首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fatty acid-binding proteins (FABPs) are members of a super family of lipid-binding proteins, and occur intracellularly in vertebrates and invertebrates. This review briefly addresses the structural and molecular properties of the fatty acid binding proteins, together with their potential physiological role. Special attention is paid to the methods used to study the binding characteristics of FABPs. An overview of the conventional (Lipidex, the ADIFAB and ITC) and innovative separation-based techniques (chromatographic and electrophoretic methods) for the study of ligand-protein interactions is presented along with a discussion of their strengths, weak points and potential applications. The best conventional approaches with natural fatty acids have generally revealed only limited information about the interactions of fatty acid proteins. In contrast, high-performance affinity chromatography (HPAC) studies of several proteins provide full information on the binding characteristics. The review uses, as an example, the application of immobilized liver basic FABP as a probe for the study of ligand-protein binding by high-performance affinity chromatography. The FABP from chicken liver has been immobilized on aminopropyl silica and the developed stationary phase was used to examine the enantioselective properties of this protein and to study the binding of drugs to FABP. In order to clarify the retention mechanism, competitive displacement studies were also carried out by adding short chain fatty acids to the mobile phase as displacing agents and preliminary quantitative structure-retention relationship (QSRRs) correlations were developed to describe the nature of the interactions between the chemical structures of the analytes and the observed chromatographic results.The results of these studies may shed light on the proposed roles of these proteins in biological systems and may find applications in medicine and medicinal chemistry. This knowledge will yield a deeper insight into the mechanism of fatty acid binding in order to indisputably show the central role played by FABPs in cellular FA transport and utilization for a proper lipid metabolism.  相似文献   

2.
Heatstroke is a devastating condition that is characterized by severe hyperthermia and central nervous system dysfunction. However, the mechanism of thermoregulatory center dysfunction of the hypothalamus in heatstroke is unclear. In this study, we established a heatstroke mouse model and a heat-stressed neuronal cellular model on the pheochromocytoma-12 (PC12) cell line. These models revealed that HS promoted obvious neuronal injury in the hypothalamus, with high pathological scores. In addition, PC12 cell apoptosis was evident by decreased cell viability, increased caspase-3 activity, and high apoptosis rates. Furthermore, 14 differentially expressed proteins in the hypothalamus were analyzed by fluorescence two-dimensional difference gel electrophoresis and identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Expression changes in hippocalcin (HPAC), a downregulated neuron-specific calcium-binding protein, were confirmed in the hypothalamus of the heatstroke mice and heat-stressed PC12 cells by immunochemistry and western blot. Moreover, HPAC overexpression and HPAC-targeted small interfering RNA experiments revealed that HPAC functioned as an antiapoptotic protein in heat-stressed PC12 cells and hypothalamic injury. Lastly, ulinastatin (UTI), a cell-protective drug that is clinically used to treat patients with heatstroke, was used in vitro and in vivo to confirm the role of HPAC; UTI inhibited heat stress (HS)-induced downregulation of HPAC expression, protected hypothalamic neurons and PC12 cells from HS-induced apoptosis and increased heat tolerance in the heatstroke animals. In summary, our study has uncovered and demonstrated the protective role of HPAC in heatstroke-induced hypothalamic injury in mice.  相似文献   

3.
Lipid membranes work as barriers, which leads to inevitable drug-membrane interactions in vivo. These interactions affect the pharmacokinetic properties of drugs, such as their diffusion, transport, distribution, and accumulation inside the membrane. Furthermore, these interactions also affect their pharmacodynamic properties with respect to both therapeutic and toxic effects. Experimental membrane models have been used to perform in vitro assessment of the effects of drugs on the biophysical properties of membranes by employing different experimental techniques. In in silico studies, molecular dynamics simulations have been used to provide new insights at an atomistic level, which enables the study of properties that are difficult or even impossible to measure experimentally. Each model and technique has its advantages and disadvantages. Hence, combining different models and techniques is necessary for a more reliable study. In this review, the theoretical backgrounds of these (in vitro and in silico) approaches are presented, followed by a discussion of the pharmacokinetic and pharmacodynamic properties of drugs that are related to their interactions with membranes. All approaches are discussed in parallel to present for a better connection between experimental and simulation studies. Finally, an overview of the molecular dynamics simulation studies used for drug-membrane interactions is provided.  相似文献   

4.
Summary Protein-protein interactions are fundamental processes for many biological systems including those involving the superfamily of G-protein coupled receptors (GPCRs). When addressing key questions concerning the regulation of GPCR-protein complexes and their functional significance, the development and refinement of non-invasive techniques to study these interactions will be of great value. One such technique, bioluminescence resonance energy transfer (BRET), is a recently described biophysical method that represents a powerful tool with which to measure protein-protein interactions in live cells, in real time. This minireview highlights the impact that evolving techniques such as BRET have had on the study of dynamic protein interactions involving GPCRs. In particular, the application of BRET to the study of protein interactions involving the receptors for hypothalamic peptide hormones, thyrotropin-releasing hormone (TRH) and gonadotropin-releasing hormone (GnRH), will be discussed. Using these receptors, BRET has successfully been used to demonstrate formation of both agonist-dependent and independent GPCR-GPCR complexes (oligomerization) and the agonist-dependent interaction of GPCRs with their intracellular adaptor protein partners, the arrestins. In summary, BRET is a highly snnsitive method that will not only aid in advancing our understanding of GPCR signalling and trafficking bout coud also potentially lead to the development of novel therapeutics that target these GPCR-protein complexes.  相似文献   

5.
Dunham WH  Mullin M  Gingras AC 《Proteomics》2012,12(10):1576-1590
Identifying the interactions established by a protein of interest can be a critical step in understanding its function. This is especially true when an unknown protein of interest is demonstrated to physically interact with proteins of known function. While many techniques have been developed to characterize protein-protein interactions, one strategy that has gained considerable momentum over the past decade for identification and quantification of protein-protein interactions, is affinity-purification followed by mass spectrometry (AP-MS). Here, we briefly review the basic principles used in affinity-purification coupled to mass spectrometry, with an emphasis on tools (both biochemical and computational), which enable the discovery and reporting of high quality protein-protein interactions.  相似文献   

6.
The interactions of liposomes with cells have been extensively studied to determine their potential use as vehicles for the delivery of drugs in vivo. Since intravenously administered liposomes are, for the most part, cleared by cells of the reticuloendothelial system (RES), considerable effort has been made to take advantage of this phenomenon rather than view it as an obstacle. Indeed, cells of the RES, in particular macrophages, have been shown to play a vital role in homeostasis and in host defence mechanisms against infection and neoplasia.

In this article, we present an overview of liposome-cell interactions, with particular emphasis on the techniques used to monitor the interaction of liposomes with macrophages. Specifically, we discuss methodologies which can be used to differentiate between liposome-cell fusion, adsorption and endocytosis in vitro. In addition, we outline the various strategies that have been employed for both actively and passively targeting liposomes to macrophages in vivo. We also review the rationale and various techniques for designing liposomes for enhanced macrophage uptake, which, in certain cases, results in the selective release of liposome-entrapped compounds in situ.  相似文献   


7.
8.
染色质免疫沉淀技术在研究DNA与蛋白质相互作用中的应用   总被引:1,自引:0,他引:1  
王春雨  石建党  朱彦  张琚 《遗传》2005,27(5):801-807
在后基因组时代,DNA-蛋白质的相互作用是研究基因表达调控的一个重要领域。与其他方法相比,染色质免疫沉淀技术(chromatin immunoprecipitation assay, ChIP)是一种在体内研究DNA-蛋白质相互作用的理想的方法。近年来这种方法与DNA芯片和分子克隆技术相结合,可用于高通量的筛选已知蛋白因子的未知DNA靶点和研究反式作用因子在整个基因组上的分布情况,这将有助于深入理解DNA-蛋白质相互作用的调控网络。总结了染色质免疫沉淀技术的方法,特别介绍了使用这些方法取得的最新进展。  相似文献   

9.
BackgroundProteins, which comprise one of the major classes of biomolecules that constitute a cell, interact with other cellular factors during both their biogenesis and functional states. Studying not only static but also transient interactions of proteins is important to understand their physiological roles and regulation mechanisms. However, only a limited number of methods are available to analyze the dynamic behaviors of proteins at the molecular level in a living cell. The site-directed in vivo photo-cross-linking approach is an elegant technique to capture protein interactions with high spatial resolution in a living cell.Scope of reviewHere, we review the in vivo photo-cross-linking approach including its recent applications and the potential problems to be considered. We also introduce a new in vivo photo-cross-linking-based technique (PiXie) to study protein dynamics with high spatiotemporal resolution.Major conclusionsIn vivo photo-cross-linking enables us to capture weak/transient protein interactions with high spatial resolution, and allows for identification of interacting factors. Moreover, the PiXie approach can be used to monitor rapid folding/assembly processes of proteins in living cells.General significanceIn vivo photo-cross-linking is a simple method that has been used to analyze the dynamic interactions of many cellular proteins. Originally developed in Escherichia coli, this system has been extended to studies in various organisms, making it a fundamental technique for investigating dynamic protein interactions in many cellular processes. This article is part of a Special issue entitled “Novel major techniques for visualizing ‘live’ protein molecules” edited by Dr. Daisuke Kohda.  相似文献   

10.
Protein–protein interaction is a vital process which drives many important physiological processes in the cell and has also been implicated in several diseases. Though the protein–protein interaction network is quite complex but understanding its interacting partners using both in silico as well as molecular biology techniques can provide better insights for targeting such interactions. Targeting protein–protein interaction with small molecules is a challenging task because of druggability issues. Nevertheless, several studies on the kinetics as well as thermodynamic properties of protein–protein interactions have immensely contributed toward better understanding of the affinity of these complexes. But, more recent studies on hot spots and interface residues have opened up new avenues in the drug discovery process. This approach has been used in the design of hot spot based modulators targeting protein–protein interaction with the objective of normalizing such interactions.  相似文献   

11.
Over the past decade, the glycosaminoglycans heparin and heparan sulfate have been shown to bind and regulate the activities of many proteins. Established techniques have provided both qualitative and quantitative information regarding these interactions, leading to a general view that proteins bind with a variety of affinities to particular sequences within heparin or heparan sulfate chains. The mechanism by which heparan sulfate regulates the activity of proteins through such interactions has, however, proved more elusive. We survey some relevant details of the structural characteristics of heparin/heparan sulfate and the approaches used to investigate their interactions with proteins. For the latter, the interactions of heparin/heparan sulfate with fibroblast growth factors and their receptors will be emphasized, because these proteins have been the subject of many studies. We reflect on the information that various techniques have provided, points regarding their use, and some relevant theoretical considerations regarding the study of protein-heparin/heparan sulfate interactions. A perspective of new and developing approaches, which may aid advances in this field, is also provided.  相似文献   

12.
To fully assess the role of VEGF-A in tumor angiogenesis, antibodies that can block all sources of vascular endothelial growth factor (VEGF) are desired. Selectively targeting tumor-derived VEGF overlooks the contribution of host stromal VEGF. Other strategies, such as targeting VEGF receptors directly or using receptor decoys, result in inhibiting not only VEGF-A but also VEGF homologues (e.g. placental growth factor, VEGF-B, and VEGF-C), which may play a role in angiogenesis. Here we report the identification of novel anti-VEGF antibodies, B20 and G6, from synthetic antibody phage libraries, which block both human and murine VEGF action in vitro. Their affinity-improved variants completely inhibit three human tumor xenografts in mice of skeletal muscle, colorectal, and pancreatic origins (A673, HM-7, and HPAC). Avastin, which only inhibits the tumor-derived human VEGF, is approximately 90% effective at inhibiting HM-7 and A673 growth but is <50% effective at inhibiting HPAC growth. Indeed, HPAC tumors contain more host stroma invasion and stroma-derived VEGF than other tumors. Thus, the functional contribution of stromal VEGF varies greatly among tumors, and systemic blockade of both tumor and stroma-derived VEGF is sufficient for inhibiting the growth of tumor xenografts.  相似文献   

13.
Krill occupy critical positions in a many marine ecosystems and have been the subject of a number of concerted studies yet there are large areas of their biology that still remain a mystery. Most species of krill are open ocean animals, which makes direct observation and sampling difficult. Krill also exhibit a number of physiological and behavioural attributes which frustrate attempts to understand their life history. Krill are conceptually difficult to come to terms with; they are obviously different from larger marine organisms such as squid, fish, whales and fish yet they are also quite distinct from those animals classed as zooplankton such as copepods. Despite these differences they have most often been grouped with zooplankton and have been studied using techniques developed for animals which are orders of magnitude smaller than they. This mismatch has affected our view of their interactions with the physical world and also affects their perceived trophic interactions. Their size and mobility also interferes with our ability to sample them effectively and thus to develop our appreciation of their true role in the marine ecosystem. Understanding how intermediate-sized animals, such as krill, function in aquatic ecosystem is critical to better management of the marine environment.  相似文献   

14.
15.
Krill occupy critical positions in a many marine ecosystems and have been the subject of a number of concerted studies yet there are large areas of their biology that still remain a mystery. Most species of krill are open ocean animals, which makes direct observation and sampling difficult. Krill also exhibit a number of physiological and behavioural attributes which frustrate attempts to understand their life history. Krill are conceptually difficult to come to terms with; they are obviously different from larger marine organisms such as squid, fish, whales and fish yet they are also quite distinct from those animals classed as zooplankton such as copepods. Despite these differences they have most often been grouped with zooplankton and have been studied using techniques developed for animals which are orders of magnitude smaller than they. This mismatch has affected our view of their interactions with the physical world and also affects their perceived trophic interactions. Their size and mobility also interferes with our ability to sample them effectively and thus to develop our appreciation of their true role in the marine ecosystem. Understanding how intermediate-sized animals, such as krill, function in aquatic ecosystem is critical to better management of the marine environment.  相似文献   

16.
The discoidin domain receptors, DDR1 and DDR2, are a subfamily of receptor tyrosine kinases that are activated upon binding to collagen. DDR–collagen interactions play an important role in cell proliferation and migration. Over the past few decades, synthetic peptides and recombinant collagen have been developed as tools to study the biophysical characteristics of collagen and various protein–collagen interactions. Herein we review how these techniques have been used to understand DDR–collagen interactions. Using synthetic collagen-like peptides, the GVM-GFO motif has been found to be the major binding site on collagens II and III for DDR1 and DDR2. An X-ray co-crystal structure of the DDR2 DS domain bound to a synthetic collagen-like peptide containing the GVM-GFO motif further provides molecular details of the DDR–collagen interactions. Recombinant collagen has also been used to provide further validation of the GVM-GFO binding motif. Although GVM-GFO has been defined as the minimal binding site, in synthetic peptide studies at least two triplets N-terminal to the essential GVM-GFO binding motif in collagen III sequence are needed for DDR2 activation at high peptide concentrations.  相似文献   

17.
An important goal in cell biology has been to observe dynamic interactions between protein molecules within a living cell as they execute the reactions of a particular biochemical pathway. An important step toward achieving this goal has been the development of noninvasive fluorescence-based detection and imaging techniques for determining whether and when specific biomolecules in a cell become associated with one another. Furthermore, these techniques, which take advantage of phenomena known as bioluminescence- and fluorescence resonance energy transfer (BRET and FRET, respectively) as well as biomolecular fluorescence complementation (BiFC), can provide information about where and when protein-protein interactions occur in the cell. Increasingly BRET, FRET, and BiFC are being used to probe interactions between components involved in G protein-mediated signal transduction. Heptahelical (7TM) receptors, heterotrimeric guanine nucleotide binding proteins (G proteins) and their proximal downstream effectors constitute the core components of these ubiquitous signaling pathways. Signal transduction is initiated by the binding of agonist to heptahelical (7TM) receptors that in turn activate their cognate G proteins. The activated G protein subsequently regulates the activity of specific effectors. 7TM receptors, G proteins, and effectors are all membrane-associated proteins, and for decades two opposing hypotheses have vied for acceptance. The predominant hypothesis has been that these proteins move about independently of one another in membranes and that signal trandduction occurs when they encounter each other as the result of random collisions. The contending hypothesis is that signaling is propagated by organized complexes of these proteins. Until recently, the data supporting these hypotheses came from studying signaling proteins in solution, in isolated membranes, or in fixed cells. Although the former hypothesis has been favored, recent studies using BRET and FRET have generally supported the latter hypothesis as being the most likely scenario operating in living cells. In addition to the core components, there are many other proteins involved in G protein signaling, and BRET and FRET studies have been used to investigate their interactions as well. This review describes various BRET, FRET, and BiFC techniques, how they have been or can be applied to the study of G protein signaling, what caveats are involved in interpreting the results, and what has been learned about G protein signaling from the published studies.  相似文献   

18.

Background

Lignocellulosic biomass is an attractive renewable resource for future liquid transport fuel. Efficient and cost-effective production of bioethanol from lignocellulosic biomass depends on the development of a suitable pretreatment system. The aim of this study is to investigate a new pretreatment method that is highly efficient and effective for downstream biocatalytic hydrolysis of various lignocellulosic biomass materials, which can accelerate bioethanol commercialization.

Results

The optimal conditions for the hydrogen peroxide–acetic acid (HPAC) pretreatment were 80 °C, 2 h, and an equal volume mixture of H2O2 and CH3COOH. Compared to organo-solvent pretreatment under the same conditions, the HPAC pretreatment was more effective at increasing enzymatic digestibility. After HPAC treatment, the composition of the recovered solid was 74.0 % cellulose, 20.0 % hemicelluloses, and 0.9 % lignin. Notably, 97.2 % of the lignin was removed with HPAC pretreatment. Fermentation of the hydrolyzates by S. cerevisiae resulted in 412 mL ethanol kg?1 of biomass after 24 h, which was equivalent to 85.0 % of the maximum theoretical yield (based on the amount of glucose in the raw material).

Conclusion

The newly developed HPAC pretreatment was highly effective for removing lignin from lignocellulosic cell walls, resulting in enhanced enzymatic accessibility of the substrate and more efficient cellulose hydrolysis. This pretreatment produced less amounts of fermentative inhibitory compounds. In addition, HPAC pretreatment enables year-round operations, maximizing utilization of lignocellulosic biomass from various plant sources.
  相似文献   

19.
The study of protein interactions is playing an ever increasing role in our attempts to understand cells and diseases on a system-wide level. This article reviews several experimental approaches that are currently being used to measure protein–protein, protein–DNA and gene–gene interactions. These techniques have now been scaled up to produce extensive genome-wide data sets that are providing us with a first glimpse of global interaction networks. Complementing these experimental approaches, several computational methodologies to predict protein interactions are also reviewed. Existing databases that serve as repositories for protein interaction information and how such databases are used to analyze high-throughput data from a pathway perspective is also addressed. Finally, current efforts to combine multiple data types to obtain more accurate and comprehensive models of protein interactions are discussed. It is clear that the evolution of these experimental and computational approaches is rapidly changing our view of biology, and promises to provide us with an unprecedented ability to model cells and organisms at a system-wide level.  相似文献   

20.
Mechanistic studies of cAMP-dependent protein kinase action   总被引:4,自引:0,他引:4  
The details of the process by which protein kinase catalyzes phosphoryl group transfers are beginning to be understood. Early work that explored the primary specificity of cAMP-dependent protein kinase action enabled the synthesis of small peptide substrates for the enzyme. Enzyme-peptide interactions seem simpler to understand than protein-protein interactions, so peptide substrates have been used in most protein kinase studies. In most investigations the kinetics for the phosphorylation of small peptides have been interpreted as being consistent with mechanisms which do not invoke phospho-enzyme intermediates (see, for example, Bolen et al.). Protein kinase has been shown to bind two metal ions in the presence of a nucleotide. Using magnetic resonance techniques the binding of these ions has been utilized to elucidate the conformation of nucleotide and peptide substrates or inhibitors when bound in the enzymic active site. Also, two new peptides with the form Leu-Arg-Arg-Ala-Ser-Y-Gly, where Y was either Pro or (N-methyl)Leu, were synthesized and found not to be substrates, within the limits of detection, for protein kinase. The striking lack of affinity that protein kinase has for such peptides which are unlikely to form a beta 3-6 turn has not been reported before. Our results may indicate that this type of turn is a requirement for protein kinase catalyzed phosphorylation or that these peptides lack the ability to form a particular hydrogen bond with the enzyme. Magnetic resonance techniques have indicated that the distance between the phosphorous in the gamma-phosphoryl group of MgATP and the hydroxyl oxygen of serine in the peptide Leu-Arg-Arg-Ala-Ser-Leu-Gly is 5.3 +/- 0.7 A. This, together with certain kinetic evidence, suggests that the mechanism by which protein kinase catalyzes phosphoryl group transfer has considerable dissociative character. Chemical modifications, including one using a peptide-based affinity label, have identified two residues at or near the active site, lysine-72 and cysteine 199. While neither of these groups has been shown to be catalytically essential, similar studies may help to identify groups that are directly involved in the catalytic process. Finally, a spectrophotometric assay for cAMP-dependent protein kinase has been described. Using this assay the preliminary results of an in-depth study of the pH dependence of protein kinase catalyzed phosphoryl group transfer have been obtained. This study shall aid in the identification of active site residues and should contribute to the elucidation of the enzyme's catalytic mechanism.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号