory diseases such as Alzheimer's disease (AD). AD is characterized by deposits of amyloid-β (Aβ) and strongly related to vascular diseases with platelets playing a critical role in the progression of AD because exposure of platelets to Aβ induces platelet activation, platelet Aβ release, and enhanced platelet adhesion to collagen in vitro and at the injured carotid artery in vivo. However, the molecular mechanisms and the relation between vascular pathology and amyloid-β plaque formation in the pathogenesis of AD are not fully understood. Compelling evidence is suggestive for altered platelet activity in AD patients. Thus we analyzed platelet activation and thrombus formation in aged AD transgenic mice (APP23) known to develop amyloid-β deposits in the brain parenchyma and cerebral vessels. As a result, platelets are in a pre-activated state in blood of APP23 mice and showed strongly enhanced integrin activation, degranulation and spreading kinetics on fibrinogen surfaces upon stimulation. This enhanced platelet signaling translated into almost unlimited thrombus formation on collagen under flow conditions in vitro and accelerated vessel occlusion in vivo suggesting that these mice are at high risk of arterial thrombosis leading to cerebrovascular and unexpectedly to cardiovascular complications that might be also relevant in AD patients.  相似文献   

18.
Hemostasis and thrombosis (blood clotting) involve fibrinogen binding to integrin alpha(IIb)beta(3) on platelets, resulting in platelet aggregation. alpha(v)beta(3) binds fibrinogen via an Arg-Asp-Gly (RGD) motif in fibrinogen's alpha subunit. alpha(IIb)beta(3) also binds to fibrinogen; however, it does so via an unstructured RGD-lacking C-terminal region of the gamma subunit (gammaC peptide). These distinct modes of fibrinogen binding enable alpha(IIb)beta(3) and alpha(v)beta(3) to function cooperatively in hemostasis. In this study, crystal structures reveal the integrin alpha(IIb)beta(3)-gammaC peptide interface, and, for comparison, integrin alpha(IIb)beta(3) bound to a lamprey gammaC primordial RGD motif. Compared with RGD, the GAKQAGDV motif in gammaC adopts a different backbone configuration and binds over a more extended region. The integrin metal ion-dependent adhesion site (MIDAS) Mg(2+) ion binds the gammaC Asp side chain. The adjacent to MIDAS (ADMIDAS) Ca(2+) ion binds the gammaC C terminus, revealing a contribution for ADMIDAS in ligand binding. Structural data from this natively disordered gammaC peptide enhances our understanding of the involvement of gammaC peptide and integrin alpha(IIb)beta(3) in hemostasis and thrombosis.  相似文献   

19.
The small GTPase RhoA modulates the adhesive nature of many cell types; however, despite high levels of expression in platelets, there is currently limited evidence for an important role for this small GTPase in regulating platelet adhesion processes. In this study, we have examined the role of RhoA in regulating the adhesive function of the major platelet integrin, alpha(IIb)beta(3). Our studies demonstrate that activation of RhoA occurs as a general feature of platelet activation in response to soluble agonists (thrombin, ADP, collagen), immobilized matrices (von Willebrand factor (vWf), fibrinogen) and high shear stress. Blocking the ligand binding function of integrin alpha(IIb)beta(3), by pretreating platelets with c7E3 Fab, demonstrated the existence of integrin alpha(IIb)beta(3)-dependent and -independent mechanisms regulating RhoA activation. Inhibition of RhoA (C3 exoenzyme) or its downstream effector Rho kinase had no effect on integrin alpha(IIb)beta(3) activation induced by soluble agonists or adhesive substrates, however, both inhibitors reduced shear-dependent platelet adhesion on immobilized vWf and shear-induced platelet aggregation in suspension. Detailed analysis of the sequential adhesive steps required for stable platelet adhesion on a vWf matrix under shear conditions revealed that RhoA did not regulate platelet tethering to vWf or the initial formation of integrin alpha(IIb)beta(3) adhesion contacts but played a major role in sustaining stable platelet-matrix interactions. These studies define a critical role for RhoA in regulating the stability of integrin alpha(IIb)beta(3) adhesion contacts under conditions of high shear stress.  相似文献   

20.
《MABS-AUSTIN》2013,5(6):1212-1220
Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder characterized by low platelet count and presence of IgG autoantibodies to platelet surface glycoproteins, such as αIIbβ3 and GPIb/IX. Our previous work has shown that platelets in ITP patients exist in an activated state. Two different marker-based approaches are used to study the course of platelet activation: (1) binding of PAC-1 antibody, signifying a change in αIIbβ3 conformation, and (2) expression of P-selectin, signifying alpha granule content release from platelets. Here, we describe the development of a new scFv antibody (R38) that, compared with PAC-1, appears to better distinguish between platelets of ITP patients and healthy controls. Notably, R38 was generated using commercially sourced resting-state integrin that was coated on a microtiter plate. Its ability to distinguish between ITP patients and healthy controls thus suggests that inadvertent integrin activation caused by coating involves a conformational change and exposure of a cryptic epitope. This report also describes for the first time the potential use of an scFv antibody in the immunodiagnosis of platelet activation in ITP patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号